-
1
-
-
66349128242
-
Viral myocarditis: From the perspective of the virus
-
Yajima T and Knowlton KU: Viral myocarditis: From the perspective of the virus. Circulation 119: 2615-2624, 2009.
-
(2009)
Circulation
, vol.119
, pp. 2615-2624
-
-
Yajima, T.1
Knowlton, K.U.2
-
2
-
-
79956062189
-
Viral myocarditis: Potential defense mechanisms within the cardiomyocyte against virus infection
-
Yajima T: Viral myocarditis: Potential defense mechanisms within the cardiomyocyte against virus infection. Future Microbiol 6: 551-566, 2011.
-
(2011)
Future Microbiol
, vol.6
, pp. 551-566
-
-
Yajima, T.1
-
3
-
-
10744222678
-
Detection of viruses in myocardial tissues by polymerase chain reaction: Evidence of adenovirus as a common cause of myocarditis in children and adults
-
Bowles NE, Ni J, Kearney DL, Pauschinger M, Schultheiss HP, McCarthy R, Hare J, Bricker JT, Bowles KR and Towbin JA: Detection of viruses in myocardial tissues by polymerase chain reaction: Evidence of adenovirus as a common cause of myocarditis in children and adults. J Am Coll Cardiol 42: 466-472, 2003.
-
(2003)
J Am Coll Cardiol
, vol.42
, pp. 466-472
-
-
Bowles, N.E.1
Ni, J.2
Kearney, D.L.3
Pauschinger, M.4
Schultheiss, H.P.5
McCarthy, R.6
Hare, J.7
Bricker, J.T.8
Bowles, K.R.9
Towbin, J.A.10
-
4
-
-
41749107345
-
Molecular biology and pathogenesis of viral myocarditis
-
Esfandiarei M and McManus BM: Molecular biology and pathogenesis of viral myocarditis. Annu Rev Pathol 3: 127-155, 2008.
-
(2008)
Annu Rev Pathol
, vol.3
, pp. 127-155
-
-
Esfandiarei, M.1
McManus, B.M.2
-
5
-
-
84947245785
-
Recent progress in understanding coxsackievirus replication, dissemination, and pathogenesis
-
Sin J, Mangale V, Thienphrapa W, Gottlieb RA and Feuer R: Recent progress in understanding coxsackievirus replication, dissemination, and pathogenesis. Virology 484: 288-304, 2015.
-
(2015)
Virology
, vol.484
, pp. 288-304
-
-
Sin, J.1
Mangale, V.2
Thienphrapa, W.3
Gottlieb, R.A.4
Feuer, R.5
-
6
-
-
84862912958
-
Interleukin-17A contributes to myocardial ischemia/reperfusion injury by regulating cardiomyocyte apoptosis and neutrophil infiltration
-
Liao YH, Xia N, Zhou SF, Tang TT, Yan XX, Lv BJ, Nie SF, Wang J, Iwakura Y, Xiao H, et al: Interleukin-17A contributes to myocardial ischemia/reperfusion injury by regulating cardiomyocyte apoptosis and neutrophil infiltration. J Am Coll Cardiol 59: 420-429, 2012.
-
(2012)
J Am Coll Cardiol
, vol.59
, pp. 420-429
-
-
Liao, Y.H.1
Xia, N.2
Zhou, S.F.3
Tang, T.T.4
Yan, X.X.5
Lv, B.J.6
Nie, S.F.7
Wang, J.8
Iwakura, Y.9
Xiao, H.10
-
7
-
-
84927752669
-
Coxsackievirus B3 replication and pathogenesis
-
Garmaroudi FS, Marchant D, Hendry R, Luo H, Yang D, Ye X, Shi J and McManus BM: Coxsackievirus B3 replication and pathogenesis. Future Microbiol 10: 629-653, 2015.
-
(2015)
Future Microbiol
, vol.10
, pp. 629-653
-
-
Garmaroudi, F.S.1
Marchant, D.2
Hendry, R.3
Luo, H.4
Yang, D.5
Ye, X.6
Shi, J.7
McManus, B.M.8
-
8
-
-
84890515810
-
LY294002 and Rapamycin promote coxsackievirus-induced cytopathic effect and apoptosis via inhibition of PI3K/AKT/mTOR signaling pathway
-
Chen Z, Yang L, Liu Y, Tang A, Li X, Zhang J and Yang Z: LY294002 and Rapamycin promote coxsackievirus-induced cytopathic effect and apoptosis via inhibition of PI3K/AKT/mTOR signaling pathway. Mol Cell Biochem 385: 169-177, 2014.
-
(2014)
Mol Cell Biochem
, vol.385
, pp. 169-177
-
-
Chen, Z.1
Yang, L.2
Liu, Y.3
Tang, A.4
Li, X.5
Zhang, J.6
Yang, Z.7
-
9
-
-
33645142635
-
Viruses, endoplasmic reticulum stress, and interferon responses
-
He B: Viruses, endoplasmic reticulum stress, and interferon responses. Cell Death Differ 13: 393-403, 2006.
-
(2006)
Cell Death Differ
, vol.13
, pp. 393-403
-
-
He, B.1
-
10
-
-
84937735752
-
Endoplasmic reticulum stress aggravates viral myocarditis by raising inflammation through the IRE1-associated NF-?B pathway
-
Zha X, Yue Y, Dong N and Xiong S: Endoplasmic reticulum stress aggravates viral myocarditis by raising inflammation through the IRE1-associated NF-?B pathway. Can J Cardiol 31: 1032-1040, 2015.
-
(2015)
Can J Cardiol
, vol.31
, pp. 1032-1040
-
-
Zha, X.1
Yue, Y.2
Dong, N.3
Xiong, S.4
-
11
-
-
77956642651
-
Coxsackievirus B3 infection activates the unfolded protein response and induces apoptosis through downregulation of p58IPK and activation of CHOP and SREBP1
-
Zhang HM, Ye X, Su Y, Yuan J, Liu Z, Stein DA and Yang D: Coxsackievirus B3 infection activates the unfolded protein response and induces apoptosis through downregulation of p58IPK and activation of CHOP and SREBP1. J Virol 84: 8446-8459, 2010.
-
(2010)
J Virol
, vol.84
, pp. 8446-8459
-
-
Zhang, H.M.1
Ye, X.2
Su, Y.3
Yuan, J.4
Liu, Z.5
Stein, D.A.6
Yang, D.7
-
12
-
-
77951237079
-
Autophagy genes as tumor suppressors
-
Liang C and Jung JU: Autophagy genes as tumor suppressors. Curr Opin Cell Biol 22: 226-233, 2010.
-
(2010)
Curr Opin Cell Biol
, vol.22
, pp. 226-233
-
-
Liang, C.1
Jung, J.U.2
-
13
-
-
49349090155
-
Huntington's disease: Degradation of mutant huntingtin by autophagy
-
Sarkar S and Rubinsztein DC: Huntington's disease: Degradation of mutant huntingtin by autophagy. FEBS J 275: 4263-4270, 2008.
-
(2008)
FEBS J
, vol.275
, pp. 4263-4270
-
-
Sarkar, S.1
Rubinsztein, D.C.2
-
16
-
-
75649089762
-
Autophagy and innate recognition systems
-
Tal MC and Iwasaki A: Autophagy and innate recognition systems. Curr Top Microbiol Immunol 335: 107-121, 2009.
-
(2009)
Curr Top Microbiol Immunol
, vol.335
, pp. 107-121
-
-
Tal, M.C.1
Iwasaki, A.2
-
17
-
-
50949133741
-
Autophagosome supports coxsackievirus B3 replication in host cells
-
Wong J, Zhang J, Si X, Gao G, Mao I, McManus BM and Luo H: Autophagosome supports coxsackievirus B3 replication in host cells. J Virol 82: 9143-9153, 2008.
-
(2008)
J Virol
, vol.82
, pp. 9143-9153
-
-
Wong, J.1
Zhang, J.2
Si, X.3
Gao, G.4
Mao, I.5
McManus, B.M.6
Luo, H.7
-
18
-
-
84894362626
-
Cardiomyocyte health: Adapting to metabolic changes through autophagy
-
Kubli DA and Gustafsson AB: Cardiomyocyte health: Adapting to metabolic changes through autophagy. Trends Endocrinol Metab 25: 156-164, 2014.
-
(2014)
Trends Endocrinol Metab
, vol.25
, pp. 156-164
-
-
Kubli, D.A.1
Gustafsson, A.B.2
-
19
-
-
84901370753
-
Coxsackievirus B exits the host cell in shed microvesicles displaying autophagosomal markers
-
Robinson SM, Tsueng G, Sin J, Mangale V, Rahawi S, McIntyre LL, Williams W, Kha N, Cruz C, Hancock BM, et al: Coxsackievirus B exits the host cell in shed microvesicles displaying autophagosomal markers. PLoS Pathog 10: e1004045, 2014.
-
(2014)
PLoS Pathog
, vol.10
, pp. e1004045
-
-
Robinson, S.M.1
Tsueng, G.2
Sin, J.3
Mangale, V.4
Rahawi, S.5
McIntyre, L.L.6
Williams, W.7
Kha, N.8
Cruz, C.9
Hancock, B.M.10
-
20
-
-
84939480724
-
Coxsackievirus B3 induces autophagic response in cardiac myocytes in vivo
-
Zhai X, Bai B, Yu B, Wang T, Wang H, Wang Y, Li H, Tong L, Wang Y, Zhang F, et al: Coxsackievirus B3 induces autophagic response in cardiac myocytes in vivo. Biochemistry (Mosc) 80: 1001-1009, 2015.
-
(2015)
Biochemistry (Mosc)
, vol.80
, pp. 1001-1009
-
-
Zhai, X.1
Bai, B.2
Yu, B.3
Wang, T.4
Wang, H.5
Wang, Y.6
Li, H.7
Tong, L.8
Wang, Y.9
Zhang, F.10
-
21
-
-
78049513713
-
Coxsackievirus infection induces autophagy-like vesicles and megaphagosomes in pancreatic acinar cells in vivo
-
Kemball CC, Alirezaei M, Flynn CT, Wood MR, Harkins S, Kiosses WB and Whitton JL: Coxsackievirus infection induces autophagy-like vesicles and megaphagosomes in pancreatic acinar cells in vivo. J Virol 84: 12110-12124, 2010.
-
(2010)
J Virol
, vol.84
, pp. 12110-12124
-
-
Kemball, C.C.1
Alirezaei, M.2
Flynn, C.T.3
Wood, M.R.4
Harkins, S.5
Kiosses, W.B.6
Whitton, J.L.7
-
22
-
-
84858390120
-
Pancreatic acinar cell-specific autophagy disruption reduces coxsackievirus replication and pathogenesis in vivo
-
Alirezaei M, Flynn CT, Wood MR and Whitton JL: Pancreatic acinar cell-specific autophagy disruption reduces coxsackievirus replication and pathogenesis in vivo. Cell Host Microbe 11: 298-305, 2012.
-
(2012)
Cell Host Microbe
, vol.11
, pp. 298-305
-
-
Alirezaei, M.1
Flynn, C.T.2
Wood, M.R.3
Whitton, J.L.4
-
23
-
-
84901783314
-
Coxsackievirus B3 induces crosstalk between autophagy and apoptosis to benefit its release after replicating in autophagosomes through a mechanism involving caspase cleavage of autophagy-related proteins
-
Xin L, Xiao Z, Ma X, He F, Yao H and Liu Z: Coxsackievirus B3 induces crosstalk between autophagy and apoptosis to benefit its release after replicating in autophagosomes through a mechanism involving caspase cleavage of autophagy-related proteins. Infect Genet Evol 26: 95-102, 2014.
-
(2014)
Infect Genet Evol
, vol.26
, pp. 95-102
-
-
Xin, L.1
Xiao, Z.2
Ma, X.3
He, F.4
Yao, H.5
Liu, Z.6
-
24
-
-
84865600889
-
Is autophagy an avenue to modulate coxsackievirus replication and pathogenesis?
-
Luo H and McManus BM: Is autophagy an avenue to modulate coxsackievirus replication and pathogenesis? Future Microbiol 7: 921-924, 2012.
-
(2012)
Future Microbiol
, vol.7
, pp. 921-924
-
-
Luo, H.1
McManus, B.M.2
-
25
-
-
79952443480
-
Sindbis virus replication, is insensitive to rapamycin and torin1, and suppresses Akt/mTOR pathway late during infection in HEK cells
-
Mohankumar V, Dhanushkodi NR and Raju R: Sindbis virus replication, is insensitive to rapamycin and torin1, and suppresses Akt/mTOR pathway late during infection in HEK cells. Biochem Biophys Res Commun 406: 262-267, 2011.
-
(2011)
Biochem Biophys Res Commun
, vol.406
, pp. 262-267
-
-
Mohankumar, V.1
Dhanushkodi, N.R.2
Raju, R.3
-
26
-
-
82455212854
-
Avian influenza A virus H5N1 causes autophagy-mediated cell death through suppression of mTOR signaling
-
Ma J, Sun Q, Mi R and Zhang H: Avian influenza A virus H5N1 causes autophagy-mediated cell death through suppression of mTOR signaling. J Genet Genomics 38: 533-537, 2011.
-
(2011)
J Genet Genomics
, vol.38
, pp. 533-537
-
-
Ma, J.1
Sun, Q.2
Mi, R.3
Zhang, H.4
-
27
-
-
64049114864
-
Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus
-
Shelly S, Lukinova N, Bambina S, Berman A and Cherry S: Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 30: 588-598, 2009.
-
(2009)
Immunity
, vol.30
, pp. 588-598
-
-
Shelly, S.1
Lukinova, N.2
Bambina, S.3
Berman, A.4
Cherry, S.5
-
28
-
-
84873669841
-
Hepatitis C virus inhibits AKT-tuberous sclerosis complex (TSC), the mechanistic target of rapamycin (MTOR) pathway, through endoplasmic reticulum stress to induce autophagy
-
Huang H, Kang R, Wang J, Luo G, Yang W and Zhao Z: Hepatitis C virus inhibits AKT-tuberous sclerosis complex (TSC), the mechanistic target of rapamycin (MTOR) pathway, through endoplasmic reticulum stress to induce autophagy. Autophagy 9: 175-195, 2013.
-
(2013)
Autophagy
, vol.9
, pp. 175-195
-
-
Huang, H.1
Kang, R.2
Wang, J.3
Luo, G.4
Yang, W.5
Zhao, Z.6
-
29
-
-
84943801196
-
Binding of the pathogen receptor HSP90AA1 to avibirnavirus VP2 induces autophagy by inactivating the AKT-MTOR pathway
-
Hu B, Zhang Y, Jia L, Wu H, Fan C, Sun Y, Ye C, Liao M and Zhou J: Binding of the pathogen receptor HSP90AA1 to avibirnavirus VP2 induces autophagy by inactivating the AKT-MTOR pathway. Autophagy 11: 503-515, 2015.
-
(2015)
Autophagy
, vol.11
, pp. 503-515
-
-
Hu, B.1
Zhang, Y.2
Jia, L.3
Wu, H.4
Fan, C.5
Sun, Y.6
Ye, C.7
Liao, M.8
Zhou, J.9
-
30
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J, Kundu M, Viollet B and Guan KL: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13: 132-141, 2011.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
31
-
-
84919713406
-
A role for TOR complex 2 signaling in promoting autophagy
-
Vlahakis A and Powers T: A role for TOR complex 2 signaling in promoting autophagy. Autophagy 10: 2085-2086, 2014.
-
(2014)
Autophagy
, vol.10
, pp. 2085-2086
-
-
Vlahakis, A.1
Powers, T.2
-
32
-
-
84922354513
-
Autophagy fosters myofibroblast differentiation through MTORC2 activation and downstream upregulation of CTGF
-
Bernard M, Dieudé M, Yang B, Hamelin K, Underwood K and Hébert MJ: Autophagy fosters myofibroblast differentiation through MTORC2 activation and downstream upregulation of CTGF. Autophagy 10: 2193-2207, 2014.
-
(2014)
Autophagy
, vol.10
, pp. 2193-2207
-
-
Bernard, M.1
Dieudé, M.2
Yang, B.3
Hamelin, K.4
Underwood, K.5
Hébert, M.J.6
-
33
-
-
84941763781
-
Coxsackievirus B3 induces autophagy in HeLa cells via the AMPK/MEK/ERK and Ras/Raf/MEK/ERK signaling pathways
-
Xin L, Ma X, Xiao Z, Yao H and Liu Z: Coxsackievirus B3 induces autophagy in HeLa cells via the AMPK/MEK/ERK and Ras/Raf/MEK/ERK signaling pathways. Infect Genet Evol 36: 46-54, 2015.
-
(2015)
Infect Genet Evol
, vol.36
, pp. 46-54
-
-
Xin, L.1
Ma, X.2
Xiao, Z.3
Yao, H.4
Liu, Z.5
-
34
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B and Kroemer G: Autophagy in the pathogenesis of disease. Cell 132: 27-42, 2008.
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
35
-
-
84885004564
-
Overexpression of 4EBP1, p70S6K, Akt1 or Akt2 differentially promotes Coxsackievirus B3-induced apoptosis in HeLa cells
-
Li X, Li Z, Zhou W, Xing X, Huang L, Tian L, Chen J, Chen C, Ma X and Yang Z: Overexpression of 4EBP1, p70S6K, Akt1 or Akt2 differentially promotes Coxsackievirus B3-induced apoptosis in HeLa cells. Cell Death Dis 4: e803-e809, 2013.
-
(2013)
Cell Death Dis
, vol.4
, pp. e803-e809
-
-
Li, X.1
Li, Z.2
Zhou, W.3
Xing, X.4
Huang, L.5
Tian, L.6
Chen, J.7
Chen, C.8
Ma, X.9
Yang, Z.10
-
36
-
-
84879938051
-
Both PI3K-and mTOR-signaling pathways take part in CVB3-induced apoptosis of Hela cells
-
Li X, Zhang J, Chen Z, Yang L, Xing X, Ma X and Yang Z: Both PI3K-and mTOR-signaling pathways take part in CVB3-induced apoptosis of Hela cells. DNA Cell Biol 32: 359-370, 2013.
-
(2013)
DNA Cell Biol
, vol.32
, pp. 359-370
-
-
Li, X.1
Zhang, J.2
Chen, Z.3
Yang, L.4
Xing, X.5
Ma, X.6
Yang, Z.7
-
37
-
-
38949108670
-
Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes
-
Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, et al: Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4: 151-175, 2008.
-
(2008)
Autophagy
, vol.4
, pp. 151-175
-
-
Klionsky, D.J.1
Abeliovich, H.2
Agostinis, P.3
Agrawal, D.K.4
Aliev, G.5
Askew, D.S.6
Baba, M.7
Baehrecke, E.H.8
Bahr, B.A.9
Ballabio, A.10
-
38
-
-
33746108329
-
Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy
-
Tanida I, Minematsu-Ikeguchi N, Ueno T and Kominami E: Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1: 84-91, 2005.
-
(2005)
Autophagy
, vol.1
, pp. 84-91
-
-
Tanida, I.1
Minematsu-Ikeguchi, N.2
Ueno, T.3
Kominami, E.4
-
39
-
-
10944253145
-
Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
-
Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI and Deretic V: Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119: 753-766, 2004.
-
(2004)
Cell
, vol.119
, pp. 753-766
-
-
Gutierrez, M.G.1
Master, S.S.2
Singh, S.B.3
Taylor, G.A.4
Colombo, M.I.5
Deretic, V.6
-
40
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
Mizushima N, Levine B, Cuervo AM and Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature 451: 1069-1075, 2008.
-
(2008)
Nature
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
Klionsky, D.J.4
-
41
-
-
36249025723
-
Autophagy: Process and function
-
Mizushima N: Autophagy: Process and function. Genes Dev 21: 2861-2873, 2007.
-
(2007)
Genes Dev
, vol.21
, pp. 2861-2873
-
-
Mizushima, N.1
-
42
-
-
26844531363
-
Maturation of autophagic vacuoles in Mammalian cells
-
Eskelinen EL: Maturation of autophagic vacuoles in Mammalian cells. Autophagy 1: 1-10, 2005.
-
(2005)
Autophagy
, vol.1
, pp. 1-10
-
-
Eskelinen, E.L.1
-
43
-
-
84862295360
-
Guidelines for the use and interpretation of assays for monitoring autophagy
-
Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA, et al: Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8: 445-544, 2012.
-
(2012)
Autophagy
, vol.8
, pp. 445-544
-
-
Klionsky, D.J.1
Abdalla, F.C.2
Abeliovich, H.3
Abraham, R.T.4
Acevedo-Arozena, A.5
Adeli, K.6
Agholme, L.7
Agnello, M.8
Agostinis, P.9
Aguirre-Ghiso, J.A.10
-
44
-
-
84956875557
-
The autophagic machinery in enterovirus infection
-
Lai JK, Sam IC and Chan YF: The autophagic machinery in enterovirus infection. Viruses 8: E32, 2016.
-
(2016)
Viruses
, vol.8
, pp. E32
-
-
Lai, J.K.1
Sam, I.C.2
Chan, Y.F.3
-
45
-
-
84885660912
-
Cleavage of sequestosome 1/p62 by an enteroviral protease results in disrupted selective autophagy and impaired NFKB signaling
-
Shi J, Wong J, Piesik P, Fung G, Zhang J, Jagdeo J, Li X, Jan E and Luo H: Cleavage of sequestosome 1/p62 by an enteroviral protease results in disrupted selective autophagy and impaired NFKB signaling. Autophagy 9: 1591-1603, 2013.
-
(2013)
Autophagy
, vol.9
, pp. 1591-1603
-
-
Shi, J.1
Wong, J.2
Piesik, P.3
Fung, G.4
Zhang, J.5
Jagdeo, J.6
Li, X.7
Jan, E.8
Luo, H.9
-
46
-
-
84907626815
-
The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration
-
Heras-Sandoval D, Pérez-Rojas JM, Hernández-Damián J and Pedraza-Chaverri J: The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 26: 2694-2701, 2014.
-
(2014)
Cell Signal
, vol.26
, pp. 2694-2701
-
-
Heras-Sandoval, D.1
Pérez-Rojas, J.M.2
Hernández-Damián, J.3
Pedraza-Chaverri, J.4
-
47
-
-
84914669992
-
The cardioprotection of the insulin-mediated PI3K/Akt/mTOR signaling pathway
-
Yao H, Han X and Han X: The cardioprotection of the insulin-mediated PI3K/Akt/mTOR signaling pathway. Am J Cardiovasc Drugs 14: 433-442, 2014.
-
(2014)
Am J Cardiovasc Drugs
, vol.14
, pp. 433-442
-
-
Yao, H.1
Han, X.2
Han, X.3
-
48
-
-
69449103157
-
Viruses and arrested autophagosome development
-
Taylor MP and Jackson WT: Viruses and arrested autophagosome development. Autophagy 5: 870-871, 2009.
-
(2009)
Autophagy
, vol.5
, pp. 870-871
-
-
Taylor, M.P.1
Jackson, W.T.2
-
49
-
-
84976618327
-
Coxsackievirus B3 infection induces autophagic flux, and autophagosomes are critical for efficient viral replication
-
Shi X, Chen Z, Tang S, Wu F, Xiong S and Dong C: Coxsackievirus B3 infection induces autophagic flux, and autophagosomes are critical for efficient viral replication. Arch Virol 161: 2197-2205, 2016.
-
(2016)
Arch Virol
, vol.161
, pp. 2197-2205
-
-
Shi, X.1
Chen, Z.2
Tang, S.3
Wu, F.4
Xiong, S.5
Dong, C.6
-
50
-
-
68049085887
-
In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models
-
Hoeflich KP, O'Brien C, Boyd Z, Cavet G, Guerrero S, Jung K, Januario T, Savage H, Punnoose E, Truong T, et al: In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models. Clin Cancer Res 15: 4649-4664, 2009.
-
(2009)
Clin Cancer Res
, vol.15
, pp. 4649-4664
-
-
Hoeflich, K.P.1
O'Brien, C.2
Boyd, Z.3
Cavet, G.4
Guerrero, S.5
Jung, K.6
Januario, T.7
Savage, H.8
Punnoose, E.9
Truong, T.10
|