메뉴 건너뛰기




Volumn 30, Issue , 2015, Pages 166-178

On the feasibility of growth-coupled product synthesis in microbial strains

Author keywords

Computational strain design; Elementary (flux) modes; Elementary (flux) vectors; Escherichia coli; Growth coupled product synthesis; Yield space

Indexed keywords

BIOMASS; BIOMOLECULES; ECOLOGY; ESCHERICHIA COLI; METABOLIC ENGINEERING; METABOLISM; METABOLITES; STRAIN; VECTOR SPACES;

EID: 84935478514     PISSN: 10967176     EISSN: 10967184     Source Type: Journal    
DOI: 10.1016/j.ymben.2015.05.006     Document Type: Article
Times cited : (73)

References (40)
  • 2
    • 0242487787 scopus 로고    scopus 로고
    • OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
    • Burgard A.P., Pharkya P., Maranas C.D. OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 2003, 84:647-657.
    • (2003) Biotechnol. Bioeng. , vol.84 , pp. 647-657
    • Burgard, A.P.1    Pharkya, P.2    Maranas, C.D.3
  • 3
    • 84907350970 scopus 로고    scopus 로고
    • Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path
    • Campodonico M.A., Andrews B.A., Asenjo J.A., Palsson B.Ø., Feist A.M. Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path. Metab. Eng. 2014, 25:140-158.
    • (2014) Metab. Eng. , vol.25 , pp. 140-158
    • Campodonico, M.A.1    Andrews, B.A.2    Asenjo, J.A.3    Palsson, B.Ø.4    Feist, A.M.5
  • 4
    • 79960104605 scopus 로고    scopus 로고
    • Microbial laboratory evolution in the era of genome-scale science
    • Conrad T.M., Lewis N.E., Palsson B.Ø. Microbial laboratory evolution in the era of genome-scale science. Mol. Syst. Biol. 2011, 7:509.
    • (2011) Mol. Syst. Biol. , vol.7 , pp. 509
    • Conrad, T.M.1    Lewis, N.E.2    Palsson, B.Ø.3
  • 5
    • 84988515801 scopus 로고    scopus 로고
    • Cyanobacterial biofuels: new insights and strain design strategies revealed by computational modeling
    • Erdrich P., Knoop H., Steuer R., Klamt S. Cyanobacterial biofuels: new insights and strain design strategies revealed by computational modeling. Microb. Cell Factories 2014, 13:128.
    • (2014) Microb. Cell Factories , vol.13 , pp. 128
    • Erdrich, P.1    Knoop, H.2    Steuer, R.3    Klamt, S.4
  • 8
    • 13244292328 scopus 로고    scopus 로고
    • Computation of elementary modes: a unifying framework and the new binary approach
    • Gagneur J., Klamt S. Computation of elementary modes: a unifying framework and the new binary approach. BMC Bioinf. 2004, 5:175.
    • (2004) BMC Bioinf. , vol.5 , pp. 175
    • Gagneur, J.1    Klamt, S.2
  • 9
    • 77952585143 scopus 로고    scopus 로고
    • CASOP: a computational approach for strain optimization aiming at high productivity
    • Hädicke O., Klamt S. CASOP: a computational approach for strain optimization aiming at high productivity. J. Biotechnol. 2010, 147:88-101.
    • (2010) J. Biotechnol. , vol.147 , pp. 88-101
    • Hädicke, O.1    Klamt, S.2
  • 10
    • 79952103372 scopus 로고    scopus 로고
    • Computing complex metabolic intervention strategies using constrained minimal cut sets
    • Hädicke O., Klamt S. Computing complex metabolic intervention strategies using constrained minimal cut sets. Metab. Eng. 2011, 13:204-213.
    • (2011) Metab. Eng. , vol.13 , pp. 204-213
    • Hädicke, O.1    Klamt, S.2
  • 11
    • 84901356026 scopus 로고    scopus 로고
    • Complete enumeration of elementary flux modes through scalable demand-based subnetwork definition
    • Hunt K.A., Folsom J.P., Taffs R.L., Carlson R.P. Complete enumeration of elementary flux modes through scalable demand-based subnetwork definition. Bioinformatics 2014, 30:1569-1578.
    • (2014) Bioinformatics , vol.30 , pp. 1569-1578
    • Hunt, K.A.1    Folsom, J.P.2    Taffs, R.L.3    Carlson, R.P.4
  • 12
    • 84896731390 scopus 로고    scopus 로고
    • Enumeration of smallest intervention strategies in genome-scale metabolic networks
    • von Kamp A., Klamt S. Enumeration of smallest intervention strategies in genome-scale metabolic networks. PLoS Comput. Biol. 2014, 10:e1003378.
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003378
    • von Kamp, A.1    Klamt, S.2
  • 13
    • 84866090747 scopus 로고    scopus 로고
    • Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks
    • Kelk S.M., Olivier B.G., Stougie L., Bruggemann F.J. Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks. Sci. Reports 2012, 2:580.
    • (2012) Sci. Reports , vol.2 , pp. 580
    • Kelk, S.M.1    Olivier, B.G.2    Stougie, L.3    Bruggemann, F.J.4
  • 14
    • 77951552860 scopus 로고    scopus 로고
    • OptORF: optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains
    • Kim J., Reed J.L. OptORF: optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. BMC Syst. Biol. 2010, 4:53.
    • (2010) BMC Syst. Biol. , vol.4 , pp. 53
    • Kim, J.1    Reed, J.L.2
  • 15
    • 34447551397 scopus 로고    scopus 로고
    • Structural and functional analysis of cellular networks with CellNetAnalyzer
    • Klamt S., Saez-Rodriguez J., Gilles E.D. Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst. Biol. 2007, 1:2.
    • (2007) BMC Syst. Biol. , vol.1 , pp. 2
    • Klamt, S.1    Saez-Rodriguez, J.2    Gilles, E.D.3
  • 16
    • 84976513521 scopus 로고    scopus 로고
    • Stoichiometric and constraint-based analysis of biochemical reaction networks
    • Springer, P. Benner, R. Findeisen, D. Flockerzi, U. Reichl, K. Sundmacher (Eds.)
    • Klamt S., Hädicke O., von Kamp A. Stoichiometric and constraint-based analysis of biochemical reaction networks. Large-Scale Networks in Engineering and Life Sciences 2014, 263-316. Springer. P. Benner, R. Findeisen, D. Flockerzi, U. Reichl, K. Sundmacher (Eds.).
    • (2014) Large-Scale Networks in Engineering and Life Sciences , pp. 263-316
    • Klamt, S.1    Hädicke, O.2    von Kamp, A.3
  • 17
    • 84907930055 scopus 로고    scopus 로고
    • Engineering modular ester fermentative pathways in Escherichia coli
    • Layton D.S., Trinh C.T. Engineering modular ester fermentative pathways in Escherichia coli. Metab. Eng. 2014, 26:77-88.
    • (2014) Metab. Eng. , vol.26 , pp. 77-88
    • Layton, D.S.1    Trinh, C.T.2
  • 18
    • 77953514760 scopus 로고    scopus 로고
    • Which metabolic pathways generate and characterize the flux space? A comparison among elementary modes, extreme pathways and minimal generators
    • Llaneras F., Picó J. Which metabolic pathways generate and characterize the flux space? A comparison among elementary modes, extreme pathways and minimal generators. J. Biomed. Biotechnol. 2010, 2010:753904.
    • (2010) J. Biomed. Biotechnol. , vol.2010 , pp. 753904
    • Llaneras, F.1    Picó, J.2
  • 19
    • 1642457253 scopus 로고    scopus 로고
    • The effects of alternate optimal solutions in constraint-based genome-scale metabolic models
    • Mahadevan R., Schilling C.H. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 2003, 5:264-276.
    • (2003) Metab. Eng. , vol.5 , pp. 264-276
    • Mahadevan, R.1    Schilling, C.H.2
  • 20
    • 84927781592 scopus 로고    scopus 로고
    • 1-Reconstruction and use of microbial metabolic networks: the core Escherichia coli metabolic model as an educational guide
    • ASM Press, Washington DC, 10.2.1, P.D. Karp (Ed.)
    • Orth J.D., Fleming R.M., Palsson B.Ø 1-Reconstruction and use of microbial metabolic networks: the core Escherichia coli metabolic model as an educational guide. EcoSal-Escherichia coli and Salmonella Cellular and Molecular Biology 2010, ASM Press, Washington DC, 10.2.1. P.D. Karp (Ed.).
    • (2010) EcoSal-Escherichia coli and Salmonella Cellular and Molecular Biology
    • Orth, J.D.1    Fleming, R.M.2    Palsson, B.Ø3
  • 21
    • 84904992252 scopus 로고    scopus 로고
    • Direct calculation of elementary flux modes satisfying several biological constraints in genome-scale metabolic networks
    • Pey J., Planes F.J. Direct calculation of elementary flux modes satisfying several biological constraints in genome-scale metabolic networks. Bioinformatics 2014, 30:2197-2203.
    • (2014) Bioinformatics , vol.30 , pp. 2197-2203
    • Pey, J.1    Planes, F.J.2
  • 22
    • 77954590959 scopus 로고    scopus 로고
    • OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions
    • Ranganathan S., Suthers P.F., Maranas C.D. OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput. Biol. 2010, 6:e1000744.
    • (2010) PLoS Comput. Biol. , vol.6 , pp. e1000744
    • Ranganathan, S.1    Suthers, P.F.2    Maranas, C.D.3
  • 24
    • 0004267646 scopus 로고
    • Convex Analysis
    • Princeton University Press, Princeton.
    • Rockafellar, R.T., 1970. Convex Analysis. Princeton University Press, Princeton.
    • (1970)
    • Rockafellar, R.T.1
  • 25
    • 84899785053 scopus 로고    scopus 로고
    • Design of optimally constructed metabolic networks of minimal functionality
    • Ruckerbauer D.E., Jungreuthmayer C., Zanghellini J. Design of optimally constructed metabolic networks of minimal functionality. PLoS One 2014, 9:e92583.
    • (2014) PLoS One , vol.9 , pp. e92583
    • Ruckerbauer, D.E.1    Jungreuthmayer, C.2    Zanghellini, J.3
  • 26
    • 0034064689 scopus 로고    scopus 로고
    • A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks
    • Schuster S., Fell D.A., Dandekar T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 2000, 18:326-332.
    • (2000) Nat. Biotechnol. , vol.18 , pp. 326-332
    • Schuster, S.1    Fell, D.A.2    Dandekar, T.3
  • 28
    • 77949495880 scopus 로고    scopus 로고
    • Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways
    • Tepper N., Shlomi T. Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics 2010, 26:536-543.
    • (2010) Bioinformatics , vol.26 , pp. 536-543
    • Tepper, N.1    Shlomi, T.2
  • 29
    • 84870941105 scopus 로고    scopus 로고
    • FOCAL: an experimental design tool for systematizing metabolic discoveries and model development
    • Tervo C.J., Reed J,L. FOCAL: an experimental design tool for systematizing metabolic discoveries and model development. Genome Biol. 2012, 13:R116.
    • (2012) Genome Biol. , vol.13 , pp. R116
    • Tervo, C.J.1    Reed, J.L.2
  • 30
    • 52949098408 scopus 로고    scopus 로고
    • Large-scale computation of elementary flux modes with bit pattern trees
    • Terzer M., Stelling J. Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics 2008, 24:2229-2235.
    • (2008) Bioinformatics , vol.24 , pp. 2229-2235
    • Terzer, M.1    Stelling, J.2
  • 31
    • 45749137679 scopus 로고    scopus 로고
    • Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses
    • Trinh C.T., Unrean P., Srienc F. Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl. Environ. Microbiol. 2008, 74:3634-3643.
    • (2008) Appl. Environ. Microbiol. , vol.74 , pp. 3634-3643
    • Trinh, C.T.1    Unrean, P.2    Srienc, F.3
  • 32
    • 58149154663 scopus 로고    scopus 로고
    • Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism
    • Trinh C.T., Wlaschin A., Srienc F. Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism. Appl. Environ. Microbiol. 2009, 81:813-826.
    • (2009) Appl. Environ. Microbiol. , vol.81 , pp. 813-826
    • Trinh, C.T.1    Wlaschin, A.2    Srienc, F.3
  • 33
    • 79961084093 scopus 로고    scopus 로고
    • Redesigning Escherichia coli metabolism for anaerobic production of isobutanol
    • Trinh C.T., Li J., Blanch H.W., Clark D.S. Redesigning Escherichia coli metabolism for anaerobic production of isobutanol. Appl. Environ. Microbiol. 2011, 77:4894-4904.
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 4894-4904
    • Trinh, C.T.1    Li, J.2    Blanch, H.W.3    Clark, D.S.4
  • 34
    • 34548406565 scopus 로고    scopus 로고
    • Enumerating constrained elementary flux vectors of metabolic networks
    • Urbanczik R. Enumerating constrained elementary flux vectors of metabolic networks. IET Syst. Biol. 2007, 1:274-279.
    • (2007) IET Syst. Biol. , vol.1 , pp. 274-279
    • Urbanczik, R.1
  • 35
    • 27944471469 scopus 로고    scopus 로고
    • Functional stoichiometric analysis of metabolic networks
    • Urbanczik R., Wagner C. Functional stoichiometric analysis of metabolic networks. Bioinformatics 2005, 21:4176-4180.
    • (2005) Bioinformatics , vol.21 , pp. 4176-4180
    • Urbanczik, R.1    Wagner, C.2
  • 36
    • 28444458560 scopus 로고    scopus 로고
    • The geometry of the flux cone of a metabolic network
    • Wagner C., Urbanczik R. The geometry of the flux cone of a metabolic network. Biophys. J. 2005, 89:3837-3845.
    • (2005) Biophys. J. , vol.89 , pp. 3837-3845
    • Wagner, C.1    Urbanczik, R.2
  • 37
    • 80052021573 scopus 로고    scopus 로고
    • Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA
    • Xu P., Ranganathan S., Fowler Z.L., Maranas C.D., Koffas M.A. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab. Eng. 2011, 13:578-587.
    • (2011) Metab. Eng. , vol.13 , pp. 578-587
    • Xu, P.1    Ranganathan, S.2    Fowler, Z.L.3    Maranas, C.D.4    Koffas, M.A.5
  • 38
    • 79955145774 scopus 로고    scopus 로고
    • EMILiO: a fast algorithm for genome-scale strain design
    • Yang L., Cluett W.R., Mahadevan R. EMILiO: a fast algorithm for genome-scale strain design. Metab. Eng. 2011, 13:272.
    • (2011) Metab. Eng. , vol.13 , pp. 272
    • Yang, L.1    Cluett, W.R.2    Mahadevan, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.