메뉴 건너뛰기




Volumn 7, Issue 5, 2016, Pages 2466-2476

A data-driven approach for estimating the power generation of invisible solar sites

Author keywords

behind the meter solar; Big data; clustering; data dimension reduction; invisible solar power generation; principal component analysis

Indexed keywords

MAPPING; PHOTOVOLTAIC CELLS; PRINCIPAL COMPONENT ANALYSIS; SOLAR ENERGY;

EID: 84949883007     PISSN: 19493053     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSG.2015.2502140     Document Type: Article
Times cited : (123)

References (35)
  • 1
    • 84984591331 scopus 로고    scopus 로고
    • [Online]. Available accessed Aug. 26
    • Go Solar California. [Online]. Available: http://gosolarcalifornia.org, accessed Aug. 26, 2015.
    • (2015) Go Solar California
  • 2
    • 84984822133 scopus 로고    scopus 로고
    • [Online]. Available accessed Nov. 1
    • Global Market Outlook for Photovoltaics 2014-2018, EPIA. [Online]. Available: http://www.cleanenergybusinesscouncil.com/site/resources/files/reports/EPIA-Global-Market-Outlook-for-Photovoltaics- 2014-2018-Medium-Res.pdf, accessed Nov. 1, 2015.
    • (2015) Global Market Outlook for Photovoltaics 2014-2018, EPIA
  • 4
    • 84984813064 scopus 로고    scopus 로고
    • [Online]. Available accessed Nov. 1
    • Tesla Motors. [Online]. Available: http://www.teslamotors.com, accessed Nov. 1, 2015.
    • (2015) Tesla Motors
  • 5
    • 84937844379 scopus 로고    scopus 로고
    • Online]. Available accessed May 8
    • Powerwall: Tesla Home Battery. [Online]. Available: http://www.teslamotors.com/powerwall, accessed May 8, 2015.
    • (2015) Powerwall: Tesla Home Battery
  • 7
    • 84984821550 scopus 로고    scopus 로고
    • Online] Available, accessed Apr. 9
    • Solar Utility Networks: Replicable Innovations in Solar Energy. [Online]. Available: http://energy.gov/eere/sunshot/solar-utilitynetworks-replicable-innovations-solar-energy, accessed Apr. 9, 2015.
    • (2015) Solar Utility Networks: Replicable Innovations in Solar Energy
  • 10
    • 85146422424 scopus 로고
    • A practical approach to feature selection
    • San Francisco, CA, USA
    • K. Kira and L. A. Rendell, ?A practical approach to feature selection,? in Proc. 9th Int. Conf. Mach. Learn., San Francisco, CA, USA, 1992, pp. 249-256.
    • (1992) Proc. 9th Int. Conf. Mach. Learn , pp. 249-256
    • Kira, K.1    Rendell, L.A.2
  • 11
    • 0004060921 scopus 로고    scopus 로고
    • Correlation-based feature subset selection for machine learning
    • Ph.D. dissertation Univ. Waikato, Hamilton, New Zealand
    • M. A. Hall, ?Correlation-based feature subset selection for machine learning,? Ph.D. dissertation, Dept. Comput. Sci., Univ. Waikato, Hamilton, New Zealand, 1999.
    • (1999) Dept. Comput. Sci
    • Hall, M.A.1
  • 13
    • 0003410290 scopus 로고
    • 2nd ed. Princeton, NJ, USA: Princeton Univ. Press
    • J. D. Hamilton, Time Series Analysis, 2nd ed. Princeton, NJ, USA: Princeton Univ. Press, 1994.
    • (1994) Time Series Analysis
    • Hamilton, J.D.1
  • 14
    • 0025747581 scopus 로고
    • Approximation theory and feedforward networks
    • E. K. Blum and L. K. Li, ?Approximation theory and feedforward networks,? Neural Netw., vol. 4, no. 4, pp. 511-515, 1991.
    • (1991) Neural Netw , vol.4 , Issue.4 , pp. 511-515
    • Blum, E.K.1    Li, L.K.2
  • 15
    • 49249122268 scopus 로고    scopus 로고
    • An adaptive wavelet neural network-based energy price forecasting in electricity markets
    • Aug
    • N. M. Pindoriya, S. N. Singh, and S. K. Singh, ?An adaptive wavelet neural network-based energy price forecasting in electricity markets,? IEEE Trans. Power Syst., vol. 23, no. 3, pp. 1423-1432, Aug. 2008.
    • (2008) IEEE Trans. Power Syst , vol.23 , Issue.3 , pp. 1423-1432
    • Pindoriya, N.M.1    Singh, S.N.2    Singh, S.K.3
  • 16
    • 84984830147 scopus 로고    scopus 로고
    • Online]. Available accessed Aug. 13
    • Enphase. [Online]. Available: https://enphase.com, accessed Aug. 13, 2015.
    • (2015) Enphase
  • 17
    • 84908320025 scopus 로고    scopus 로고
    • Dimensionality reduction of synchrophasor data for early event detection: Linearized analysis
    • Nov
    • L. Xie, Y. Chen, and P. R. Kumar, ?Dimensionality reduction of synchrophasor data for early event detection: Linearized analysis,? IEEE Trans. Power Syst., vol. 29, no. 6, pp. 2784-2794, Nov. 2014.
    • (2014) IEEE Trans. Power Syst , vol.29 , Issue.6 , pp. 2784-2794
    • Xie, L.1    Chen, Y.2    Kumar, P.R.3
  • 18
    • 77956623447 scopus 로고    scopus 로고
    • PCA fault feature extraction in complex electric power systems
    • J. Zhang, Y. Zhang, Z. Wang, and J. Ma, ?PCA fault feature extraction in complex electric power systems,? Adv. Elect. Comput. Eng., vol. 10, no. 3, pp. 102-107, 2010.
    • (2010) Adv. Elect. Comput. Eng , vol.10 , Issue.3 , pp. 102-107
    • Zhang, J.1    Zhang, Y.2    Wang, Z.3    Ma, J.4
  • 19
    • 80054938396 scopus 로고    scopus 로고
    • Optimal wind clustering methodology for adequacy evaluation in system generation studies using nonsequential Monte Carlo simulation
    • Nov
    • F. Vallee, G. Brunieau, M. Pirlot, O. Deblecker, and J. Lobry, ?Optimal wind clustering methodology for adequacy evaluation in system generation studies using nonsequential Monte Carlo simulation,? IEEE Trans. Power Syst., vol. 26, no. 4, pp. 2173-2184, Nov. 2011.
    • (2011) IEEE Trans. Power Syst , vol.26 , Issue.4 , pp. 2173-2184
    • Vallee, F.1    Brunieau, G.2    Pirlot, M.3    Deblecker, O.4    Lobry, J.5
  • 20
    • 77952411547 scopus 로고    scopus 로고
    • Day-ahead electricity price forecasting by modified relief algorithm and hybrid neural network
    • Mar
    • N. Amjady, A. Daraeepour, and F. Keynia, ?Day-ahead electricity price forecasting by modified relief algorithm and hybrid neural network,? IET Gener. Transm. Distrib., vol. 4, no. 3, pp. 432-444, Mar. 2010.
    • (2010) IET Gener. Transm. Distrib , vol.4 , Issue.3 , pp. 432-444
    • Amjady, N.1    Daraeepour, A.2    Keynia, F.3
  • 21
    • 84928053539 scopus 로고    scopus 로고
    • Correlation and instance based feature selection for electricity load forecasting
    • Jul
    • I. Koprinska, M. Rana, and V. G. Agelidis, ?Correlation and instance based feature selection for electricity load forecasting,? Knowl.-Based Syst., vol. 82, pp. 29-40, Jul. 2015.
    • (2015) Knowl.-Based Syst , vol.82 , pp. 29-40
    • Koprinska, I.1    Rana, M.2    Agelidis, V.G.3
  • 23
    • 76649105074 scopus 로고    scopus 로고
    • Short-term load forecasting: Similar day-based wavelet neural networks
    • Feb
    • Y. Chen et al., ?Short-term load forecasting: Similar day-based wavelet neural networks,? IEEE Trans. Power Syst., vol. 25, no. 1, pp. 322-330, Feb. 2010.
    • (2010) IEEE Trans. Power Syst , vol.25 , Issue.1 , pp. 322-330
    • Chen, Y.1
  • 24
    • 84861865242 scopus 로고    scopus 로고
    • Data mining for electricity price classification and the application to demand-side management
    • Jun
    • D. Huang, H. Zareipour, W. D. Rosehart, and N. Amjady, ?Data mining for electricity price classification and the application to demand-side management,? IEEE Trans. Smart Grid, vol. 3, no. 2, pp. 808-817, Jun. 2012.
    • (2012) IEEE Trans. Smart Grid , vol.3 , Issue.2 , pp. 808-817
    • Huang, D.1    Zareipour, H.2    Rosehart, W.D.3    Amjady, N.4
  • 25
    • 70350487954 scopus 로고    scopus 로고
    • Dimensionality reduction: A comparative review
    • Jan 2008 [Online]. Available accessed Nov. 1
    • L. J. P. van der Maaten, E. O. Postma, and H. J. van den Herik, ?Dimensionality reduction: A comparative review,? J. Mach. Learn. Res., Jan. 2008. [Online]. Available: http://www.iai.uni-bonn.de/?jz/dimensionality-reduction-a-comparative-review.pdf, accessed Nov. 1, 2015.
    • (2015) J. Mach. Learn. Res
    • Maaten Der Van, L.J.P.1    Postma, E.O.2    Herik Den Van, H.J.3
  • 26
    • 1042275194 scopus 로고    scopus 로고
    • A survey of dimension reduction techniques
    • Lawrence Livermore Nat. Lab., Livermore, CA, USA, Tech. Rep. UCRL-ID-148494
    • I. K. Fodor, ?A survey of dimension reduction techniques,? Center Appl. Sci. Comput., Lawrence Livermore Nat. Lab., Livermore, CA, USA, Tech. Rep. UCRL-ID-148494, 2002, pp. 1-18.
    • (2002) Center Appl. Sci. Comput , pp. 1-18
    • Fodor, I.K.1
  • 27
    • 62249143532 scopus 로고    scopus 로고
    • NP-hardness of Euclidean sum-of-squares clustering
    • Jan
    • D. Aloise, A. Deshpande, P. Hansen, and P. Popat, ?NP-hardness of Euclidean sum-of-squares clustering,? Mach. Learn., vol. 75, no. 2, pp. 245-248, Jan. 2009.
    • (2009) Mach. Learn , vol.75 , Issue.2 , pp. 245-248
    • Aloise, D.1    Deshpande, A.2    Hansen, P.3    Popat, P.4
  • 28
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of relief
    • Catania, Italy
    • I. Kononenko, ?Estimating attributes: Analysis and extensions of relief,? in Proc. Eur. Conf. Mach. Learn., Catania, Italy, 1994, pp. 171-182.
    • (1994) Proc. Eur. Conf. Mach. Learn , pp. 171-182
    • Kononenko, I.1
  • 29
    • 11244260106 scopus 로고    scopus 로고
    • [Online]. Available accessed Nov. 1
    • Weka 3: Data Mining Software in Java. [Online]. Available: http://www.cs.waikato.ac.nz/?ml/weka/, accessed Nov. 1, 2015.
    • (2015) Weka 3: Data Mining Software in Java
  • 30
    • 84877925814 scopus 로고    scopus 로고
    • Approximating Gaussian mixture model or radial basis function network with multilayer perceptron
    • Jul
    • A. M. Patrikar, ?Approximating Gaussian mixture model or radial basis function network with multilayer perceptron,? IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 7, pp. 1161-1166, Jul. 2013.
    • (2013) IEEE Trans. Neural Netw. Learn. Syst , vol.24 , Issue.7 , pp. 1161-1166
    • Patrikar, A.M.1
  • 31
    • 84984825786 scopus 로고    scopus 로고
    • Two machine learning approaches for short-term wind speed time-series prediction
    • to be published
    • R. Ak, O. Fink, and E. Zio, ?Two machine learning approaches for short-term wind speed time-series prediction,? IEEE Trans. Neural Netw. Learn. Syst., to be published.
    • IEEE Trans. Neural Netw. Learn. Syst
    • Ak, R.1    Fink, O.2    Zio, E.3
  • 32
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Nov
    • M. T. Hagan and M. B. Menhaj, ?Training feedforward networks with the Marquardt algorithm,? IEEE Trans. Neural Netw., vol. 5, no. 6, pp. 989-993, Nov. 1994.
    • (1994) IEEE Trans. Neural Netw , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 33
    • 84918573925 scopus 로고    scopus 로고
    • On comparison of two strategies in net demand forecasting using wavelet neural network
    • Pullman, WA, USA Sep
    • H. Shaker, H. Chitsaz, H. Zareipour, and D. Wood, ?On comparison of two strategies in net demand forecasting using wavelet neural network,? in Proc. North Amer. Power Symp. (NAPS), Pullman, WA, USA, Sep. 2014, pp. 1-6.
    • (2014) Proc. North Amer. Power Symp. (NAPS) , pp. 1-6
    • Shaker, H.1    Chitsaz, H.2    Zareipour, H.3    Wood, D.4
  • 35
    • 84939249493 scopus 로고    scopus 로고
    • [Online]. Available, accessed Jan. 14
    • NREL Solar Power Data for Integration Studies. [Online]. Available: http://www.nrel.gov/electricity/transmission/solar-integration- methodology.html, accessed Jan. 14, 2014.
    • (2014) NREL Solar Power Data for Integration Studies


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.