-
1
-
-
84898917562
-
Improving photovoltaics grid integration through short time forecasting and self-consumption
-
Masa-Bote, D., Castillo-Cagigal, M., Matallanas, E., et al. Improving photovoltaics grid integration through short time forecasting and self-consumption. Appl Energy 125:15 (2014), 103–113.
-
(2014)
Appl Energy
, vol.125
, Issue.15
, pp. 103-113
-
-
Masa-Bote, D.1
Castillo-Cagigal, M.2
Matallanas, E.3
-
2
-
-
84861688089
-
Forecasting for demand response in smart grids: an analysis on use of anthropologic and structural data and short term multiple loads forecasting
-
Javed, F., Arshad, N., Wallin, F., Vassileva, I., Vassileva, E., Forecasting for demand response in smart grids: an analysis on use of anthropologic and structural data and short term multiple loads forecasting. Appl Energy 96 (2012), 150–160.
-
(2012)
Appl Energy
, vol.96
, pp. 150-160
-
-
Javed, F.1
Arshad, N.2
Wallin, F.3
Vassileva, I.4
Vassileva, E.5
-
3
-
-
84860841392
-
An adaptive fuzzy combination model based on self-organizing map and support vector regression for electric load forecasting
-
Che, J., Wang, J., Wang, G., An adaptive fuzzy combination model based on self-organizing map and support vector regression for electric load forecasting. Energy 37 (2012), 657–664.
-
(2012)
Energy
, vol.37
, pp. 657-664
-
-
Che, J.1
Wang, J.2
Wang, G.3
-
4
-
-
0004094721
-
Learning with kernels
-
MIT Press Cambridge, MA
-
Scholkopf, B., Smola, A.J., Learning with kernels. 2002, MIT Press, Cambridge, MA.
-
(2002)
-
-
Scholkopf, B.1
Smola, A.J.2
-
5
-
-
84883355288
-
Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach
-
Chen, K., Yu, J., Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach. Appl Energy 113 (2014), 690–705.
-
(2014)
Appl Energy
, vol.113
, pp. 690-705
-
-
Chen, K.1
Yu, J.2
-
6
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S., Choosing multiple parameters for support vector machines. Mach Learn 46:1–3 (2002), 131–159.
-
(2002)
Mach Learn
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
7
-
-
84858966818
-
A hybrid kernel principal component analysis and support vector machine model for analysing sonographic features of parotid glands in Sjogren's syndrome
-
Pai, P.F., Chang, Y.H., Hsu, M.F., Fu, J., Chen, H.H., A hybrid kernel principal component analysis and support vector machine model for analysing sonographic features of parotid glands in Sjogren's syndrome. Int J Math Model Numer Optimisation 2:1 (2011), 98–108.
-
(2011)
Int J Math Model Numer Optimisation
, vol.2
, Issue.1
, pp. 98-108
-
-
Pai, P.F.1
Chang, Y.H.2
Hsu, M.F.3
Fu, J.4
Chen, H.H.5
-
8
-
-
77955322938
-
Short-term electricity prices forecasting based on support vector regression and auto-regressive integrated moving average modeling
-
Che, J., Wang, J., Short-term electricity prices forecasting based on support vector regression and auto-regressive integrated moving average modeling. Energy Convers Manage 51:10 (2010), 1911–1917.
-
(2010)
Energy Convers Manage
, vol.51
, Issue.10
, pp. 1911-1917
-
-
Che, J.1
Wang, J.2
-
9
-
-
78650944534
-
Fine tuning support vector machines for short-term winds peed forecasting
-
Zhou, J., Shi, J., Li, G., Fine tuning support vector machines for short-term winds peed forecasting. Energy Convers Manage 52 (2011), 1990–1999.
-
(2011)
Energy Convers Manage
, vol.52
, pp. 1990-1999
-
-
Zhou, J.1
Shi, J.2
Li, G.3
-
10
-
-
84889259190
-
A comparative study in kernel-based support vector machine of oil palm leaves nutrient disease
-
Asraf, H.M., Nooritawati, M.T., Rizam, M.S.B.S., A comparative study in kernel-based support vector machine of oil palm leaves nutrient disease. Procedia Eng 41 (2012), 1353–1359.
-
(2012)
Procedia Eng
, vol.41
, pp. 1353-1359
-
-
Asraf, H.M.1
Nooritawati, M.T.2
Rizam, M.S.B.S.3
-
11
-
-
84899811325
-
A novel data-characteristic-driven modeling methodology for nuclear energy consumption forecasting
-
Tang, L., Yu, L., He, K., A novel data-characteristic-driven modeling methodology for nuclear energy consumption forecasting. Appl Energy 128:1 (2014), 1–14.
-
(2014)
Appl Energy
, vol.128
, Issue.1
, pp. 1-14
-
-
Tang, L.1
Yu, L.2
He, K.3
-
12
-
-
34547971778
-
-
More efficiency in multiple kernel learning. In: Proceedings of the 24th international conference on machine learning p.775–82.
-
Rakotomamonjy A, Bach FR, Canu S, Grandvalet Y. More efficiency in multiple kernel learning. In: Proceedings of the 24th international conference on machine learning; 2007. p.775–82.
-
(2007)
-
-
Rakotomamonjy, A.1
Bach, F.R.2
Canu, S.3
Grandvalet, Y.4
-
13
-
-
37549013404
-
MultiK-MHKS: a novel multiple kernel learning algorithm
-
Wang, Z., Chen, S., Sun, T., MultiK-MHKS: a novel multiple kernel learning algorithm. IEEE Trans Pattern Anal Mach 30:2 (2008), 348–353.
-
(2008)
IEEE Trans Pattern Anal Mach
, vol.30
, Issue.2
, pp. 348-353
-
-
Wang, Z.1
Chen, S.2
Sun, T.3
-
14
-
-
78049527969
-
A multiple-kernel support vector regression approach for stock market price forecasting
-
Yeh, C.Y., Huang, C.W., Lee, S.J., A multiple-kernel support vector regression approach for stock market price forecasting. Exp Syst Appl 38 (2011), 2177–2186.
-
(2011)
Exp Syst Appl
, vol.38
, pp. 2177-2186
-
-
Yeh, C.Y.1
Huang, C.W.2
Lee, S.J.3
-
15
-
-
1942515510
-
Learning the kernel matrix with semi-definite programming
-
Morgan Kaufman San Francisca, USA
-
Lanckriet, G.R.G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.I., Learning the kernel matrix with semi-definite programming. Proceedings of the 19th international conference on machine learning, 2002, Morgan Kaufman, San Francisca, USA, 323–330.
-
(2002)
Proceedings of the 19th international conference on machine learning
, pp. 323-330
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
Ghaoui, L.E.4
Jordan, M.I.5
-
16
-
-
84898936871
-
On kernel-target alignment
-
Cristianini, N., Shawe-Taylor, J., Elisseeff, A., Kandola, J., On kernel-target alignment. Adv Neural Inform Process Syst 14 (2002), 367–373.
-
(2002)
Adv Neural Inform Process Syst
, vol.14
, pp. 367-373
-
-
Cristianini, N.1
Shawe-Taylor, J.2
Elisseeff, A.3
Kandola, J.4
-
17
-
-
48149084956
-
An efficient kernel matrix evaluation measure
-
Nguyen, C.H., Ho, T.B., An efficient kernel matrix evaluation measure. Pattern Recognit 41 (2008), 3366–3372.
-
(2008)
Pattern Recognit
, vol.41
, pp. 3366-3372
-
-
Nguyen, C.H.1
Ho, T.B.2
-
18
-
-
84878447040
-
Two-stage multiple kernel learning with multiclass kernel polarization
-
Wang, T., Zhao, D., Feng, Y., Two-stage multiple kernel learning with multiclass kernel polarization. Knowl-Based Syst 48 (2013), 10–16.
-
(2013)
Knowl-Based Syst
, vol.48
, pp. 10-16
-
-
Wang, T.1
Zhao, D.2
Feng, Y.3
-
19
-
-
84878879337
-
Selective multiple kernel learning for classification with ensemble strategy
-
Sun, T., Jiao, L., Liu, F., Wang, S., Feng, J., Selective multiple kernel learning for classification with ensemble strategy. Pattern Recognit 46:11 (2013), 3081–3090.
-
(2013)
Pattern Recognit
, vol.46
, Issue.11
, pp. 3081-3090
-
-
Sun, T.1
Jiao, L.2
Liu, F.3
Wang, S.4
Feng, J.5
-
20
-
-
0003450542
-
The nature of statistical learning theory
-
Springer New York
-
Vapnik, V.N., The nature of statistical learning theory. 1995, Springer, New York.
-
(1995)
-
-
Vapnik, V.N.1
-
21
-
-
14644392676
-
Kernel methods for pattern analysis
-
Cambridge University Press Cambridge, UK
-
Shawe-Taylor, J., Cristianini, N., Kernel methods for pattern analysis. 2004, Cambridge University Press, Cambridge, UK.
-
(2004)
-
-
Shawe-Taylor, J.1
Cristianini, N.2
-
22
-
-
84878133365
-
Support vector regression based on optimal training subset and adaptive particle swarm optimization algorithm
-
Che, J., Support vector regression based on optimal training subset and adaptive particle swarm optimization algorithm. Appl Soft Comput 13:8 (2013), 3473–3481.
-
(2013)
Appl Soft Comput
, vol.13
, Issue.8
, pp. 3473-3481
-
-
Che, J.1
-
23
-
-
84920258960
-
Performance evaluation of weights selection schemes for linear combination of multiple forecasts
-
Adhikari, R., Agrawal, R.K., Performance evaluation of weights selection schemes for linear combination of multiple forecasts. Artif Intell Rev, 2012, 10.1007/s10462-012-9361-z.
-
(2012)
Artif Intell Rev
-
-
Adhikari, R.1
Agrawal, R.K.2
-
24
-
-
0003685012
-
The mathematical theory of communication
-
University of Illinois Press Urbana, IL, USA
-
Shannon, C., Weaver, W., The mathematical theory of communication. 1963, University of Illinois Press, Urbana, IL, USA.
-
(1963)
-
-
Shannon, C.1
Weaver, W.2
-
25
-
-
79955947227
-
A feature subset selection method based on high-dimensional mutual information
-
Zheng, Y., Kwoh, C.K., A feature subset selection method based on high-dimensional mutual information. Entropy 13:4 (2011), 860–901.
-
(2011)
Entropy
, vol.13
, Issue.4
, pp. 860-901
-
-
Zheng, Y.1
Kwoh, C.K.2
-
26
-
-
0036127473
-
Input feature selection for classification problems
-
Kwak, N., Choi, C.-H., Input feature selection for classification problems. IEEE Trans Neural Netw 13:1 (2002), 143–159.
-
(2002)
IEEE Trans Neural Netw
, vol.13
, Issue.1
, pp. 143-159
-
-
Kwak, N.1
Choi, C.-H.2
-
27
-
-
24344458137
-
Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
-
Peng, H., Long, F., Ding, C., Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27:8 (2005), 1226–1238.
-
(2005)
IEEE Trans Pattern Anal Mach Intell
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
28
-
-
60849097547
-
Normalized mutual information feature selection
-
Estevez, P.A., Tesmer, M., Perez, C.A., Zurada, J.M., Normalized mutual information feature selection. IEEE Trans Neural Netw 20:2 (2009), 189–201.
-
(2009)
IEEE Trans Neural Netw
, vol.20
, Issue.2
, pp. 189-201
-
-
Estevez, P.A.1
Tesmer, M.2
Perez, C.A.3
Zurada, J.M.4
-
29
-
-
78649238560
-
-
An Improved maximum relevance and minimum redundancy feature selection algorithm based on normalized mutual information. In: The international symposium on applications and the internet, p. 395–8.
-
Vinh LT, Thang ND, Lee YK. An Improved maximum relevance and minimum redundancy feature selection algorithm based on normalized mutual information. In: The international symposium on applications and the internet, vol. 0; 2010. p. 395–8.
-
(2010)
-
-
Vinh, L.T.1
Thang, N.D.2
Lee, Y.K.3
-
30
-
-
79960734517
-
Runway incursion event forecast model based on LS-SVR with multi-kernel
-
Xu, G., Huang, S., Runway incursion event forecast model based on LS-SVR with multi-kernel. J Comput 6:7 (2011), 1346–1352.
-
(2011)
J Comput
, vol.6
, Issue.7
, pp. 1346-1352
-
-
Xu, G.1
Huang, S.2
-
31
-
-
84870066611
-
A new hybrid day-ahead peak load forecasting method for Iran's National Grid
-
Moazzami, M., Khodabakhshian, A., Hooshmand, R., A new hybrid day-ahead peak load forecasting method for Iran's National Grid. Appl Energy 101 (2013), 489–501.
-
(2013)
Appl Energy
, vol.101
, pp. 489-501
-
-
Moazzami, M.1
Khodabakhshian, A.2
Hooshmand, R.3
-
32
-
-
77954032128
-
An enhanced radial basis function network for short-term electricity price forecasting
-
Lin, W.M., Gow, H.J., Tsai, M.T., An enhanced radial basis function network for short-term electricity price forecasting. Appl Energy 87:10 (2010), 3226–3234.
-
(2010)
Appl Energy
, vol.87
, Issue.10
, pp. 3226-3234
-
-
Lin, W.M.1
Gow, H.J.2
Tsai, M.T.3
-
33
-
-
84862777006
-
An annual load forecasting model based on support vector regression with differential evolution algorithm
-
Wang, J., Li, L., Niu, D., Tan, Z., An annual load forecasting model based on support vector regression with differential evolution algorithm. Appl Energy 94 (2012), 65–70.
-
(2012)
Appl Energy
, vol.94
, pp. 65-70
-
-
Wang, J.1
Li, L.2
Niu, D.3
Tan, Z.4
-
34
-
-
84896085639
-
Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy
-
Jain, R.K., Smith, K.M., Culligan, P.J., Taylor, J.E., Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy. Appl Energy 123:15 (2014), 168–178.
-
(2014)
Appl Energy
, vol.123
, Issue.15
, pp. 168-178
-
-
Jain, R.K.1
Smith, K.M.2
Culligan, P.J.3
Taylor, J.E.4
-
35
-
-
84875115854
-
Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks
-
Liu, H., Tian, H., Pan, D., Li, Y., Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks. Appl Energy 107 (2013), 191–208.
-
(2013)
Appl Energy
, vol.107
, pp. 191-208
-
-
Liu, H.1
Tian, H.2
Pan, D.3
Li, Y.4
-
37
-
-
0017996045
-
Forecasting peak system load using a combined time series and econometric model
-
Uri, N.D., Forecasting peak system load using a combined time series and econometric model. Appl Energy 4:3 (1978), 219–227.
-
(1978)
Appl Energy
, vol.4
, Issue.3
, pp. 219-227
-
-
Uri, N.D.1
-
38
-
-
85097048824
-
-
<>.
-
About MATLAB. < http://www.mathworks.com/>.
-
-
-
About, M.1
-
39
-
-
84898975702
-
A novel hybrid model for bi-objective short-term electric load forecasting
-
Che, J., A novel hybrid model for bi-objective short-term electric load forecasting. Int J Electr Power Energy Syst 61 (2014), 259–266.
-
(2014)
Int J Electr Power Energy Syst
, vol.61
, pp. 259-266
-
-
Che, J.1
|