메뉴 건너뛰기




Volumn 132, Issue , 2014, Pages 602-609

Short-term load forecasting using a kernel-based support vector regression combination model

Author keywords

Combination model; Kernel; Selection algorithm; Short term load forecasting; Support vector regression

Indexed keywords

ELECTRIC POWER PLANT LOADS; ELECTRIC POWER TRANSMISSION NETWORKS; FORECASTING; SUPPORT VECTOR REGRESSION;

EID: 84920195266     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2014.07.064     Document Type: Article
Times cited : (169)

References (39)
  • 1
    • 84898917562 scopus 로고    scopus 로고
    • Improving photovoltaics grid integration through short time forecasting and self-consumption
    • Masa-Bote, D., Castillo-Cagigal, M., Matallanas, E., et al. Improving photovoltaics grid integration through short time forecasting and self-consumption. Appl Energy 125:15 (2014), 103–113.
    • (2014) Appl Energy , vol.125 , Issue.15 , pp. 103-113
    • Masa-Bote, D.1    Castillo-Cagigal, M.2    Matallanas, E.3
  • 2
    • 84861688089 scopus 로고    scopus 로고
    • Forecasting for demand response in smart grids: an analysis on use of anthropologic and structural data and short term multiple loads forecasting
    • Javed, F., Arshad, N., Wallin, F., Vassileva, I., Vassileva, E., Forecasting for demand response in smart grids: an analysis on use of anthropologic and structural data and short term multiple loads forecasting. Appl Energy 96 (2012), 150–160.
    • (2012) Appl Energy , vol.96 , pp. 150-160
    • Javed, F.1    Arshad, N.2    Wallin, F.3    Vassileva, I.4    Vassileva, E.5
  • 3
    • 84860841392 scopus 로고    scopus 로고
    • An adaptive fuzzy combination model based on self-organizing map and support vector regression for electric load forecasting
    • Che, J., Wang, J., Wang, G., An adaptive fuzzy combination model based on self-organizing map and support vector regression for electric load forecasting. Energy 37 (2012), 657–664.
    • (2012) Energy , vol.37 , pp. 657-664
    • Che, J.1    Wang, J.2    Wang, G.3
  • 4
    • 0004094721 scopus 로고    scopus 로고
    • Learning with kernels
    • MIT Press Cambridge, MA
    • Scholkopf, B., Smola, A.J., Learning with kernels. 2002, MIT Press, Cambridge, MA.
    • (2002)
    • Scholkopf, B.1    Smola, A.J.2
  • 5
    • 84883355288 scopus 로고    scopus 로고
    • Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach
    • Chen, K., Yu, J., Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach. Appl Energy 113 (2014), 690–705.
    • (2014) Appl Energy , vol.113 , pp. 690-705
    • Chen, K.1    Yu, J.2
  • 6
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S., Choosing multiple parameters for support vector machines. Mach Learn 46:1–3 (2002), 131–159.
    • (2002) Mach Learn , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 7
    • 84858966818 scopus 로고    scopus 로고
    • A hybrid kernel principal component analysis and support vector machine model for analysing sonographic features of parotid glands in Sjogren's syndrome
    • Pai, P.F., Chang, Y.H., Hsu, M.F., Fu, J., Chen, H.H., A hybrid kernel principal component analysis and support vector machine model for analysing sonographic features of parotid glands in Sjogren's syndrome. Int J Math Model Numer Optimisation 2:1 (2011), 98–108.
    • (2011) Int J Math Model Numer Optimisation , vol.2 , Issue.1 , pp. 98-108
    • Pai, P.F.1    Chang, Y.H.2    Hsu, M.F.3    Fu, J.4    Chen, H.H.5
  • 8
    • 77955322938 scopus 로고    scopus 로고
    • Short-term electricity prices forecasting based on support vector regression and auto-regressive integrated moving average modeling
    • Che, J., Wang, J., Short-term electricity prices forecasting based on support vector regression and auto-regressive integrated moving average modeling. Energy Convers Manage 51:10 (2010), 1911–1917.
    • (2010) Energy Convers Manage , vol.51 , Issue.10 , pp. 1911-1917
    • Che, J.1    Wang, J.2
  • 9
    • 78650944534 scopus 로고    scopus 로고
    • Fine tuning support vector machines for short-term winds peed forecasting
    • Zhou, J., Shi, J., Li, G., Fine tuning support vector machines for short-term winds peed forecasting. Energy Convers Manage 52 (2011), 1990–1999.
    • (2011) Energy Convers Manage , vol.52 , pp. 1990-1999
    • Zhou, J.1    Shi, J.2    Li, G.3
  • 10
    • 84889259190 scopus 로고    scopus 로고
    • A comparative study in kernel-based support vector machine of oil palm leaves nutrient disease
    • Asraf, H.M., Nooritawati, M.T., Rizam, M.S.B.S., A comparative study in kernel-based support vector machine of oil palm leaves nutrient disease. Procedia Eng 41 (2012), 1353–1359.
    • (2012) Procedia Eng , vol.41 , pp. 1353-1359
    • Asraf, H.M.1    Nooritawati, M.T.2    Rizam, M.S.B.S.3
  • 11
    • 84899811325 scopus 로고    scopus 로고
    • A novel data-characteristic-driven modeling methodology for nuclear energy consumption forecasting
    • Tang, L., Yu, L., He, K., A novel data-characteristic-driven modeling methodology for nuclear energy consumption forecasting. Appl Energy 128:1 (2014), 1–14.
    • (2014) Appl Energy , vol.128 , Issue.1 , pp. 1-14
    • Tang, L.1    Yu, L.2    He, K.3
  • 12
    • 34547971778 scopus 로고    scopus 로고
    • More efficiency in multiple kernel learning. In: Proceedings of the 24th international conference on machine learning p.775–82.
    • Rakotomamonjy A, Bach FR, Canu S, Grandvalet Y. More efficiency in multiple kernel learning. In: Proceedings of the 24th international conference on machine learning; 2007. p.775–82.
    • (2007)
    • Rakotomamonjy, A.1    Bach, F.R.2    Canu, S.3    Grandvalet, Y.4
  • 13
    • 37549013404 scopus 로고    scopus 로고
    • MultiK-MHKS: a novel multiple kernel learning algorithm
    • Wang, Z., Chen, S., Sun, T., MultiK-MHKS: a novel multiple kernel learning algorithm. IEEE Trans Pattern Anal Mach 30:2 (2008), 348–353.
    • (2008) IEEE Trans Pattern Anal Mach , vol.30 , Issue.2 , pp. 348-353
    • Wang, Z.1    Chen, S.2    Sun, T.3
  • 14
    • 78049527969 scopus 로고    scopus 로고
    • A multiple-kernel support vector regression approach for stock market price forecasting
    • Yeh, C.Y., Huang, C.W., Lee, S.J., A multiple-kernel support vector regression approach for stock market price forecasting. Exp Syst Appl 38 (2011), 2177–2186.
    • (2011) Exp Syst Appl , vol.38 , pp. 2177-2186
    • Yeh, C.Y.1    Huang, C.W.2    Lee, S.J.3
  • 17
    • 48149084956 scopus 로고    scopus 로고
    • An efficient kernel matrix evaluation measure
    • Nguyen, C.H., Ho, T.B., An efficient kernel matrix evaluation measure. Pattern Recognit 41 (2008), 3366–3372.
    • (2008) Pattern Recognit , vol.41 , pp. 3366-3372
    • Nguyen, C.H.1    Ho, T.B.2
  • 18
    • 84878447040 scopus 로고    scopus 로고
    • Two-stage multiple kernel learning with multiclass kernel polarization
    • Wang, T., Zhao, D., Feng, Y., Two-stage multiple kernel learning with multiclass kernel polarization. Knowl-Based Syst 48 (2013), 10–16.
    • (2013) Knowl-Based Syst , vol.48 , pp. 10-16
    • Wang, T.1    Zhao, D.2    Feng, Y.3
  • 19
    • 84878879337 scopus 로고    scopus 로고
    • Selective multiple kernel learning for classification with ensemble strategy
    • Sun, T., Jiao, L., Liu, F., Wang, S., Feng, J., Selective multiple kernel learning for classification with ensemble strategy. Pattern Recognit 46:11 (2013), 3081–3090.
    • (2013) Pattern Recognit , vol.46 , Issue.11 , pp. 3081-3090
    • Sun, T.1    Jiao, L.2    Liu, F.3    Wang, S.4    Feng, J.5
  • 20
    • 0003450542 scopus 로고
    • The nature of statistical learning theory
    • Springer New York
    • Vapnik, V.N., The nature of statistical learning theory. 1995, Springer, New York.
    • (1995)
    • Vapnik, V.N.1
  • 21
    • 14644392676 scopus 로고    scopus 로고
    • Kernel methods for pattern analysis
    • Cambridge University Press Cambridge, UK
    • Shawe-Taylor, J., Cristianini, N., Kernel methods for pattern analysis. 2004, Cambridge University Press, Cambridge, UK.
    • (2004)
    • Shawe-Taylor, J.1    Cristianini, N.2
  • 22
    • 84878133365 scopus 로고    scopus 로고
    • Support vector regression based on optimal training subset and adaptive particle swarm optimization algorithm
    • Che, J., Support vector regression based on optimal training subset and adaptive particle swarm optimization algorithm. Appl Soft Comput 13:8 (2013), 3473–3481.
    • (2013) Appl Soft Comput , vol.13 , Issue.8 , pp. 3473-3481
    • Che, J.1
  • 23
    • 84920258960 scopus 로고    scopus 로고
    • Performance evaluation of weights selection schemes for linear combination of multiple forecasts
    • Adhikari, R., Agrawal, R.K., Performance evaluation of weights selection schemes for linear combination of multiple forecasts. Artif Intell Rev, 2012, 10.1007/s10462-012-9361-z.
    • (2012) Artif Intell Rev
    • Adhikari, R.1    Agrawal, R.K.2
  • 24
    • 0003685012 scopus 로고
    • The mathematical theory of communication
    • University of Illinois Press Urbana, IL, USA
    • Shannon, C., Weaver, W., The mathematical theory of communication. 1963, University of Illinois Press, Urbana, IL, USA.
    • (1963)
    • Shannon, C.1    Weaver, W.2
  • 25
    • 79955947227 scopus 로고    scopus 로고
    • A feature subset selection method based on high-dimensional mutual information
    • Zheng, Y., Kwoh, C.K., A feature subset selection method based on high-dimensional mutual information. Entropy 13:4 (2011), 860–901.
    • (2011) Entropy , vol.13 , Issue.4 , pp. 860-901
    • Zheng, Y.1    Kwoh, C.K.2
  • 26
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • Kwak, N., Choi, C.-H., Input feature selection for classification problems. IEEE Trans Neural Netw 13:1 (2002), 143–159.
    • (2002) IEEE Trans Neural Netw , vol.13 , Issue.1 , pp. 143-159
    • Kwak, N.1    Choi, C.-H.2
  • 27
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • Peng, H., Long, F., Ding, C., Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27:8 (2005), 1226–1238.
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 29
    • 78649238560 scopus 로고    scopus 로고
    • An Improved maximum relevance and minimum redundancy feature selection algorithm based on normalized mutual information. In: The international symposium on applications and the internet, p. 395–8.
    • Vinh LT, Thang ND, Lee YK. An Improved maximum relevance and minimum redundancy feature selection algorithm based on normalized mutual information. In: The international symposium on applications and the internet, vol. 0; 2010. p. 395–8.
    • (2010)
    • Vinh, L.T.1    Thang, N.D.2    Lee, Y.K.3
  • 30
    • 79960734517 scopus 로고    scopus 로고
    • Runway incursion event forecast model based on LS-SVR with multi-kernel
    • Xu, G., Huang, S., Runway incursion event forecast model based on LS-SVR with multi-kernel. J Comput 6:7 (2011), 1346–1352.
    • (2011) J Comput , vol.6 , Issue.7 , pp. 1346-1352
    • Xu, G.1    Huang, S.2
  • 31
    • 84870066611 scopus 로고    scopus 로고
    • A new hybrid day-ahead peak load forecasting method for Iran's National Grid
    • Moazzami, M., Khodabakhshian, A., Hooshmand, R., A new hybrid day-ahead peak load forecasting method for Iran's National Grid. Appl Energy 101 (2013), 489–501.
    • (2013) Appl Energy , vol.101 , pp. 489-501
    • Moazzami, M.1    Khodabakhshian, A.2    Hooshmand, R.3
  • 32
    • 77954032128 scopus 로고    scopus 로고
    • An enhanced radial basis function network for short-term electricity price forecasting
    • Lin, W.M., Gow, H.J., Tsai, M.T., An enhanced radial basis function network for short-term electricity price forecasting. Appl Energy 87:10 (2010), 3226–3234.
    • (2010) Appl Energy , vol.87 , Issue.10 , pp. 3226-3234
    • Lin, W.M.1    Gow, H.J.2    Tsai, M.T.3
  • 33
    • 84862777006 scopus 로고    scopus 로고
    • An annual load forecasting model based on support vector regression with differential evolution algorithm
    • Wang, J., Li, L., Niu, D., Tan, Z., An annual load forecasting model based on support vector regression with differential evolution algorithm. Appl Energy 94 (2012), 65–70.
    • (2012) Appl Energy , vol.94 , pp. 65-70
    • Wang, J.1    Li, L.2    Niu, D.3    Tan, Z.4
  • 34
    • 84896085639 scopus 로고    scopus 로고
    • Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy
    • Jain, R.K., Smith, K.M., Culligan, P.J., Taylor, J.E., Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy. Appl Energy 123:15 (2014), 168–178.
    • (2014) Appl Energy , vol.123 , Issue.15 , pp. 168-178
    • Jain, R.K.1    Smith, K.M.2    Culligan, P.J.3    Taylor, J.E.4
  • 35
    • 84875115854 scopus 로고    scopus 로고
    • Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks
    • Liu, H., Tian, H., Pan, D., Li, Y., Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks. Appl Energy 107 (2013), 191–208.
    • (2013) Appl Energy , vol.107 , pp. 191-208
    • Liu, H.1    Tian, H.2    Pan, D.3    Li, Y.4
  • 37
    • 0017996045 scopus 로고
    • Forecasting peak system load using a combined time series and econometric model
    • Uri, N.D., Forecasting peak system load using a combined time series and econometric model. Appl Energy 4:3 (1978), 219–227.
    • (1978) Appl Energy , vol.4 , Issue.3 , pp. 219-227
    • Uri, N.D.1
  • 38
    • 85097048824 scopus 로고    scopus 로고
    • <>.
    • About MATLAB. < http://www.mathworks.com/>.
    • About, M.1
  • 39
    • 84898975702 scopus 로고    scopus 로고
    • A novel hybrid model for bi-objective short-term electric load forecasting
    • Che, J., A novel hybrid model for bi-objective short-term electric load forecasting. Int J Electr Power Energy Syst 61 (2014), 259–266.
    • (2014) Int J Electr Power Energy Syst , vol.61 , pp. 259-266
    • Che, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.