메뉴 건너뛰기




Volumn 12, Issue 4, 2014, Pages 764-771

Methodological advances in artificial neural networks for time series forecasting

Author keywords

ANFIS; ARIMA; artificial neural networks; Forecasting; nonlinear time series

Indexed keywords

NEURAL NETWORKS; TIME SERIES;

EID: 84905750098     PISSN: 15480992     EISSN: None     Source Type: Journal    
DOI: 10.1109/TLA.2014.6868881     Document Type: Article
Times cited : (15)

References (48)
  • 1
    • 33745952342 scopus 로고    scopus 로고
    • 25 years of time series forecasting
    • DOI 10.1016/j.ijforecast.2006.01.001, PII S0169207006000021, Twenty Five Years of Forecasting
    • J. G. De Gooijer and R. J. Hyndman, "25 years of time series forecasting," International Journal of Forecasting, vol. 22, no. 3, pp. 443-473, Jan. 2006 (Pubitemid 44057710)
    • (2006) International Journal of Forecasting , vol.22 , Issue.3 , pp. 443-473
    • De Gooijer, J.G.1    Hyndman, R.J.2
  • 5
    • 60549091177 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks for hydrological systems forecasting
    • Mar
    • Y. Chen and F.-J. Chang, "Evolutionary artificial neural networks for hydrological systems forecasting," Journal of Hydrology, vol. 367, no. 1-2, pp. 125-137, Mar. 2009.
    • (2009) Journal of Hydrology , vol.367 , Issue.1-2 , pp. 125-137
    • Chen, Y.1    Chang, F.-J.2
  • 6
    • 0003250025 scopus 로고
    • Non-linear time series
    • Oxford University Press UK
    • H. Tong, Non-Linear Time Series: A Dynamical System Approach. Oxford University Press (UK), 1993.
    • (1993) A Dynamical System Approach
    • Tong, H.1
  • 7
    • 1842760558 scopus 로고    scopus 로고
    • Forecasting economic and financial time-series with non-linear models
    • DOI 10.1016/j.ijforecast.2003.10.004, PII S0169207003001432, Forecasting Economic and Financial Time Series Using Nonlinear
    • M. P. Clements, P. H. Franses, and N. R. Swanson, "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, vol. 20, no. 2, pp. 169-183, Apr. 2004. (Pubitemid 38461923)
    • (2004) International Journal of Forecasting , vol.20 , Issue.2 , pp. 169-183
    • Clements, M.P.1    Franses, P.H.2    Swanson, N.R.3
  • 8
    • 0000051984 scopus 로고
    • Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation
    • Jul
    • R. F. Engle, "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, vol. 50, no. 4, p. 987, Jul. 1982.
    • (1982) Econometrica , vol.50 , Issue.4 , pp. 987
    • Engle, R.F.1
  • 9
    • 84954217469 scopus 로고    scopus 로고
    • Forecasting with smooth autoregressive models
    • M., Hendry, D. (Eds.), A Companion to Economic Forecasting. Blackwell Chap. 21
    • S. Lundbergh and T. Teräsvirta, "Forecasting with smooth autoregressive models", In Clements, M., Hendry, D. (Eds.), A Companion to Economic Forecasting. Blackwell, pp. 485-509. Chap. 21, 2002.
    • (2002) Clements , pp. 485-509
    • Lundbergh, S.1    Teräsvirta, T.2
  • 10
    • 0024944645 scopus 로고
    • Additional hidden unit test for neglected nonlinearity in multilayer feedforward networks
    • H. White, "An additional hidden unit test for neglected nonlinearity in multilayer feedforward networks", in Proceedings of the International Joint Conference on Neural Networks, vol 2, pp. 451-455. Washington, DC, IEEE Press, NY., 1989. (Pubitemid 20642124)
    • (1989) IJCNN Int Jt Conf Neural Network , pp. 451-455
    • White Halbert1
  • 13
    • 0030130753 scopus 로고    scopus 로고
    • Designing a neural network for forecasting financial and economic time series
    • DOI 10.1016/0925-2312(95)00039-9
    • I. Kaastra and M. Boyd, "Designing a neural network for forecasting financial and economic time series," Neurocomputing, vol. 10, no. 3, pp. 215-236, Apr. 1996. (Pubitemid 26133281)
    • (1996) Neurocomputing , vol.10 , Issue.3 , pp. 215-236
    • Kaastra, I.1    Boyd, M.2
  • 15
    • 84923053681 scopus 로고
    • Specification, estimation and evaluation of smooth transition autoregressive models
    • Mar
    • T. Teräsvirta, "Specification, estimation and evaluation of smooth transition autoregressive models," Journal of the American Statistical Association, vol. 89, no. 425, pp. 208-218, Mar. 1994.
    • (1994) Journal of the American Statistical Association , vol.89 , Issue.425 , pp. 208-218
    • Teräsvirta, T.1
  • 17
    • 0033105287 scopus 로고    scopus 로고
    • Model selection in neural networks
    • DOI 10.1016/S0893-6080(98)00117-8, PII S0893608098001178
    • U. Anders and O. Korn, "Model selection in neural networks," Neural Networks, vol. 12, no. 2, pp. 309-323, Mar. 1999. (Pubitemid 29148449)
    • (1999) Neural Networks , vol.12 , Issue.2 , pp. 309-323
    • Anders, U.1    Korn, O.2
  • 18
    • 53849126165 scopus 로고    scopus 로고
    • Neural networks and statistical techniques: A review of applications
    • Jan
    • M. Paliwal and U. A. Kumar, "Neural networks and statistical techniques: A review of applications," Expert Systems with Applications, vol. 36, no. 1, pp. 2-17, Jan. 2009.
    • (2009) Expert Systems with Applications , vol.36 , Issue.1 , pp. 2-17
    • Paliwal, M.1    Kumar, U.A.2
  • 19
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • PII S0169207097000447
    • G. Zhang, B. E. Patuwo, and M. Y. Hu, "Forecasting with artificial neural networks:, the state of art," International Journal of Forecasting, vol. 14, no. 1, pp. 35-62, Mar. 1998. (Pubitemid 128340470)
    • (1998) International Journal of Forecasting , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Eddy Patuwo, B.2    Hu, M.Y.3
  • 20
    • 12144271359 scopus 로고    scopus 로고
    • A dynamic architecture for artificial neural networks
    • DOI 10.1016/j.neucom.2004.03.014, PII S0925231204003327
    • M. Ghiassi and H. Saidane, "A dynamic architecture for artificial neural networks," Neurocomputing, vol. 63, pp. 397-413, Jan. 2005 (Pubitemid 40103872)
    • (2005) Neurocomputing , vol.63 , Issue.SPEC. ISS. , pp. 397-413
    • Ghiassi, M.1    Saidane, H.2
  • 21
    • 84863949032 scopus 로고    scopus 로고
    • A review of dan2 (dynamic architecture for artifical neural networks) model in time series forecasting
    • J. D. Velásquez Henao, C. J. Franco Cardona, and Y. Olaya Morales, "A review of DAN2 (Dynamic Architecture for Artifical Neural Networks) model in time series forecasting," Ingeniería y universidad, vol. 16, no. 1, pp. 135-146, 2012.
    • (2012) Ingeniería y Universidad , vol.16 , Issue.1 , pp. 135-146
    • Velásquez Henao, J.D.1    Franco Cardona, C.J.2    Olaya Morales, Y.3
  • 23
    • 43949168783 scopus 로고
    • Testing for neglected nonlinearity in time series models
    • T.-H. Lee, H. White and C.W.J. Granger, "Testing for neglected nonlinearity in time series models", Journal of Econometrics, vol. 56, pp. 269-290, 1993.
    • (1993) Journal of Econometrics , vol.56 , pp. 269-290
    • Lee, T.-H.1    White, H.2    Granger, C.W.J.3
  • 24
    • 70349453596 scopus 로고    scopus 로고
    • A artificial neural network (p,d,q) model for time series forecasting
    • Jan
    • M. Khashei and M. Bijari, "A artificial neural network (p,d,q) model for time series forecasting," Expert Systems with Applications, vol. 37, no. 1, pp. 479-489, Jan. 2010.
    • (2010) Expert Systems with Applications , vol.37 , Issue.1 , pp. 479-489
    • Khashei, M.1    Bijari, M.2
  • 25
    • 0001121243 scopus 로고    scopus 로고
    • A hybrid linear-neural model for time series forecasting
    • Nov
    • A. Veiga and M. C. Medeiros, "A hybrid linear-neural model for time series forecasting," IEEE Transactions on Neural Networks, vol. 11, no. 6, pp. 1402-1412, Nov. 2000.
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.6 , pp. 1402-1412
    • Veiga, A.1    Medeiros, M.C.2
  • 26
    • 0035427685 scopus 로고    scopus 로고
    • An investigation of model selection criteria for neural network time series forecasting
    • DOI 10.1016/S0377-2217(00)00171-5, PII S0377221700001715
    • M. Qi and G. P. Zhang, "An investigation of model selection criteria for neural network time series forecasting," European Journal of Operational Research, vol. 132, no. 3, pp. 666-680, Aug. 2001. (Pubitemid 32487106)
    • (2001) European Journal of Operational Research , vol.132 , Issue.3 , pp. 666-680
    • Qi, M.1    Zhang, G.P.2
  • 27
    • 0032686084 scopus 로고    scopus 로고
    • Modelling non-linear moving average processes using neural networks with error feedback: An application to implied volatility forecasting
    • Apr.
    • A. N. Burgess and A.-P. . Refenes, "Modelling non-linear moving average processes using neural networks with error feedback: An application to implied volatility forecasting," Signal Processing, vol. 74, no. 1, pp. 89-99, Apr. 1999
    • (1999) Signal Processing , vol.74 , Issue.1 , pp. 89-99
    • Burgess, A.N.1    Refenes, A.-P.2
  • 28
    • 27644567603 scopus 로고    scopus 로고
    • Joint Technical Report, Computer Science Department, Keele University (TR/SE-0401) and National ICT Australia Ltd. (0400011T.1
    • B.A. Kitchenham. Procedures for Undertaking Systematic Reviews. Joint Technical Report, Computer Science Department, Keele University (TR/SE-0401) and National ICT Australia Ltd. (0400011T.1), 2004.
    • (2004) Procedures for Undertaking Systematic Reviews
    • Kitchenham, B.A.1
  • 29
    • 0036140323 scopus 로고    scopus 로고
    • Combining neural network model with seasonal time series ARIMA model
    • DOI 10.1016/S0040-1625(00)00113-X, PII S004016250000113X
    • F.-M. Tseng, H.-C. Yu, and G.-H. Tzeng, "Combining neural network model with seasonal time series ARIMA model," Technological Forecasting and Social Change, vol. 69, no. 1, pp. 71-87, Jan. 2002. (Pubitemid 34034840)
    • (2002) Technological Forecasting and Social Change , vol.69 , Issue.1 , pp. 71-87
    • Tseng, F.-M.1    Yu, H.-C.2    Tzeng, G.-H.3
  • 30
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • DOI 10.1016/S0925-2312(01)00702-0, PII S0925231201007020
    • G. P. Zhang, "Time series forecasting using a hybrid ARIMA and neural network model," Neurocomputing, vol. 50, pp. 159-175, Jan. 2003. (Pubitemid 36124139)
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 31
    • 0442327789 scopus 로고    scopus 로고
    • Stochastic neural networks with applications to nonlinear time series
    • T. L. La, and S. P.-S. Wong, "Stochastic Neural Networks With Applications to Nonlinear Time Series," Journal of the American Statistical Association, vol. 96, pp. 968-981, 2001.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 968-981
    • La, T.L.1    Wong, S.P.-S.2
  • 32
    • 10844281822 scopus 로고    scopus 로고
    • Local global neural networks: A new approach for nonlinear time series modeling
    • DOI 10.1198/016214504000001691
    • S M. Suárez-Fariñas, C. E. Pedreira and M. C. Medeiros. "Local Global Neural Networks: A New Approach for Nonlinear Time Series Modeling,". Journal of the American Statistical Association, vol. 99, no. 468, pp. 1092-1107, Dec. 2004. (Pubitemid 39665954)
    • (2004) Journal of the American Statistical Association , vol.99 , Issue.468 , pp. 1092-1107
    • Suarez-Farinas, M.1    Pedreira, C.E.2    Medeiros, M.C.3
  • 33
    • 0242573579 scopus 로고    scopus 로고
    • A novel artificial neural network fire model for prediction of thermal interface location in single compartment fire
    • Feb
    • E. W. M. Lee, R. K. K. Yuen, S. M. Lo, K. C. Lam, and G. H. Yeoh, "A novel artificial neural network fire model for prediction of thermal interface location in single compartment fire," Fire Safety Journal, vol. 39, no. 1, pp. 67-87, Feb. 2004.
    • (2004) Fire Safety Journal , vol.39 , Issue.1 , pp. 67-87
    • Lee, E.W.M.1    Yuen, R.K.K.2    Lo, S.M.3    Lam, K.C.4    Yeoh, G.H.5
  • 34
    • 13844275978 scopus 로고    scopus 로고
    • A flexible coefficient smooth transition time series model
    • DOI 10.1109/TNN.2004.836246
    • M. C. Medeiros and A. Veiga, "A Flexible Coefficient Smooth Transition Time Series Model," IEEE Transactions on Neural Networks, vol. 16, no. 1, pp. 97-113, Jan. 2005. (Pubitemid 40241913)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.1 , pp. 97-113
    • Medeiros, M.C.1    Veiga, A.2
  • 35
    • 13544270843 scopus 로고    scopus 로고
    • A novel nonlinear ensemble forecasting model incorporating GLAR and ANN for foreign exchange rates
    • DOI 10.1016/j.cor.2004.06.024, PII S030505480400156X, Application of Neural Networks
    • L. Yu, S. Wang, and K. K. Lai, "A novel nonlinear ensemble forecasting model incorporating GLAR and ANN for foreign exchange rates," Computers & Operations Research, vol. 32, no. 10, pp. 2523-2541, Oct. 2005. (Pubitemid 40219759)
    • (2005) Computers and Operations Research , vol.32 , Issue.10 , pp. 2523-2541
    • Yu, L.1    Wang, S.2    Lai, K.K.3
  • 36
    • 21244438033 scopus 로고    scopus 로고
    • Time-series forecasting using flexible neural tree model
    • DOI 10.1016/j.ins.2004.10.005, PII S0020025504002944
    • Y. Chen, B. Yang, J. Dong, and A. Abraham, "Time-series forecasting using flexible neural tree model," Information Sciences, vol. 174, no. 3-4, pp. 219-235, Aug. 2005. (Pubitemid 40893971)
    • (2005) Information Sciences , vol.174 , Issue.3-4 , pp. 219-235
    • Chen, Y.1    Yang, B.2    Dong, J.3    Abraham, A.4
  • 37
    • 31644446914 scopus 로고    scopus 로고
    • Building neural network models for time series: A statistical approach
    • DOI 10.1002/for.974
    • M. C. Medeiros, T. Teräsvirta, and G. Rech, "Building neural network models for time series: a statistical approach," Journal of Forecasting, vol. 25, no. 1, pp. 49-75, 2006. (Pubitemid 43171626)
    • (2006) Journal of Forecasting , vol.25 , Issue.1 , pp. 49-75
    • Medeiros, M.C.1    Terasvirta, T.2    Rech, G.3
  • 38
    • 33845975322 scopus 로고    scopus 로고
    • A nonlinear perturbation model based on artificial neural network
    • DOI 10.1016/j.jhydrol.2006.09.015, PII S0022169406004902
    • B. Pang, S. Guo, L. Xiong, and C. Li, "A nonlinear perturbation model based on artificial neural network," Journal of Hydrology, vol. 333, no. 2-4, pp. 504-516, Feb. 2007. (Pubitemid 46053972)
    • (2007) Journal of Hydrology , vol.333 , Issue.2-4 , pp. 504-516
    • Pang, B.1    Guo, S.2    Xiong, L.3    Li, C.4
  • 39
    • 33845653930 scopus 로고    scopus 로고
    • A fusion model of HMM, ANN and GA for stock market forecasting
    • DOI 10.1016/j.eswa.2006.04.007, PII S0957417406001291
    • Md. R. Hassan, B. Nath, and M. Kirley, "A fusion model of HMM, ANN and GA for stock market forecasting," Expert Systems with Applications, vol. 33, no. 1, pp. 171-180, Jul. 2007. (Pubitemid 44959927)
    • (2007) Expert Systems with Applications , vol.33 , Issue.1 , pp. 171-180
    • Hassan, Md.R.1    Nath, B.2    Kirley, M.3
  • 40
    • 52349100223 scopus 로고    scopus 로고
    • Applications of ar-grnn model for financial time series forecasting
    • Oct
    • W. Li, Y. Luo, Q. Zhu, J. Liu, and J. Le, "Applications of AR-GRNN model for financial time series forecasting," Neural Comput & Applic, vol. 17, no. 5-6, pp. 441-448, Oct. 2008.
    • (2008) Neural Comput & Applic , vol.17 , Issue.5-6 , pp. 441-448
    • Li, W.1    Luo, Y.2    Zhu, Q.3    Liu, J.4    Le, J.5
  • 41
    • 39049162430 scopus 로고    scopus 로고
    • A new hybrid artificial neural networks and fuzzy regression model for time series forecasting
    • DOI 10.1016/j.fss.2007.10.011, PII S0165011407004678
    • M. Khashei, S. Reza Hejazi, and M. Bijari, "A new hybrid artificial neural networks and fuzzy regression model for time series forecasting," Fuzzy Sets and Systems, vol. 159, no. 7, pp. 769-786, Apr. 2008. (Pubitemid 351240997)
    • (2008) Fuzzy Sets and Systems , vol.159 , Issue.7 , pp. 769-786
    • Khashei, M.1    Reza Hejazi, S.2    Bijari, M.3
  • 42
    • 77955552432 scopus 로고    scopus 로고
    • Adaptive neural network model for time-series forecasting
    • Dec
    • W. K. Wong, M. Xia, and W. C. Chu, "Adaptive neural network model for time-series forecasting," European Journal of Operational Research, vol. 207, no. 2, pp. 807-816, Dec. 2010.
    • (2010) European Journal of Operational Research , vol.207 , Issue.2 , pp. 807-816
    • Wong, W.K.1    Xia, M.2    Chu, W.C.3
  • 43
    • 77954834795 scopus 로고    scopus 로고
    • A hybrid model for day-ahead price forecasting
    • Aug
    • L. Wu and M. Shahidehpour, "A Hybrid Model for Day-Ahead Price Forecasting," IEEE Transactions on Power Systems, vol. 25,no.3, pp. 1519-1530, Aug. 2010.
    • (2010) IEEE Transactions on Power Systems , vol.25 , Issue.3 , pp. 1519-1530
    • Wu, L.1    Shahidehpour, M.2
  • 44
    • 80053306318 scopus 로고    scopus 로고
    • A novel neural network ensemble architecture for time series forecasting
    • Aug
    • I.A. Gheyas and L.S. Smith, "A novel neural network ensemble architecture for time series forecasting," Neurocomputing, vol. 74, pp. 3855-3864, Aug. 2011.
    • (2011) Neurocomputing , vol.74 , pp. 3855-3864
    • Gheyas, I.A.1    Smith, L.S.2
  • 45
    • 80055054635 scopus 로고    scopus 로고
    • Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing
    • Oct
    • A.H. Alavi and A.H. Gandomi, "Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing, Computer and Structures, vol.89,pp.2176-2194, Oct. 2011.
    • (2011) Computer and Structures , vol.89 , pp. 2176-2194
    • Alavi, A.H.1    Gandomi, A.H.2
  • 46
    • 84866918086 scopus 로고    scopus 로고
    • The architecture of dynamic reservoir in the echo state network,"chaos
    • 033127, Aug
    • H. Cui, X.Liu and L. Li, "The architecture of dynamic reservoir in the echo state network,"Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 22, no.3, 033127, Aug., 2012.
    • (2012) An Interdisciplinary Journal of Nonlinear Science , vol.22 , Issue.3
    • Cui, H.1    Liu, X.2    Li, L.3
  • 47
    • 84875409889 scopus 로고    scopus 로고
    • A new linear & nonlinear artificial neural network model for time series forecasting
    • U. Yolcu, E. Egrioglu and C.H. Aladag, "A new linear & nonlinear artificial neural network model for time series forecasting," Decision Support Systems, vol.54, no.3, pp. 1340-1347, 2013.
    • (2013) Decision Support Systems , vol.54 , Issue.3 , pp. 1340-1347
    • Yolcu, U.1    Egrioglu, E.2    Aladag, C.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.