메뉴 건너뛰기




Volumn 2, Issue 3, 2015, Pages 87-93

Efficient Machine Learning for Big Data: A Review

Author keywords

Big data; Computational modeling; Efficient machine learning; Green computing

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTATIONAL EFFICIENCY; ENERGY EFFICIENCY; GREEN COMPUTING; LEARNING SYSTEMS;

EID: 84955413763     PISSN: None     EISSN: 22145796     Source Type: Journal    
DOI: 10.1016/j.bdr.2015.04.001     Document Type: Review
Times cited : (499)

References (63)
  • 4
    • 83455256335 scopus 로고    scopus 로고
    • Model-based energy management reduces energy costs
    • online
    • Strathman M. Model-based energy management reduces energy costs. E&P 2010, online. http://www.epmag.com/guests/2010/06/16/model-based-energy-management-reduces-energy-costs.
    • (2010) E&P
    • Strathman, M.1
  • 7
    • 77649248407 scopus 로고    scopus 로고
    • Efficient algorithm for localized support vector machine
    • Cheng H., Tan P.-N., Jin R. Efficient algorithm for localized support vector machine. IEEE Trans. Knowl. Data Eng. 2010, 22(4):537-549.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.4 , pp. 537-549
    • Cheng, H.1    Tan, P.-N.2    Jin, R.3
  • 12
    • 85139269173 scopus 로고    scopus 로고
    • online, accessed on 2nd Aug. 2014
    • NCBI Genebank statistics online, accessed on 2nd Aug. 2014. http://www.ncbi.nlm.nih.gov/genbank/genbankstats.html.
    • Genebank statistics
  • 16
    • 85139272520 scopus 로고    scopus 로고
    • online, accessed on 10th April 2011
    • Insiteone official website online, accessed on 10th April 2011. http://www.insiteone.com/.
    • Insiteone official website
  • 17
  • 20
    • 34547250122 scopus 로고    scopus 로고
    • online, accessed on 20th April 2011
    • The dark energy survey online, accessed on 20th April 2011. http://www.darkenergysurvey.org/.
    • The dark energy survey
  • 21
    • 84870687050 scopus 로고    scopus 로고
    • accessed on 20th April 2011
    • The sloan digital sky survey accessed on 20th April 2011. http://www.sdss.org/.
    • The sloan digital sky survey
  • 22
    • 34247533392 scopus 로고    scopus 로고
    • The pan-starrs survey telescope project
    • Kaiser N., et al. The pan-starrs survey telescope project. Bull. Am. Astron. Soc. 2007, 37:1409.
    • (2007) Bull. Am. Astron. Soc. , vol.37 , pp. 1409
    • Kaiser, N.1
  • 24
    • 80051923988 scopus 로고    scopus 로고
    • Using data mining to help design sustainable products
    • Marwah M., Shah A., Bash C., Patel C., Ramakrishnan N. Using data mining to help design sustainable products. Computer 2011, 44(8):103-106.
    • (2011) Computer , vol.44 , Issue.8 , pp. 103-106
    • Marwah, M.1    Shah, A.2    Bash, C.3    Patel, C.4    Ramakrishnan, N.5
  • 29
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: an empirical study
    • Opitz D., Maclin R. Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 1999, 11:169-198.
    • (1999) J. Artif. Intell. Res. , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 30
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • Polikar R. Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 2006, 6(3):21-45.
    • (2006) IEEE Circuits Syst. Mag. , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 32
    • 85139268731 scopus 로고    scopus 로고
    • online, accessed on 23rd Feb. 2011
    • Wikipedia Ensemble in numerical weather prediction online, accessed on 23rd Feb. 2011. http://en.wikipedia.org/wiki/Ensemble_forecasting.
    • Ensemble in numerical weather prediction
  • 34
    • 0003642109 scopus 로고    scopus 로고
    • Department of Computer Science and Engineering, University of California, San Diego
    • Elkan C. Naive Bayesian learning 1997, Department of Computer Science and Engineering, University of California, San Diego.
    • (1997) Naive Bayesian learning
    • Elkan, C.1
  • 36
    • 46649097611 scopus 로고    scopus 로고
    • Siteseek: post-transltional modification analysis using adaptive locality-effective kernel methods and new profiles
    • Yoo P.D., Ho Y.S., Zhou B.B., Zomaya A.Y. Siteseek: post-transltional modification analysis using adaptive locality-effective kernel methods and new profiles. BMC Bioinform. 2008, 9(1):272.
    • (2008) BMC Bioinform. , vol.9 , Issue.1 , pp. 272
    • Yoo, P.D.1    Ho, Y.S.2    Zhou, B.B.3    Zomaya, A.Y.4
  • 37
    • 0000876414 scopus 로고
    • Local learning algorithms
    • Bottou L., Vapnik V. Local learning algorithms. Neural Comput. 1992, 4(6):888-900.
    • (1992) Neural Comput. , vol.4 , Issue.6 , pp. 888-900
    • Bottou, L.1    Vapnik, V.2
  • 38
    • 7544223962 scopus 로고    scopus 로고
    • Local machine learning models for spatial data analysis
    • EPFL-ARTICLE-82651
    • Gilardi N., Bengio S. Local machine learning models for spatial data analysis. J. Geogr. Inform. Dec. Anal. 2000, 4:11-28. EPFL-ARTICLE-82651.
    • (2000) J. Geogr. Inform. Dec. Anal. , vol.4 , pp. 11-28
    • Gilardi, N.1    Bengio, S.2
  • 40
    • 38349186243 scopus 로고    scopus 로고
    • Local prediction of non-linear time series using support vector regression
    • Lau K., Wu Q. Local prediction of non-linear time series using support vector regression. Pattern Recognit. 2008, 41(5):1539-1547.
    • (2008) Pattern Recognit. , vol.41 , Issue.5 , pp. 1539-1547
    • Lau, K.1    Wu, Q.2
  • 41
    • 45249093424 scopus 로고    scopus 로고
    • Domnet: protein domain boundary prediction using enhanced general regression network and new profiles
    • Yoo P.D., Sikder A.R., Taheri J., Zhou B.B., Zomaya A.Y. Domnet: protein domain boundary prediction using enhanced general regression network and new profiles. IEEE Trans. Nanobiosci. 2008, 7(2):172-181.
    • (2008) IEEE Trans. Nanobiosci. , vol.7 , Issue.2 , pp. 172-181
    • Yoo, P.D.1    Sikder, A.R.2    Taheri, J.3    Zhou, B.B.4    Zomaya, A.Y.5
  • 43
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton G., Osindero S., Teh Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18(7):1527-1554.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.-W.3
  • 45
    • 84923318381 scopus 로고    scopus 로고
    • Big data deep learning: challenges and perspectives
    • Chen X.-W., Lin X. Big data deep learning: challenges and perspectives. IEEE Access 2014, 2:514-525.
    • (2014) IEEE Access , vol.2 , pp. 514-525
    • Chen, X.-W.1    Lin, X.2
  • 46
    • 84956802323 scopus 로고    scopus 로고
    • A tutorial survey of architectures, algorithms, and applications for deep learning
    • Deng L. A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Trans. Signal Inform. Process. 2014, 3. p. e2.
    • (2014) APSIPA Trans. Signal Inform. Process. , vol.3 , pp. e2
    • Deng, L.1
  • 47
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G.E., Salakhutdinov R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313(5786):504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 50
    • 84865768819 scopus 로고    scopus 로고
    • Deep convex net: a scalable architecture for speech pattern classification
    • Deng L., Yu D. Deep convex net: a scalable architecture for speech pattern classification. Proceedings of the Interspeech 2011.
    • (2011) Proceedings of the Interspeech
    • Deng, L.1    Yu, D.2
  • 51
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.H. Stacked generalization. Neural Netw. 1992, 5(2):241-259.
    • (1992) Neural Netw. , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.H.1
  • 56
    • 85139268900 scopus 로고    scopus 로고
    • Apache Hadoop http://hadoop.apache.org.
    • Hadoop
  • 57
    • 84891620235 scopus 로고    scopus 로고
    • Shadoop: improving mapreduce performance by optimizing job execution mechanism in hadoop clusters
    • Gu R., Yang X., Yan J., Sun Y., Wang B., Yuan C., Huang Y. Shadoop: improving mapreduce performance by optimizing job execution mechanism in hadoop clusters. J. Parallel Distrib. Comput. 2014, 74(3):2166-2179.
    • (2014) J. Parallel Distrib. Comput. , vol.74 , Issue.3 , pp. 2166-2179
    • Gu, R.1    Yang, X.2    Yan, J.3    Sun, Y.4    Wang, B.5    Yuan, C.6    Huang, Y.7
  • 58
    • 84860656128 scopus 로고    scopus 로고
    • Commapreduce: an improvement of mapreduce with lightweight communication mechanisms
    • Springer
    • Ding L., Xin J., Wang G., Huang S. Commapreduce: an improvement of mapreduce with lightweight communication mechanisms. Database Systems for Advanced Applications 2012, 150-168. Springer.
    • (2012) Database Systems for Advanced Applications , pp. 150-168
    • Ding, L.1    Xin, J.2    Wang, G.3    Huang, S.4
  • 60
    • 82155188108 scopus 로고    scopus 로고
    • Piccolo: building fast, distributed programs with partitioned tables
    • Power R., Li J. Piccolo: building fast, distributed programs with partitioned tables. OSDI 2010, vol. 10:1-14.
    • (2010) OSDI , vol.10 , pp. 1-14
    • Power, R.1    Li, J.2
  • 61
    • 84900800509 scopus 로고    scopus 로고
    • Data-intensive applications, challenges, techniques and technologies: a survey on big data
    • Chen C.P., Zhang C.Y. Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf. Sci. 2014, 275:314-347.
    • (2014) Inf. Sci. , vol.275 , pp. 314-347
    • Chen, C.P.1    Zhang, C.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.