메뉴 건너뛰기




Volumn 2015-August, Issue , 2015, Pages 1335-1344

Petuum: A new platform for distributed machine learning on big data

Author keywords

Big data; Big model; Data parallelism; Distributed systems; Machine learning; Model parallelism; Theory

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER SUPPORTED COOPERATIVE WORK; DATA MINING; ITERATIVE METHODS; LEARNING SYSTEMS; NETWORK MANAGEMENT; SCHEDULING;

EID: 84954113279     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2783258.2783323     Document Type: Conference Paper
Times cited : (129)

References (36)
  • 1
    • 85162387277 scopus 로고    scopus 로고
    • Distributed delayed stochastic optimization
    • A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. In NIPS, 2011.
    • (2011) NIPS
    • Agarwal, A.1    Duchi, J.C.2
  • 3
    • 84904136037 scopus 로고    scopus 로고
    • Large-scale machine learning with stochastic gradient descent
    • Springer
    • L. Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT'2010, pages 177-186. Springer, 2010.
    • (2010) Proceedings of COMPSTAT'2010 , pp. 177-186
    • Bottou, L.1
  • 4
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3:1-124, 2011.
    • (2011) Foundations and Trends in Machine Learning , vol.3 , pp. 1-124
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 5
    • 80053451705 scopus 로고    scopus 로고
    • Parallel coordinate descent for l1-regularized loss minimization
    • J. K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin. Parallel coordinate descent for l1-regularized loss minimization. In ICML, 2011.
    • (2011) ICML
    • Bradley, J.K.1    Kyrola, A.2    Bickson, D.3    Guestrin, C.4
  • 6
    • 80053139009 scopus 로고    scopus 로고
    • Smoothing proximal gradient method for general structured sparse learning
    • X. Chen, Q. Lin, S. Kim, J. Carbonell, and E. Xing. Smoothing proximal gradient method for general structured sparse learning. In UAI, 2011.
    • (2011) UAI
    • Chen, X.1    Lin, Q.2    Kim, S.3    Carbonell, J.4    Xing, E.5
  • 7
    • 84954161953 scopus 로고    scopus 로고
    • High-performance distributed ml at scale through parameter server consistency models
    • W. Dai, A. Kumar, J. Wei, Q. Ho, G. Gibson, and E. P. Xing. High-performance distributed ml at scale through parameter server consistency models. In AAAI. 2015.
    • (2015) AAAI
    • Dai, W.1    Kumar, A.2    Wei, J.3    Ho, Q.4    Gibson, G.5    Xing, E.P.6
  • 11
    • 84905248838 scopus 로고    scopus 로고
    • Ad click prediction: A view from the trenches
    • H. B. M. et. al.
    • H. B. M. et. al. Ad click prediction: a view from the trenches. In KDD, 2013.
    • (2013) KDD
  • 13
    • 1842788824 scopus 로고    scopus 로고
    • Finding scientific topics
    • T. L. Griffiths and M. Steyvers. Finding scientific topics. PNAS, 101(Suppl 1):5228-5235, 2004.
    • (2004) PNAS , vol.101 , pp. 5228-5235
    • Griffiths, T.L.1    Steyvers, M.2
  • 16
    • 85046091706 scopus 로고    scopus 로고
    • Fugue: Slow-worker-agnostic distributed learning for big models on big data
    • A. Kumar, A. Beutel, Q. Ho, and E. P. Xing. Fugue: Slow-worker-agnostic distributed learning for big models on big data. In AISTATS, 2014.
    • (2014) AISTATS
    • Kumar, A.1    Beutel, A.2    Ho, Q.3    Xing, E.P.4
  • 18
    • 84937822418 scopus 로고    scopus 로고
    • On model parallelism and scheduling strategies for distributed machine learning
    • S. Lee, J. K. Kim, X. Zheng, Q. Ho, G. Gibson, and E. P. Xing. On model parallelism and scheduling strategies for distributed machine learning. In NIPS. 2014.
    • (2014) NIPS
    • Lee, S.1    Kim, J.K.2    Zheng, X.3    Ho, Q.4    Gibson, G.5    Xing, E.P.6
  • 22
    • 85162467517 scopus 로고    scopus 로고
    • Hogwild!: A lock-free approach to parallelizing stochastic gradient descent
    • F. Niu, B. Recht, C. Ré, and S. J. Wright. Hogwild!: A lock-free approach to parallelizing stochastic gradient descent. In NIPS, 2011.
    • (2011) NIPS
    • Niu, F.1    Recht, B.2    Ré, C.3    Wright, S.J.4
  • 23
    • 85076911148 scopus 로고    scopus 로고
    • Piccolo: Building fast, distributed programs with partitioned tables
    • R. Power and J. Li. Piccolo: building fast, distributed programs with partitioned tables. In OSDI. USENIX Association, 2010.
    • (2010) OSDI. USENIX Association
    • Power, R.1    Li, J.2
  • 25
    • 84877770112 scopus 로고    scopus 로고
    • Feature clustering for accelerating parallel coordinate descent
    • C. Scherrer, A. Tewari, M. Halappanavar, and D. Haglin. Feature clustering for accelerating parallel coordinate descent. NIPS, 2012.
    • (2012) NIPS
    • Scherrer, C.1    Tewari, A.2    Halappanavar, M.3    Haglin, D.4
  • 28
    • 84897382844 scopus 로고    scopus 로고
    • Parallel Markov chain Monte Carlo for nonparametric mixture models
    • S. A. Williamson, A. Dubey, and E. P. Xing. Parallel markov chain monte carlo for nonparametric mixture models. In ICML, 2013.
    • (2013) ICML
    • Williamson, S.A.1    Dubey, A.2    Xing, E.P.3
  • 29
    • 85133386144 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information
    • E. P. Xing, M. I. Jordan, S. Russell, and A. Y. Ng. Distance metric learning with application to clustering with side-information. In NIPS, 2002.
    • (2002) NIPS
    • Xing, E.P.1    Jordan, M.I.2    Russell, S.3    Ng, A.Y.4
  • 30
    • 84874049380 scopus 로고    scopus 로고
    • Scalable coordinate descent approaches to parallel matrix factorization for recommender systems
    • H.-F. Yu, C.-J. Hsieh, S. Si, and I. Dhillon. Scalable coordinate descent approaches to parallel matrix factorization for recommender systems. In ICDM, 2012.
    • (2012) ICDM
    • Yu, H.-F.1    Hsieh, C.-J.2    Si, S.3    Dhillon, I.4
  • 33
    • 82155168650 scopus 로고    scopus 로고
    • Priter: A distributed framework for prioritized iterative computations
    • Y. Zhang, Q. Gao, L. Gao, and C. Wang. Priter: A distributed framework for prioritized iterative computations. In SOCC, 2011.
    • (2011) SOCC
    • Zhang, Y.1    Gao, Q.2    Gao, L.3    Wang, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.