-
1
-
-
85162387277
-
Distributed delayed stochastic optimization
-
A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. In NIPS, 2011.
-
(2011)
NIPS
-
-
Agarwal, A.1
Duchi, J.C.2
-
2
-
-
84858012279
-
Scalable inference in latent variable models
-
A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and A. J. Smola. Scalable inference in latent variable models. In WSDM, 2012.
-
(2012)
WSDM
-
-
Ahmed, A.1
Aly, M.2
Gonzalez, J.3
Narayanamurthy, S.4
Smola, A.J.5
-
3
-
-
84904136037
-
Large-scale machine learning with stochastic gradient descent
-
Springer
-
L. Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT'2010, pages 177-186. Springer, 2010.
-
(2010)
Proceedings of COMPSTAT'2010
, pp. 177-186
-
-
Bottou, L.1
-
4
-
-
80051762104
-
Distributed optimization and statistical learning via the alternating direction method of multipliers
-
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3:1-124, 2011.
-
(2011)
Foundations and Trends in Machine Learning
, vol.3
, pp. 1-124
-
-
Boyd, S.1
Parikh, N.2
Chu, E.3
Peleato, B.4
Eckstein, J.5
-
5
-
-
80053451705
-
Parallel coordinate descent for l1-regularized loss minimization
-
J. K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin. Parallel coordinate descent for l1-regularized loss minimization. In ICML, 2011.
-
(2011)
ICML
-
-
Bradley, J.K.1
Kyrola, A.2
Bickson, D.3
Guestrin, C.4
-
6
-
-
80053139009
-
Smoothing proximal gradient method for general structured sparse learning
-
X. Chen, Q. Lin, S. Kim, J. Carbonell, and E. Xing. Smoothing proximal gradient method for general structured sparse learning. In UAI, 2011.
-
(2011)
UAI
-
-
Chen, X.1
Lin, Q.2
Kim, S.3
Carbonell, J.4
Xing, E.5
-
7
-
-
84954161953
-
High-performance distributed ml at scale through parameter server consistency models
-
W. Dai, A. Kumar, J. Wei, Q. Ho, G. Gibson, and E. P. Xing. High-performance distributed ml at scale through parameter server consistency models. In AAAI. 2015.
-
(2015)
AAAI
-
-
Dai, W.1
Kumar, A.2
Wei, J.3
Ho, Q.4
Gibson, G.5
Xing, E.P.6
-
8
-
-
34547996209
-
Information-theoretic metric learning
-
ACM
-
J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon. Information-theoretic metric learning. In Proceedings of the 24th international conference on Machine learning, pages 209-216. ACM, 2007.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning
, pp. 209-216
-
-
Davis, J.V.1
Kulis, B.2
Jain, P.3
Sra, S.4
Dhillon, I.S.5
-
9
-
-
84877760312
-
Large scale distributed deep networks
-
J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Ng. Large scale distributed deep networks. In NIPS 2012, 2012.
-
(2012)
NIPS 2012
-
-
Dean, J.1
Corrado, G.2
Monga, R.3
Chen, K.4
Devin, M.5
Le, Q.6
Mao, M.7
Ranzato, M.8
Senior, A.9
Tucker, P.10
Yang, K.11
Ng, A.12
-
10
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In CVPR, 2009.
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
11
-
-
84905248838
-
Ad click prediction: A view from the trenches
-
H. B. M. et. al.
-
H. B. M. et. al. Ad click prediction: a view from the trenches. In KDD, 2013.
-
(2013)
KDD
-
-
-
12
-
-
45849107328
-
Pathwise coordinate optimization
-
J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate optimization. Annals of Applied Statistics, 1(2):302-332, 2007.
-
(2007)
Annals of Applied Statistics
, vol.1
, Issue.2
, pp. 302-332
-
-
Friedman, J.1
Hastie, T.2
Höfling, H.3
Tibshirani, R.4
-
13
-
-
1842788824
-
Finding scientific topics
-
T. L. Griffiths and M. Steyvers. Finding scientific topics. PNAS, 101(Suppl 1):5228-5235, 2004.
-
(2004)
PNAS
, vol.101
, pp. 5228-5235
-
-
Griffiths, T.L.1
Steyvers, M.2
-
14
-
-
84898988368
-
More effective distributed ml via a stale synchronous parallel parameter server
-
Q. Ho, J. Cipar, H. Cui, J.-K. Kim, S. Lee, P. B. Gibbons, G. Gibson, G. R. Ganger, and E. P. Xing. More effective distributed ml via a stale synchronous parallel parameter server. In NIPS, 2013.
-
(2013)
NIPS
-
-
Ho, Q.1
Cipar, J.2
Cui, H.3
Kim, J.-K.4
Lee, S.5
Gibbons, P.B.6
Gibson, G.7
Ganger, G.R.8
Xing, E.P.9
-
15
-
-
84878919168
-
Stochastic variational inference
-
M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. JMLR, 14, 2013.
-
(2013)
JMLR
, vol.14
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.4
-
16
-
-
85046091706
-
Fugue: Slow-worker-agnostic distributed learning for big models on big data
-
A. Kumar, A. Beutel, Q. Ho, and E. P. Xing. Fugue: Slow-worker-agnostic distributed learning for big models on big data. In AISTATS, 2014.
-
(2014)
AISTATS
-
-
Kumar, A.1
Beutel, A.2
Ho, Q.3
Xing, E.P.4
-
17
-
-
84867135575
-
Building high-level features using large scale unsupervised learning
-
Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado, J. Dean, and A. Ng. Building high-level features using large scale unsupervised learning. In ICML, 2012.
-
(2012)
ICML
-
-
Le, Q.1
Ranzato, M.2
Monga, R.3
Devin, M.4
Chen, K.5
Corrado, G.6
Dean, J.7
Ng, A.8
-
18
-
-
84937822418
-
On model parallelism and scheduling strategies for distributed machine learning
-
S. Lee, J. K. Kim, X. Zheng, Q. Ho, G. Gibson, and E. P. Xing. On model parallelism and scheduling strategies for distributed machine learning. In NIPS. 2014.
-
(2014)
NIPS
-
-
Lee, S.1
Kim, J.K.2
Zheng, X.3
Ho, Q.4
Gibson, G.5
Xing, E.P.6
-
19
-
-
84937912100
-
Scaling distributed machine learning with the parameter server
-
M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling distributed machine learning with the parameter server. In OSDI, 2014.
-
(2014)
OSDI
-
-
Li, M.1
Andersen, D.G.2
Park, J.W.3
Smola, A.J.4
Ahmed, A.5
Josifovski, V.6
Long, J.7
Shekita, E.J.8
Su, B.-Y.9
-
20
-
-
84863735533
-
Distributed GraphLab: A framework for machine learning and data mining in the cloud
-
Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud. PVLDB, 2012.
-
(2012)
PVLDB
-
-
Low, Y.1
Gonzalez, J.2
Kyrola, A.3
Bickson, D.4
Guestrin, C.5
Hellerstein, J.M.6
-
21
-
-
77954723629
-
Pregel: A system for large-scale graph processing
-
G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph processing. In ACM SIGMOD International Conference on Management of data, 2010.
-
(2010)
ACM SIGMOD International Conference on Management of Data
-
-
Malewicz, G.1
Austern, M.H.2
Bik, A.J.3
Dehnert, J.C.4
Horn, I.5
Leiser, N.6
Czajkowski, G.7
-
22
-
-
85162467517
-
Hogwild!: A lock-free approach to parallelizing stochastic gradient descent
-
F. Niu, B. Recht, C. Ré, and S. J. Wright. Hogwild!: A lock-free approach to parallelizing stochastic gradient descent. In NIPS, 2011.
-
(2011)
NIPS
-
-
Niu, F.1
Recht, B.2
Ré, C.3
Wright, S.J.4
-
23
-
-
85076911148
-
Piccolo: Building fast, distributed programs with partitioned tables
-
R. Power and J. Li. Piccolo: building fast, distributed programs with partitioned tables. In OSDI. USENIX Association, 2010.
-
(2010)
OSDI. USENIX Association
-
-
Power, R.1
Li, J.2
-
26
-
-
84912132796
-
-
arXiv:1405.4402
-
Y. Wang, X. Zhao, Z. Sun, H. Yan, L. Wang, Z. Jin, L. Wang, Y. Gao, J. Zeng, Q. Yang, et al. Towards topic modeling for big data. arXiv:1405.4402, 2014.
-
(2014)
Towards Topic Modeling for Big Data
-
-
Wang, Y.1
Zhao, X.2
Sun, Z.3
Yan, H.4
Wang, L.5
Jin, Z.6
Wang, L.7
Gao, Y.8
Zeng, J.9
Yang, Q.10
-
28
-
-
84897382844
-
Parallel Markov chain Monte Carlo for nonparametric mixture models
-
S. A. Williamson, A. Dubey, and E. P. Xing. Parallel markov chain monte carlo for nonparametric mixture models. In ICML, 2013.
-
(2013)
ICML
-
-
Williamson, S.A.1
Dubey, A.2
Xing, E.P.3
-
29
-
-
85133386144
-
Distance metric learning with application to clustering with side-information
-
E. P. Xing, M. I. Jordan, S. Russell, and A. Y. Ng. Distance metric learning with application to clustering with side-information. In NIPS, 2002.
-
(2002)
NIPS
-
-
Xing, E.P.1
Jordan, M.I.2
Russell, S.3
Ng, A.Y.4
-
30
-
-
84874049380
-
Scalable coordinate descent approaches to parallel matrix factorization for recommender systems
-
H.-F. Yu, C.-J. Hsieh, S. Si, and I. Dhillon. Scalable coordinate descent approaches to parallel matrix factorization for recommender systems. In ICDM, 2012.
-
(2012)
ICDM
-
-
Yu, H.-F.1
Hsieh, C.-J.2
Si, S.3
Dhillon, I.4
-
31
-
-
84968736704
-
Lightlda: Big topic models on modest compute clusters
-
J. Yuan, F. Gao, Q. Ho, W. Dai, J. Wei, X. Zheng, E. P. Xing, T.-Y. Liu, and W.-Y. Ma. Lightlda: Big topic models on modest compute clusters. In WWW. 2015.
-
(2015)
WWW
-
-
Yuan, J.1
Gao, F.2
Ho, Q.3
Dai, W.4
Wei, J.5
Zheng, X.6
Xing, E.P.7
Liu, T.-Y.8
Ma, W.-Y.9
-
32
-
-
85085251984
-
Spark: Cluster computing with working sets
-
M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: cluster computing with working sets. In HotCloud, 2010.
-
(2010)
HotCloud
-
-
Zaharia, M.1
Chowdhury, M.2
Franklin, M.J.3
Shenker, S.4
Stoica, I.5
-
33
-
-
82155168650
-
Priter: A distributed framework for prioritized iterative computations
-
Y. Zhang, Q. Gao, L. Gao, and C. Wang. Priter: A distributed framework for prioritized iterative computations. In SOCC, 2011.
-
(2011)
SOCC
-
-
Zhang, Y.1
Gao, Q.2
Gao, L.3
Wang, C.4
-
34
-
-
84881036997
-
Priter: A distributed framework for prioritizing iterative computations
-
Y. Zhang, Q. Gao, L. Gao, and C. Wang. Priter: A distributed framework for prioritizing iterative computations. IEEE Transactions on Parallel and Distributed Systems, 24(9):1884-1893, 2013.
-
(2013)
IEEE Transactions on Parallel and Distributed Systems
, vol.24
, Issue.9
, pp. 1884-1893
-
-
Zhang, Y.1
Gao, Q.2
Gao, L.3
Wang, C.4
|