메뉴 건너뛰기




Volumn 7, Issue 5, 2016, Pages 2448-2455

Forecasting uncertainty in electricity smart meter data by boosting additive quantile regression

Author keywords

gradient boosting; Probabilistic load forecasting; quantile regression; smart meters

Indexed keywords

AGGREGATES; ELECTRIC POWER MEASUREMENT; ELECTRIC POWER UTILIZATION; FORECASTING; PROBABILITY DISTRIBUTIONS; REGRESSION ANALYSIS;

EID: 84960193121     PISSN: 19493053     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSG.2016.2527820     Document Type: Article
Times cited : (175)

References (43)
  • 1
    • 84859612787 scopus 로고    scopus 로고
    • Short-term wind speed forecasting for power system operations
    • X. Zhu and M. G. Genton, ?Short-term wind speed forecasting for power system operations,? Int. Stat. Rev., vol. 80, no. 1, pp. 2-23, 2012.
    • (2012) Int. Stat. Rev , vol.80 , Issue.1 , pp. 2-23
    • Zhu, X.1    Genton, M.G.2
  • 2
    • 70049096782 scopus 로고    scopus 로고
    • Online short-term solar power forecasting
    • Oct
    • P. Bacher, H. Madsen, and H. A. Nielsen, ?Online short-term solar power forecasting,? Solar Energy, vol. 83, no. 10, pp. 1772-1783, Oct. 2009.
    • (2009) Solar Energy , vol.83 , Issue.10 , pp. 1772-1783
    • Bacher, P.1    Madsen, H.2    Nielsen, H.A.3
  • 3
    • 84964614554 scopus 로고    scopus 로고
    • Forecasting uncertainty in electricity demand
    • Austin, TX, USA [Online]. Available
    • T. K. Wijaya, M. Sinn, and B. Chen, ?Forecasting uncertainty in electricity demand,? in Proc. AAAI Workshop Comput. Sustain., Austin, TX, USA, 2015. [Online]. Available: http://www.aaai.org/ocs/index.php/WS/AAAIW15/paper/view/10104/10187.
    • (2015) Proc. AAAI Workshop Comput. Sustain
    • Wijaya, T.K.1    Sinn, M.2    Chen, B.3
  • 4
    • 84870609018 scopus 로고    scopus 로고
    • Short term electric load forecasting
    • Ph.D. dissertation North Carolina State Univ., Raleigh, NC, USA
    • T. Hong, ?Short term electric load forecasting,? Ph.D. dissertation, Dept. Oper. Res. Elect. Eng., North Carolina State Univ., Raleigh, NC, USA, 2010.
    • (2010) Dept. Oper. Res. Elect. Eng
    • Hong, T.1
  • 5
    • 84979643065 scopus 로고    scopus 로고
    • Probabilistic electric load forecasting: A tutorial review
    • to be published
    • T. Hong and S. Fan, ?Probabilistic electric load forecasting: A tutorial review,? Int. J. Forecast., vol. 32, no. 2, 2016, to be published.
    • (2016) Int. J. Forecast , vol.32 , Issue.2
    • Hong, T.1    Fan, S.2
  • 6
    • 84949087160 scopus 로고    scopus 로고
    • Forecasting electricity smart meter data using conditional kernel density estimation
    • Mar
    • S. Arora and J. W. Taylor, ?Forecasting electricity smart meter data using conditional kernel density estimation,? Omega, vol. 59, pp. 47-59, Mar. 2016.
    • (2016) Omega , vol.59 , pp. 47-59
    • Arora, S.1    Taylor, J.W.2
  • 7
    • 84906854940 scopus 로고    scopus 로고
    • Probabilistic forecasting
    • Jan
    • T. Gneiting and M. Katzfuss, ?Probabilistic forecasting,? Annu. Rev. Stat. Appl., vol. 1, no. 1, pp. 125-151, Jan. 2014.
    • (2014) Annu. Rev. Stat. Appl , vol.1 , Issue.1 , pp. 125-151
    • Gneiting, T.1    Katzfuss, M.2
  • 8
    • 84894718618 scopus 로고    scopus 로고
    • Demand forecasting in smart grids
    • Mar
    • P. Mirowski, S. Chen, T. K. Ho, and C.-N. Yu, ?Demand forecasting in smart grids,? Bell Labs Tech. J., vol. 18, no. 4, pp. 135-158, Mar. 2014.
    • (2014) Bell Labs Tech. J , vol.18 , Issue.4 , pp. 135-158
    • Mirowski, P.1    Chen, S.2    Ho, T.K.3    Yu, C.-N.4
  • 9
    • 85027927176 scopus 로고    scopus 로고
    • Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities
    • Mar
    • F. L. Quilumba, W.-J. Lee, H. Huang, D. Y. Wang, and R. L. Szabados, ?Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities,? IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 911-918, Mar. 2015.
    • (2015) IEEE Trans. Smart Grid , vol.6 , Issue.2 , pp. 911-918
    • Quilumba, F.L.1    Lee, W.-J.2    Huang, H.3    Wang, D.Y.4    Szabados, R.L.5
  • 10
    • 84893275099 scopus 로고    scopus 로고
    • Review on probabilistic forecasting of wind power generation
    • Apr
    • Y. Zhang, J. Wang, and X. Wang, ?Review on probabilistic forecasting of wind power generation,? Renew. Sustain. Energy Rev., vol. 32, pp. 255-270, Apr. 2014.
    • (2014) Renew. Sustain. Energy Rev , vol.32 , pp. 255-270
    • Zhang, Y.1    Wang, J.2    Wang, X.3
  • 11
    • 84864110510 scopus 로고    scopus 로고
    • Very-short-term probabilistic forecasting of wind power with generalized logit-normal distributions
    • Aug
    • P. Pinson, ?Very-short-term probabilistic forecasting of wind power with generalized logit-normal distributions,? J. Royal Stat. Soc. Ser. C Appl. Stat., vol. 61, no. 4, pp. 555-576, Aug. 2012.
    • (2012) J. Royal Stat. Soc. Ser. C Appl. Stat , vol.61 , Issue.4 , pp. 555-576
    • Pinson, P.1
  • 12
    • 0035962710 scopus 로고    scopus 로고
    • Bandwidth selection for kernel conditional density estimation
    • May
    • D. M. Bashtannyk and R. J. Hyndman, ?Bandwidth selection for kernel conditional density estimation,? Comput. Stat. Data Anal., vol. 36, no. 3, pp. 279-298, May 2001.
    • (2001) Comput. Stat. Data Anal , vol.36 , Issue.3 , pp. 279-298
    • Bashtannyk, D.M.1    Hyndman, R.J.2
  • 14
    • 84905703274 scopus 로고    scopus 로고
    • Electricity smart metering customer behaviour trials findings report
    • Dublin, Ireland, Tech. Rep. CER/11/080a [Online]. Available
    • ?Electricity smart metering customer behaviour trials findings report,? Comm. Energy Regul., Dublin, Ireland, Tech. Rep. CER/11/080a, 2011. [Online]. Available: http://www.cer.ie/docs/000340/cer11080(a)(i).pdf.
    • (2011) Comm. Energy Regul
  • 15
    • 84920726097 scopus 로고    scopus 로고
    • Revealing household characteristics from smart meter data
    • Dec
    • C. Beckel, L. Sadamori, T. Staake, and S. Santini, ?Revealing household characteristics from smart meter data,? Energy, vol. 78, pp. 397-410, Dec. 2014.
    • (2014) Energy , vol.78 , pp. 397-410
    • Beckel, C.1    Sadamori, L.2    Staake, T.3    Santini, S.4
  • 17
    • 61349110874 scopus 로고    scopus 로고
    • A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands
    • Jun
    • J. A. Carta, P. Ram?rez, and S. Vel?zquez, ?A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands,? Renew. Sustain. Energy Rev., vol. 13, no. 5, pp. 933-955, Jun. 2009.
    • (2009) Renew. Sustain. Energy Rev , vol.13 , Issue.5 , pp. 933-955
    • Carta, J.A.1    Ramrez, P.2    Velzquez, S.3
  • 18
    • 78650940664 scopus 로고    scopus 로고
    • Quantiles as optimal point forecasts
    • bApr./Jun
    • T. Gneiting, ?Quantiles as optimal point forecasts,? Int. J. Forecast., vol. 27, no. 2, pp. 197-207, Apr./Jun. 2011.
    • (2011) Int. J. Forecast , vol.27 , Issue.2 , pp. 197-207
    • Gneiting, T.1
  • 19
    • 77954111515 scopus 로고    scopus 로고
    • Quantile and probability curves without crossing
    • May
    • V. Chernozhukov, I. Fern?ndez-Val, and A. Galichon, ?Quantile and probability curves without crossing,? Econometrica J. Econ. Soc., vol. 78, no. 3, pp. 1093-1125, May 2010.
    • (2010) Econometrica J. Econ. Soc , vol.78 , Issue.3 , pp. 1093-1125
    • Chernozhukov, V.1    Fernndez-Val, I.2    Galichon, A.3
  • 20
    • 84874753088 scopus 로고    scopus 로고
    • Quantile forecasting of wind power using variability indices
    • Feb
    • G. Anastasiades and P. McSharry, ?Quantile forecasting of wind power using variability indices,? Energies, vol. 6, no. 2, pp. 662-695, Feb. 2013.
    • (2013) Energies , vol.6 , Issue.2 , pp. 662-695
    • Anastasiades, G.1    McSharry, P.2
  • 21
    • 84907398476 scopus 로고    scopus 로고
    • Predictive densities for day-ahead electricity prices using time-adaptive quantile regression
    • Aug
    • T. Jónsson, P. Pinson, H. Madsen, and H. A. Nielsen, ?Predictive densities for day-ahead electricity prices using time-adaptive quantile regression,? Energies, vol. 7, no. 9, pp. 5523-5547, Aug. 2014.
    • (2014) Energies , vol.7 , Issue.9 , pp. 5523-5547
    • Jónsson, T.1    Pinson, P.2    Madsen, H.3    Nielsen, H.A.4
  • 22
    • 84984819824 scopus 로고    scopus 로고
    • Probabilistic load forecasting via quantile regression averaging on sister forecasts
    • to be published
    • B. Liu, J. Nowotarski, T. Hong, and R. Weron, ?Probabilistic load forecasting via quantile regression averaging on sister forecasts,? IEEE Trans. Smart Grid, to be published.
    • IEEE Trans. Smart Grid
    • Liu, B.1    Nowotarski, J.2    Hong, T.3    Weron, R.4
  • 23
    • 33947274775 scopus 로고    scopus 로고
    • Strictly proper scoring rules, prediction, and estimation
    • T. Gneiting and A. E. Raftery, ?Strictly proper scoring rules, prediction, and estimation,? J. Amer. Stat. Assoc., vol. 102, no. 477, pp. 359-378, 2007.
    • (2007) J. Amer. Stat. Assoc , vol.102 , Issue.477 , pp. 359-378
    • Gneiting, T.1    Raftery, A.E.2
  • 25
    • 84856094557 scopus 로고    scopus 로고
    • Prediction intervals for future BMI values of individual children: A non-parametric approach by quantile boosting
    • Jan
    • A. Mayr, T. Hothorn, and N. Fenske, ?Prediction intervals for future BMI values of individual children: A non-parametric approach by quantile boosting,? BMC Med. Res. Methodol., vol. 12, no. 1, p. 6, Jan. 2012.
    • (2012) BMC Med. Res. Methodol , vol.12 , Issue.1 , pp. 6
    • Mayr, A.1    Hothorn, T.2    Fenske, N.3
  • 26
    • 84897619324 scopus 로고    scopus 로고
    • A gradient boosting approach to the Kaggle load forecasting competition
    • Apr
    • S. Ben Taieb and R. J. Hyndman, ?A gradient boosting approach to the Kaggle load forecasting competition,? Int. J. Forecast., vol. 30, no. 2, pp. 382-394, Apr. 2014.
    • (2014) Int. J. Forecast , vol.30 , Issue.2 , pp. 382-394
    • Ben Taieb, S.1    Hyndman, R.J.2
  • 27
    • 84856253869 scopus 로고    scopus 로고
    • Short-term load forecasting based on a semi-parametric additive model
    • Feb
    • S. Fan and R. J. Hyndman, ?Short-term load forecasting based on a semi-parametric additive model,? IEEE Trans. Power Syst., vol. 27, no. 1, pp. 134-141, Feb. 2012.
    • (2012) IEEE Trans. Power Syst , vol.27 , Issue.1 , pp. 134-141
    • Fan, S.1    Hyndman, R.J.2
  • 30
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Oct
    • J. H. Friedman, ?Greedy function approximation: A gradient boosting machine,? Ann. Stat., vol. 29, no. 5, pp. 1189-1232, Oct. 2001.
    • (2001) Ann. Stat , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 31
    • 0043245810 scopus 로고    scopus 로고
    • Boosting with the L2-loss: Regression and classification
    • P. Bühlmann and B. Yu, ?Boosting with the L2-loss: Regression and classification,? J. Amer. Stat. Assoc., vol. 98, no. 462, pp. 324-339, 2003.
    • (2003) J. Amer. Stat. Assoc , vol.98 , Issue.462 , pp. 324-339
    • Bühlmann, P.1    Yu, B.2
  • 32
    • 0001652263 scopus 로고
    • Quantile smoothing splines
    • Dec
    • R. Koenker, P. Ng, and S. Portnoy, ?Quantile smoothing splines,? Biometrika, vol. 81, no. 4, pp. 673-680, Dec. 1994.
    • (1994) Biometrika , vol.81 , Issue.4 , pp. 673-680
    • Koenker, R.1    Ng, P.2    Portnoy, S.3
  • 33
    • 80052723911 scopus 로고    scopus 로고
    • Additive models for quantile regression: Model selection and confidence bandaids
    • Nov
    • R. Koenker, ?Additive models for quantile regression: Model selection and confidence bandaids,? Braz. J. Probab. Stat., vol. 25, no. 3, pp. 239-262, Nov. 2011.
    • (2011) Braz. J. Probab. Stat , vol.25 , Issue.3 , pp. 239-262
    • Koenker, R.1
  • 35
    • 66949120727 scopus 로고    scopus 로고
    • Variable selection and model choice in geoadditive regression models
    • Jun
    • T. Kneib, T. Hothorn, and G. Tutz, ?Variable selection and model choice in geoadditive regression models,? Biometrics, vol. 65, no. 2, pp. 626-634, Jun. 2009.
    • (2009) Biometrics , vol.65 , Issue.2 , pp. 626-634
    • Kneib, T.1    Hothorn, T.2    Tutz, G.3
  • 36
    • 0036921633 scopus 로고    scopus 로고
    • Selecting the number of knots for penalized splines
    • D. Ruppert, ?Selecting the number of knots for penalized splines,? J. Comput. Graph. Stat., vol. 11, no. 4, pp. 735-757, 2002.
    • (2002) J. Comput. Graph. Stat , vol.11 , Issue.4 , pp. 735-757
    • Ruppert, D.1
  • 37
    • 55549110371 scopus 로고    scopus 로고
    • Boosting additive models using componentwise P-splines
    • Dec
    • M. Schmid and T. Hothorn, ?Boosting additive models using componentwise P-splines,? Comput. Stat. Data Anal., vol. 53, no. 2, pp. 298-311, Dec. 2008.
    • (2008) Comput. Stat. Data Anal , vol.53 , Issue.2 , pp. 298-311
    • Schmid, M.1    Hothorn, T.2
  • 39
  • 40
    • 0010996879 scopus 로고
    • Probabilistic methods in forecasting hourly loads
    • Palo Alto, CA, USA, Tech. Rep. EPRI-TR-101902 Apr
    • R. Engle, C. Granger, R. Ramanathan, and F. Vahid-Araghi, ?Probabilistic methods in forecasting hourly loads,? Electric Power Research Inst., Palo Alto, CA, USA, Tech. Rep. EPRI-TR-101902, Apr. 1993.
    • (1993) Electric Power Research Inst
    • Engle, R.1    Granger, C.2    Ramanathan, R.3    Vahid-Araghi, F.4
  • 42
    • 84923088071 scopus 로고    scopus 로고
    • Household electricity demand forecast based on context information and user daily schedule analysis from meter data
    • Feb
    • Y.-H. Hsiao, ?Household electricity demand forecast based on context information and user daily schedule analysis from meter data,? IEEE Trans. Ind. Informat., vol. 11, no. 1, pp. 33-43, Feb. 2015.
    • (2015) IEEE Trans. Ind. Informat , vol.11 , Issue.1 , pp. 33-43
    • Hsiao, Y.-H.1
  • 43
    • 84984835014 scopus 로고    scopus 로고
    • Scaling law of very short term electricity load forecasting on varying levels of aggregation
    • [Online]. Available
    • R. Sevlian and R. Rajagopal, ?Scaling law of very short term electricity load forecasting on varying levels of aggregation,? IEEE Trans. Smart Grid, 2014. [Online]. Available: http://arxiv.org/pdf/1404.0058.
    • (2014) IEEE Trans. Smart Grid , vol.58
    • Sevlian, R.1    Rajagopal, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.