-
1
-
-
84859612787
-
Short-term wind speed forecasting for power system operations
-
X. Zhu and M. G. Genton, ?Short-term wind speed forecasting for power system operations,? Int. Stat. Rev., vol. 80, no. 1, pp. 2-23, 2012.
-
(2012)
Int. Stat. Rev
, vol.80
, Issue.1
, pp. 2-23
-
-
Zhu, X.1
Genton, M.G.2
-
2
-
-
70049096782
-
Online short-term solar power forecasting
-
Oct
-
P. Bacher, H. Madsen, and H. A. Nielsen, ?Online short-term solar power forecasting,? Solar Energy, vol. 83, no. 10, pp. 1772-1783, Oct. 2009.
-
(2009)
Solar Energy
, vol.83
, Issue.10
, pp. 1772-1783
-
-
Bacher, P.1
Madsen, H.2
Nielsen, H.A.3
-
3
-
-
84964614554
-
Forecasting uncertainty in electricity demand
-
Austin, TX, USA [Online]. Available
-
T. K. Wijaya, M. Sinn, and B. Chen, ?Forecasting uncertainty in electricity demand,? in Proc. AAAI Workshop Comput. Sustain., Austin, TX, USA, 2015. [Online]. Available: http://www.aaai.org/ocs/index.php/WS/AAAIW15/paper/view/10104/10187.
-
(2015)
Proc. AAAI Workshop Comput. Sustain
-
-
Wijaya, T.K.1
Sinn, M.2
Chen, B.3
-
4
-
-
84870609018
-
Short term electric load forecasting
-
Ph.D. dissertation North Carolina State Univ., Raleigh, NC, USA
-
T. Hong, ?Short term electric load forecasting,? Ph.D. dissertation, Dept. Oper. Res. Elect. Eng., North Carolina State Univ., Raleigh, NC, USA, 2010.
-
(2010)
Dept. Oper. Res. Elect. Eng
-
-
Hong, T.1
-
5
-
-
84979643065
-
Probabilistic electric load forecasting: A tutorial review
-
to be published
-
T. Hong and S. Fan, ?Probabilistic electric load forecasting: A tutorial review,? Int. J. Forecast., vol. 32, no. 2, 2016, to be published.
-
(2016)
Int. J. Forecast
, vol.32
, Issue.2
-
-
Hong, T.1
Fan, S.2
-
6
-
-
84949087160
-
Forecasting electricity smart meter data using conditional kernel density estimation
-
Mar
-
S. Arora and J. W. Taylor, ?Forecasting electricity smart meter data using conditional kernel density estimation,? Omega, vol. 59, pp. 47-59, Mar. 2016.
-
(2016)
Omega
, vol.59
, pp. 47-59
-
-
Arora, S.1
Taylor, J.W.2
-
7
-
-
84906854940
-
Probabilistic forecasting
-
Jan
-
T. Gneiting and M. Katzfuss, ?Probabilistic forecasting,? Annu. Rev. Stat. Appl., vol. 1, no. 1, pp. 125-151, Jan. 2014.
-
(2014)
Annu. Rev. Stat. Appl
, vol.1
, Issue.1
, pp. 125-151
-
-
Gneiting, T.1
Katzfuss, M.2
-
8
-
-
84894718618
-
Demand forecasting in smart grids
-
Mar
-
P. Mirowski, S. Chen, T. K. Ho, and C.-N. Yu, ?Demand forecasting in smart grids,? Bell Labs Tech. J., vol. 18, no. 4, pp. 135-158, Mar. 2014.
-
(2014)
Bell Labs Tech. J
, vol.18
, Issue.4
, pp. 135-158
-
-
Mirowski, P.1
Chen, S.2
Ho, T.K.3
Yu, C.-N.4
-
9
-
-
85027927176
-
Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities
-
Mar
-
F. L. Quilumba, W.-J. Lee, H. Huang, D. Y. Wang, and R. L. Szabados, ?Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities,? IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 911-918, Mar. 2015.
-
(2015)
IEEE Trans. Smart Grid
, vol.6
, Issue.2
, pp. 911-918
-
-
Quilumba, F.L.1
Lee, W.-J.2
Huang, H.3
Wang, D.Y.4
Szabados, R.L.5
-
10
-
-
84893275099
-
Review on probabilistic forecasting of wind power generation
-
Apr
-
Y. Zhang, J. Wang, and X. Wang, ?Review on probabilistic forecasting of wind power generation,? Renew. Sustain. Energy Rev., vol. 32, pp. 255-270, Apr. 2014.
-
(2014)
Renew. Sustain. Energy Rev
, vol.32
, pp. 255-270
-
-
Zhang, Y.1
Wang, J.2
Wang, X.3
-
11
-
-
84864110510
-
Very-short-term probabilistic forecasting of wind power with generalized logit-normal distributions
-
Aug
-
P. Pinson, ?Very-short-term probabilistic forecasting of wind power with generalized logit-normal distributions,? J. Royal Stat. Soc. Ser. C Appl. Stat., vol. 61, no. 4, pp. 555-576, Aug. 2012.
-
(2012)
J. Royal Stat. Soc. Ser. C Appl. Stat
, vol.61
, Issue.4
, pp. 555-576
-
-
Pinson, P.1
-
12
-
-
0035962710
-
Bandwidth selection for kernel conditional density estimation
-
May
-
D. M. Bashtannyk and R. J. Hyndman, ?Bandwidth selection for kernel conditional density estimation,? Comput. Stat. Data Anal., vol. 36, no. 3, pp. 279-298, May 2001.
-
(2001)
Comput. Stat. Data Anal
, vol.36
, Issue.3
, pp. 279-298
-
-
Bashtannyk, D.M.1
Hyndman, R.J.2
-
14
-
-
84905703274
-
Electricity smart metering customer behaviour trials findings report
-
Dublin, Ireland, Tech. Rep. CER/11/080a [Online]. Available
-
?Electricity smart metering customer behaviour trials findings report,? Comm. Energy Regul., Dublin, Ireland, Tech. Rep. CER/11/080a, 2011. [Online]. Available: http://www.cer.ie/docs/000340/cer11080(a)(i).pdf.
-
(2011)
Comm. Energy Regul
-
-
-
15
-
-
84920726097
-
Revealing household characteristics from smart meter data
-
Dec
-
C. Beckel, L. Sadamori, T. Staake, and S. Santini, ?Revealing household characteristics from smart meter data,? Energy, vol. 78, pp. 397-410, Dec. 2014.
-
(2014)
Energy
, vol.78
, pp. 397-410
-
-
Beckel, C.1
Sadamori, L.2
Staake, T.3
Santini, S.4
-
16
-
-
84931824850
-
Massive-scale simulation of electrical load in smart grids using generalized additive models
-
Berlin, Germany: Springer-Verlag
-
P. Pompey, A. Bondu, Y. Goude, and M. Sinn, ?Massive-scale simulation of electrical load in smart grids using generalized additive models,? in Modeling and Stochastic Learning for Forecasting in High Dimension (Lecture Notes in Statistics). Berlin, Germany: Springer-Verlag, 2014, pp. 193-212.
-
(2014)
Modeling and Stochastic Learning for Forecasting in High Dimension (Lecture Notes in Statistics)
, pp. 193-212
-
-
Pompey, P.1
Bondu, A.2
Goude, Y.3
Sinn, M.4
-
17
-
-
61349110874
-
A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands
-
Jun
-
J. A. Carta, P. Ram?rez, and S. Vel?zquez, ?A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands,? Renew. Sustain. Energy Rev., vol. 13, no. 5, pp. 933-955, Jun. 2009.
-
(2009)
Renew. Sustain. Energy Rev
, vol.13
, Issue.5
, pp. 933-955
-
-
Carta, J.A.1
Ramrez, P.2
Velzquez, S.3
-
18
-
-
78650940664
-
Quantiles as optimal point forecasts
-
bApr./Jun
-
T. Gneiting, ?Quantiles as optimal point forecasts,? Int. J. Forecast., vol. 27, no. 2, pp. 197-207, Apr./Jun. 2011.
-
(2011)
Int. J. Forecast
, vol.27
, Issue.2
, pp. 197-207
-
-
Gneiting, T.1
-
19
-
-
77954111515
-
Quantile and probability curves without crossing
-
May
-
V. Chernozhukov, I. Fern?ndez-Val, and A. Galichon, ?Quantile and probability curves without crossing,? Econometrica J. Econ. Soc., vol. 78, no. 3, pp. 1093-1125, May 2010.
-
(2010)
Econometrica J. Econ. Soc
, vol.78
, Issue.3
, pp. 1093-1125
-
-
Chernozhukov, V.1
Fernndez-Val, I.2
Galichon, A.3
-
20
-
-
84874753088
-
Quantile forecasting of wind power using variability indices
-
Feb
-
G. Anastasiades and P. McSharry, ?Quantile forecasting of wind power using variability indices,? Energies, vol. 6, no. 2, pp. 662-695, Feb. 2013.
-
(2013)
Energies
, vol.6
, Issue.2
, pp. 662-695
-
-
Anastasiades, G.1
McSharry, P.2
-
21
-
-
84907398476
-
Predictive densities for day-ahead electricity prices using time-adaptive quantile regression
-
Aug
-
T. Jónsson, P. Pinson, H. Madsen, and H. A. Nielsen, ?Predictive densities for day-ahead electricity prices using time-adaptive quantile regression,? Energies, vol. 7, no. 9, pp. 5523-5547, Aug. 2014.
-
(2014)
Energies
, vol.7
, Issue.9
, pp. 5523-5547
-
-
Jónsson, T.1
Pinson, P.2
Madsen, H.3
Nielsen, H.A.4
-
22
-
-
84984819824
-
Probabilistic load forecasting via quantile regression averaging on sister forecasts
-
to be published
-
B. Liu, J. Nowotarski, T. Hong, and R. Weron, ?Probabilistic load forecasting via quantile regression averaging on sister forecasts,? IEEE Trans. Smart Grid, to be published.
-
IEEE Trans. Smart Grid
-
-
Liu, B.1
Nowotarski, J.2
Hong, T.3
Weron, R.4
-
23
-
-
33947274775
-
Strictly proper scoring rules, prediction, and estimation
-
T. Gneiting and A. E. Raftery, ?Strictly proper scoring rules, prediction, and estimation,? J. Amer. Stat. Assoc., vol. 102, no. 477, pp. 359-378, 2007.
-
(2007)
J. Amer. Stat. Assoc
, vol.102
, Issue.477
, pp. 359-378
-
-
Gneiting, T.1
Raftery, A.E.2
-
24
-
-
33847399672
-
Probabilistic forecasts, calibration and sharpness
-
T. Gneiting, F. Balabdaoui, and A. E. Raftery, ?Probabilistic forecasts, calibration and sharpness,? J. Royal Stat. Soc. Ser. B Stat. Methodol., vol. 69, no. 2, pp. 243-268, 2007.
-
(2007)
J. Royal Stat. Soc. Ser. B Stat. Methodol
, vol.69
, Issue.2
, pp. 243-268
-
-
Gneiting, T.1
Balabdaoui, F.2
Raftery, A.E.3
-
25
-
-
84856094557
-
Prediction intervals for future BMI values of individual children: A non-parametric approach by quantile boosting
-
Jan
-
A. Mayr, T. Hothorn, and N. Fenske, ?Prediction intervals for future BMI values of individual children: A non-parametric approach by quantile boosting,? BMC Med. Res. Methodol., vol. 12, no. 1, p. 6, Jan. 2012.
-
(2012)
BMC Med. Res. Methodol
, vol.12
, Issue.1
, pp. 6
-
-
Mayr, A.1
Hothorn, T.2
Fenske, N.3
-
26
-
-
84897619324
-
A gradient boosting approach to the Kaggle load forecasting competition
-
Apr
-
S. Ben Taieb and R. J. Hyndman, ?A gradient boosting approach to the Kaggle load forecasting competition,? Int. J. Forecast., vol. 30, no. 2, pp. 382-394, Apr. 2014.
-
(2014)
Int. J. Forecast
, vol.30
, Issue.2
, pp. 382-394
-
-
Ben Taieb, S.1
Hyndman, R.J.2
-
27
-
-
84856253869
-
Short-term load forecasting based on a semi-parametric additive model
-
Feb
-
S. Fan and R. J. Hyndman, ?Short-term load forecasting based on a semi-parametric additive model,? IEEE Trans. Power Syst., vol. 27, no. 1, pp. 134-141, Feb. 2012.
-
(2012)
IEEE Trans. Power Syst
, vol.27
, Issue.1
, pp. 134-141
-
-
Fan, S.1
Hyndman, R.J.2
-
28
-
-
84919783793
-
Boosting multi-step autoregressive forecasts
-
Beijing, China
-
S. B. Taieb and R. J. Hyndman, ?Boosting multi-step autoregressive forecasts,? in Proc. 31st Int. Conf. Mach. Learn. (ICML), Beijing, China, 2014, pp. 109-117.
-
(2014)
Proc. 31st Int. Conf. Mach. Learn (ICML)
, pp. 109-117
-
-
Taieb, S.B.1
Hyndman, R.J.2
-
30
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
Oct
-
J. H. Friedman, ?Greedy function approximation: A gradient boosting machine,? Ann. Stat., vol. 29, no. 5, pp. 1189-1232, Oct. 2001.
-
(2001)
Ann. Stat
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.H.1
-
31
-
-
0043245810
-
Boosting with the L2-loss: Regression and classification
-
P. Bühlmann and B. Yu, ?Boosting with the L2-loss: Regression and classification,? J. Amer. Stat. Assoc., vol. 98, no. 462, pp. 324-339, 2003.
-
(2003)
J. Amer. Stat. Assoc
, vol.98
, Issue.462
, pp. 324-339
-
-
Bühlmann, P.1
Yu, B.2
-
32
-
-
0001652263
-
Quantile smoothing splines
-
Dec
-
R. Koenker, P. Ng, and S. Portnoy, ?Quantile smoothing splines,? Biometrika, vol. 81, no. 4, pp. 673-680, Dec. 1994.
-
(1994)
Biometrika
, vol.81
, Issue.4
, pp. 673-680
-
-
Koenker, R.1
Ng, P.2
Portnoy, S.3
-
33
-
-
80052723911
-
Additive models for quantile regression: Model selection and confidence bandaids
-
Nov
-
R. Koenker, ?Additive models for quantile regression: Model selection and confidence bandaids,? Braz. J. Probab. Stat., vol. 25, no. 3, pp. 239-262, Nov. 2011.
-
(2011)
Braz. J. Probab. Stat
, vol.25
, Issue.3
, pp. 239-262
-
-
Koenker, R.1
-
35
-
-
66949120727
-
Variable selection and model choice in geoadditive regression models
-
Jun
-
T. Kneib, T. Hothorn, and G. Tutz, ?Variable selection and model choice in geoadditive regression models,? Biometrics, vol. 65, no. 2, pp. 626-634, Jun. 2009.
-
(2009)
Biometrics
, vol.65
, Issue.2
, pp. 626-634
-
-
Kneib, T.1
Hothorn, T.2
Tutz, G.3
-
36
-
-
0036921633
-
Selecting the number of knots for penalized splines
-
D. Ruppert, ?Selecting the number of knots for penalized splines,? J. Comput. Graph. Stat., vol. 11, no. 4, pp. 735-757, 2002.
-
(2002)
J. Comput. Graph. Stat
, vol.11
, Issue.4
, pp. 735-757
-
-
Ruppert, D.1
-
37
-
-
55549110371
-
Boosting additive models using componentwise P-splines
-
Dec
-
M. Schmid and T. Hothorn, ?Boosting additive models using componentwise P-splines,? Comput. Stat. Data Anal., vol. 53, no. 2, pp. 298-311, Dec. 2008.
-
(2008)
Comput. Stat. Data Anal
, vol.53
, Issue.2
, pp. 298-311
-
-
Schmid, M.1
Hothorn, T.2
-
38
-
-
77956921559
-
Modelbased boosting 2.0
-
Aug
-
T. Hothorn, P. Bühlmann, T. Kneib, M. Schmid, and B. Hofner, ?Modelbased boosting 2.0,? J. Mach. Learn. Res., vol. 11, pp. 2109-2113, Aug. 2010.
-
(2010)
J. Mach. Learn. Res
, vol.11
, pp. 2109-2113
-
-
Hothorn, T.1
Bühlmann, P.2
Kneib, T.3
Schmid, M.4
Hofner, B.5
-
39
-
-
84945399243
-
R core team
-
R Foundation for Statistical Computing, Vienna, Austria
-
R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2015.
-
(2015)
R: A Language and Environment for Statistical Computing
-
-
-
40
-
-
0010996879
-
Probabilistic methods in forecasting hourly loads
-
Palo Alto, CA, USA, Tech. Rep. EPRI-TR-101902 Apr
-
R. Engle, C. Granger, R. Ramanathan, and F. Vahid-Araghi, ?Probabilistic methods in forecasting hourly loads,? Electric Power Research Inst., Palo Alto, CA, USA, Tech. Rep. EPRI-TR-101902, Apr. 1993.
-
(1993)
Electric Power Research Inst
-
-
Engle, R.1
Granger, C.2
Ramanathan, R.3
Vahid-Araghi, F.4
-
42
-
-
84923088071
-
Household electricity demand forecast based on context information and user daily schedule analysis from meter data
-
Feb
-
Y.-H. Hsiao, ?Household electricity demand forecast based on context information and user daily schedule analysis from meter data,? IEEE Trans. Ind. Informat., vol. 11, no. 1, pp. 33-43, Feb. 2015.
-
(2015)
IEEE Trans. Ind. Informat
, vol.11
, Issue.1
, pp. 33-43
-
-
Hsiao, Y.-H.1
-
43
-
-
84984835014
-
Scaling law of very short term electricity load forecasting on varying levels of aggregation
-
[Online]. Available
-
R. Sevlian and R. Rajagopal, ?Scaling law of very short term electricity load forecasting on varying levels of aggregation,? IEEE Trans. Smart Grid, 2014. [Online]. Available: http://arxiv.org/pdf/1404.0058.
-
(2014)
IEEE Trans. Smart Grid
, vol.58
-
-
Sevlian, R.1
Rajagopal, R.2
|