메뉴 건너뛰기




Volumn 58, Issue , 2017, Pages 669-680

A multi-pattern deep fusion model for short-term bus passenger flow forecasting

Author keywords

Affinity propagation; Deep belief network; Forecast; Multi pattern deep fusion; Short term bus passenger flow

Indexed keywords

BAYESIAN NETWORKS; BUSES; FORECASTING; INFORMATION MANAGEMENT; MEAN SQUARE ERROR;

EID: 85019769810     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2017.05.011     Document Type: Article
Times cited : (100)

References (42)
  • 1
    • 80155154044 scopus 로고    scopus 로고
    • Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks
    • Wei, Y., Chen, M.C., Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks. Transp. Res. C 21 (2012), 148–162.
    • (2012) Transp. Res. C , vol.21 , pp. 148-162
    • Wei, Y.1    Chen, M.C.2
  • 2
    • 85021230445 scopus 로고    scopus 로고
    • Time Series Analysis: Forecasting and Control
    • Wiley Hoboken, NJ
    • Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Time Series Analysis: Forecasting and Control. 2013, Wiley, Hoboken, NJ.
    • (2013)
    • Box, G.E.P.1    Jenkins, G.M.2    Reinsel, G.C.3
  • 3
    • 84955179854 scopus 로고    scopus 로고
    • Automated Box-Jenkins forecasting tool with an application for passenger demand in urban rail systems
    • Anvari, S., Tuna, S., Canci, M., Turky, M., Automated Box-Jenkins forecasting tool with an application for passenger demand in urban rail systems. J. Adv. Transp. 50:1 (2015), 25–49.
    • (2015) J. Adv. Transp. , vol.50 , Issue.1 , pp. 25-49
    • Anvari, S.1    Tuna, S.2    Canci, M.3    Turky, M.4
  • 5
    • 84904970436 scopus 로고    scopus 로고
    • Seasonal and trend time series forecasting based on a quasi-linear autoregressive model
    • Gan, M., Cheng, Y., Liu, K., Zhang, G., Seasonal and trend time series forecasting based on a quasi-linear autoregressive model. Appl. Soft Comput. 24 (2014), 13–18.
    • (2014) Appl. Soft Comput. , vol.24 , pp. 13-18
    • Gan, M.1    Cheng, Y.2    Liu, K.3    Zhang, G.4
  • 6
    • 84865748237 scopus 로고    scopus 로고
    • Arterial travel time forecast with streaming data: a hybrid approach of flow modeling and machine learning
    • Hofleitner, A., Herring, R., Bayen, A., Arterial travel time forecast with streaming data: a hybrid approach of flow modeling and machine learning. Transp. Res. B 46 (2012), 1097–1122.
    • (2012) Transp. Res. B , vol.46 , pp. 1097-1122
    • Hofleitner, A.1    Herring, R.2    Bayen, A.3
  • 7
    • 84875483584 scopus 로고    scopus 로고
    • A train dispatching model based on fuzzy passenger demand forecasting during holidays
    • Dou, F., Xu, J., Wang, L., Jia, L., A train dispatching model based on fuzzy passenger demand forecasting during holidays. J. Ind. Eng. Manage. 6:1 (2013), 320–335.
    • (2013) J. Ind. Eng. Manage. , vol.6 , Issue.1 , pp. 320-335
    • Dou, F.1    Xu, J.2    Wang, L.3    Jia, L.4
  • 8
    • 84902553625 scopus 로고    scopus 로고
    • Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification
    • Guo, J., Huang, W., Williams, B.M., Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification. Transp. Res. C 43 (2014), 50–64.
    • (2014) Transp. Res. C , vol.43 , pp. 50-64
    • Guo, J.1    Huang, W.2    Williams, B.M.3
  • 9
    • 84899697804 scopus 로고    scopus 로고
    • Short-term forecasting of high-speed rail demand: a hybrid approach combining ensemble empirical mode decomposition and gray support vector machine with real-world applications in China
    • Jiang, X., Zhang, L., Chen, X., Short-term forecasting of high-speed rail demand: a hybrid approach combining ensemble empirical mode decomposition and gray support vector machine with real-world applications in China. Transp. Res. C 44 (2014), 110–127.
    • (2014) Transp. Res. C , vol.44 , pp. 110-127
    • Jiang, X.1    Zhang, L.2    Chen, X.3
  • 10
    • 84912139704 scopus 로고    scopus 로고
    • Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm
    • Chen, R., Liang, C.Y., Hong, W.C., Gu, D.X., Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm. Appl. Soft Comput. 26 (2015), 435–443.
    • (2015) Appl. Soft Comput. , vol.26 , pp. 435-443
    • Chen, R.1    Liang, C.Y.2    Hong, W.C.3    Gu, D.X.4
  • 11
    • 84931575772 scopus 로고    scopus 로고
    • A novel wavelet-SVM short-time passenger flow prediction in Beijing subway system
    • Sun, Y., Leng, B., Guan, W., A novel wavelet-SVM short-time passenger flow prediction in Beijing subway system. Neurocomputing 166 (2015), 109–121.
    • (2015) Neurocomputing , vol.166 , pp. 109-121
    • Sun, Y.1    Leng, B.2    Guan, W.3
  • 12
    • 84903579343 scopus 로고    scopus 로고
    • A moving-average filter based hybrid ARIMA-ANN model for forecasting time series data
    • Babu, C., Reddy, B., A moving-average filter based hybrid ARIMA-ANN model for forecasting time series data. Appl. Soft Comput. 23 (2014), 27–38.
    • (2014) Appl. Soft Comput. , vol.23 , pp. 27-38
    • Babu, C.1    Reddy, B.2
  • 13
    • 84894346139 scopus 로고    scopus 로고
    • Short-term forecasting of air passenger by using hybrid seasonal decomposition and least squares support vector regression approaches
    • Xie, G., Wang, S., Lai, K.K., Short-term forecasting of air passenger by using hybrid seasonal decomposition and least squares support vector regression approaches. J. Air Transp. Manage. 37 (2014), 20–26.
    • (2014) J. Air Transp. Manage. , vol.37 , pp. 20-26
    • Xie, G.1    Wang, S.2    Lai, K.K.3
  • 14
    • 84940914329 scopus 로고    scopus 로고
    • A hybrid model for forecasting the volume of passenger flows on Serbian railways
    • Glišović, N., Milenković, M., Bojović, N., Švadlenka, L., Avramović, Z., A hybrid model for forecasting the volume of passenger flows on Serbian railways. Oper. Res. 16:2 (2016), 271–285.
    • (2016) Oper. Res. , vol.16 , Issue.2 , pp. 271-285
    • Glišović, N.1    Milenković, M.2    Bojović, N.3    Švadlenka, L.4    Avramović, Z.5
  • 15
    • 33747785349 scopus 로고    scopus 로고
    • Short-term travel speed prediction models in car navigation systems
    • Lee, S., Lee, Y.I., Cho, B., Short-term travel speed prediction models in car navigation systems. J. Adv. Transp. 40:2 (2006), 123–139.
    • (2006) J. Adv. Transp. , vol.40 , Issue.2 , pp. 123-139
    • Lee, S.1    Lee, Y.I.2    Cho, B.3
  • 16
    • 56349087795 scopus 로고    scopus 로고
    • Neural network based temporal feature models for short-term railway passenger demand forecasting
    • Tsai, T.H., Lee, C.K., Wei, C.H., Neural network based temporal feature models for short-term railway passenger demand forecasting. Expert Syst. Appl. 36:2 (2009), 3728–3736.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 , pp. 3728-3736
    • Tsai, T.H.1    Lee, C.K.2    Wei, C.H.3
  • 17
    • 85019735221 scopus 로고    scopus 로고
    • Wavelet neural network-based short-term passenger flow forecasting on urban rail transit
    • Zhang, X., Mao, B., Wang, Y., Feng, J., Li, M., Wavelet neural network-based short-term passenger flow forecasting on urban rail transit. Telkomnika Indonesian J. Electr. Eng. 11 (2013), 7379–7385.
    • (2013) Telkomnika Indonesian J. Electr. Eng. , vol.11 , pp. 7379-7385
    • Zhang, X.1    Mao, B.2    Wang, Y.3    Feng, J.4    Li, M.5
  • 18
    • 81155130791 scopus 로고    scopus 로고
    • Small-time scale network traffic prediction based on flexible neural tree
    • Chen, Y., Yang, B., Meng, Q., Small-time scale network traffic prediction based on flexible neural tree. Appl. Soft Comput. 12:1 (2012), 274–279.
    • (2012) Appl. Soft Comput. , vol.12 , Issue.1 , pp. 274-279
    • Chen, Y.1    Yang, B.2    Meng, Q.3
  • 19
    • 84931061283 scopus 로고    scopus 로고
    • An additive model for monthly reservoir inflow forecast
    • Bai, Y., Wang, P., Xie, J.J., Li, J., Li, C., An additive model for monthly reservoir inflow forecast. J. Hydrol. Eng., 20(7), 2015, 04014079.
    • (2015) J. Hydrol. Eng. , vol.20 , Issue.7 , pp. 04014079
    • Bai, Y.1    Wang, P.2    Xie, J.J.3    Li, J.4    Li, C.5
  • 20
    • 84892405776 scopus 로고    scopus 로고
    • Predicting short-term bus passenger demand using a pattern hybrid approach
    • Ma, Z.L., Xing, J.P., Mesbah, M., Ferreira, L., Predicting short-term bus passenger demand using a pattern hybrid approach. Transp. Res. C 39 (2014), 148–163.
    • (2014) Transp. Res. C , vol.39 , pp. 148-163
    • Ma, Z.L.1    Xing, J.P.2    Mesbah, M.3    Ferreira, L.4
  • 21
    • 85019676391 scopus 로고    scopus 로고
    • Transport simulation model calibration with two-step cluster analysis procedure
    • Nadezda, Z., Andrejs, R., Yuri, M., Transport simulation model calibration with two-step cluster analysis procedure. Inf. Technol. Manage. Sci. 18:1 (2015), 49–56.
    • (2015) Inf. Technol. Manage. Sci. , vol.18 , Issue.1 , pp. 49-56
    • Nadezda, Z.1    Andrejs, R.2    Yuri, M.3
  • 22
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • Frey, B.J., Dueck, D., Clustering by passing messages between data points. Science 305:5814 (2007), 972–976.
    • (2007) Science , vol.305 , Issue.5814 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 23
    • 35748982103 scopus 로고    scopus 로고
    • Clustering by soft-constraint affinity propagation: applications to gene-expression data
    • Leone, M., Weigt, S.M., Clustering by soft-constraint affinity propagation: applications to gene-expression data. Bioinformatics 23:20 (2007), 2708–2715.
    • (2007) Bioinformatics , vol.23 , Issue.20 , pp. 2708-2715
    • Leone, M.1    Weigt, S.M.2
  • 24
    • 84861373812 scopus 로고    scopus 로고
    • Adaptive affinity propagation with spectral angle mapper for semi-supervised hyperspectral band selection
    • Su, H., Sheng, Y., Du, P., Liu, K., Adaptive affinity propagation with spectral angle mapper for semi-supervised hyperspectral band selection. Appl. Opt. 51:14 (2012), 2656–2663.
    • (2012) Appl. Opt. , vol.51 , Issue.14 , pp. 2656-2663
    • Su, H.1    Sheng, Y.2    Du, P.3    Liu, K.4
  • 25
    • 80052712151 scopus 로고    scopus 로고
    • Fast affinity propagation clustering: a multilevel approach
    • Shang, F., Jiao, L.C., Shi, J., Wang, F., Gong, M.G., Fast affinity propagation clustering: a multilevel approach. Pattern Recognit. 45 (2012), 474–486.
    • (2012) Pattern Recognit. , vol.45 , pp. 474-486
    • Shang, F.1    Jiao, L.C.2    Shi, J.3    Wang, F.4    Gong, M.G.5
  • 26
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S., Teh, Y.W., A fast learning algorithm for deep belief nets. Neural Comput. 18:7 (2006), 1527–1554.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 27
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI. Found
    • Bengio, Y., Learning deep architectures for AI. Found. Trends Mach. Learn. 2 (2009), 1–127.
    • (2009) Trends Mach. Learn. , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 29
    • 84984817865 scopus 로고    scopus 로고
    • Deep feature learning architectures for daily reservoir inflow forecasting
    • Li, C., Bai, Y., Zeng, B., Deep feature learning architectures for daily reservoir inflow forecasting. Water Resour. Manage. 30:14 (2016), 5145–5161.
    • (2016) Water Resour. Manage. , vol.30 , Issue.14 , pp. 5145-5161
    • Li, C.1    Bai, Y.2    Zeng, B.3
  • 30
    • 84977955865 scopus 로고    scopus 로고
    • Extracting repetitive transients for rotating machinery diagnosis using multiscale clustered grey infogram
    • Li, C., Cabrera, D., Oliveira, J., Sanchez, R.V., Cerrada, M., Zurita, G., Extracting repetitive transients for rotating machinery diagnosis using multiscale clustered grey infogram. Mech. Syst. Sig. Process. 76–77 (2016), 157–173.
    • (2016) Mech. Syst. Sig. Process. , vol.76-77 , pp. 157-173
    • Li, C.1    Cabrera, D.2    Oliveira, J.3    Sanchez, R.V.4    Cerrada, M.5    Zurita, G.6
  • 31
    • 84959421866 scopus 로고    scopus 로고
    • Deep learning approach for active classification of electrocardiogram signals
    • Rahhal, M.M.A., Bazi, Y., Alhichri, H., Alajlan, N., Melgani, F., Yager, R.R., Deep learning approach for active classification of electrocardiogram signals. Inf. Sci. 345 (2016), 340–354.
    • (2016) Inf. Sci. , vol.345 , pp. 340-354
    • Rahhal, M.M.A.1    Bazi, Y.2    Alhichri, H.3    Alajlan, N.4    Melgani, F.5    Yager, R.R.6
  • 32
    • 84963864627 scopus 로고    scopus 로고
    • Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals
    • Li, C., Sanchez, R.V., Zurita, G., Cerrada, M., Cabrera, D., Vásquez, R., Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals. Mech. Syst. Sig. Process. 76–77 (2016), 283–293.
    • (2016) Mech. Syst. Sig. Process. , vol.76-77 , pp. 283-293
    • Li, C.1    Sanchez, R.V.2    Zurita, G.3    Cerrada, M.4    Cabrera, D.5    Vásquez, R.6
  • 33
    • 84951879294 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models
    • Bai, Y., Chen, Z.Q., Xie, J.J., Li, C., Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models. J. Hydrol. 532 (2016), 193–206.
    • (2016) J. Hydrol. , vol.532 , pp. 193-206
    • Bai, Y.1    Chen, Z.Q.2    Xie, J.J.3    Li, C.4
  • 35
    • 84907500988 scopus 로고    scopus 로고
    • Deep architecture for traffic flow prediction: deep belief networks with multitask learning
    • Huang, W., Song, G., Hong, H., Xie, K., Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Trans. Intell. Transp. Syst. 15:5 (2014), 2191–2201.
    • (2014) IEEE Trans. Intell. Transp. Syst. , vol.15 , Issue.5 , pp. 2191-2201
    • Huang, W.1    Song, G.2    Hong, H.3    Xie, K.4
  • 36
    • 85017644927 scopus 로고    scopus 로고
    • Performance evaluation of affinity propagation approaches on data clustering
    • Refianti, R., Mutiara, A.B., Syamsudduha, A.A., Performance evaluation of affinity propagation approaches on data clustering. Int. J. Adv. Comput. Sci. Appl. 7:3 (2016), 420–429.
    • (2016) Int. J. Adv. Comput. Sci. Appl. , vol.7 , Issue.3 , pp. 420-429
    • Refianti, R.1    Mutiara, A.B.2    Syamsudduha, A.A.3
  • 37
    • 84888093643 scopus 로고    scopus 로고
    • Analysis of subway station capacity with the use of queueing theory
    • Xu, X.Y., Liu, J., Li, H.Y., Hu, J.Q., Analysis of subway station capacity with the use of queueing theory. Transp. Res. C 38 (2014), 28–43.
    • (2014) Transp. Res. C , vol.38 , pp. 28-43
    • Xu, X.Y.1    Liu, J.2    Li, H.Y.3    Hu, J.Q.4
  • 38
    • 85019704487 scopus 로고    scopus 로고
    • Unsupervised feature learning and deep learning: A review and new perspectives Cornell University Library arXiv:1206.5538v3
    • Y. Bengio, A. Courville, P. Vincent, Unsupervised feature learning and deep learning: A review and new perspectives Cornell University Library 2014 arXiv:1206.5538v3.
    • (2014)
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 39
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
    • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11 (2010), 3371–3408.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.A.5
  • 40
    • 84894359867 scopus 로고    scopus 로고
    • A review of unsupervised feature learning and deep learning for time-series modeling
    • Längkvist, M., Karlsson, L., Loutfi, A., A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognit. Lett. 42:6 (2014), 11–24.
    • (2014) Pattern Recognit. Lett. , vol.42 , Issue.6 , pp. 11-24
    • Längkvist, M.1    Karlsson, L.2    Loutfi, A.3
  • 41
    • 29644438050 scopus 로고    scopus 로고
    • 2006: Statistical comparisons of classifiers over multiple datasets
    • Janez, D., 2006: Statistical comparisons of classifiers over multiple datasets. J. Mach. Learn. Res. 7 (2016), 1–30.
    • (2016) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Janez, D.1
  • 42
    • 68249136965 scopus 로고
    • Comparing predictive accuracy
    • Diebold, F.X., Mariano, R.S., Comparing predictive accuracy. J. Bus. Econ. Stat. 13:3 (1995), 253–263.
    • (1995) J. Bus. Econ. Stat. , vol.13 , Issue.3 , pp. 253-263
    • Diebold, F.X.1    Mariano, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.