메뉴 건너뛰기




Volumn 39, Issue , 2014, Pages 148-163

Predicting short-term bus passenger demand using a pattern hybrid approach

Author keywords

Interactive multiple model; Passenger demand; Pattern hybrid; Short term forecast; Time series analysis

Indexed keywords

FORECASTING; SMART CARDS; TRAFFIC CONTROL;

EID: 84892405776     PISSN: 0968090X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trc.2013.12.008     Document Type: Article
Times cited : (121)

References (31)
  • 2
    • 84880964130 scopus 로고    scopus 로고
    • Improving urban public transport service using new timetabling strategies with different vehicle sizes
    • (ahead-of-print).
    • Ceder, A., Hassold, S., Dunlop, C., Chen, I., 2013. Improving urban public transport service using new timetabling strategies with different vehicle sizes. Int. J. Urban Sci., 1-20 (ahead-of-print).
    • (2013) Int. J. Urban Sci , pp. 1-20
    • Ceder, A.1    Hassold, S.2    Dunlop, C.3    Chen, I.4
  • 3
    • 0035480351 scopus 로고    scopus 로고
    • Use of sequential learning for short-term traffic flow forecasting
    • Chen H., Grant-Muller S. Use of sequential learning for short-term traffic flow forecasting. Transport. Res. Part C: Emerg. Technol. 2001, 9(5):319-336.
    • (2001) Transport. Res. Part C: Emerg. Technol. , vol.9 , Issue.5 , pp. 319-336
    • Chen, H.1    Grant-Muller, S.2
  • 4
    • 0029485810 scopus 로고
    • A review of neural networks applied to transport
    • Dougherty M. A review of neural networks applied to transport. Transport. Res. Part C: Emerg. Technol. 1995, 3(4):247-260.
    • (1995) Transport. Res. Part C: Emerg. Technol. , vol.3 , Issue.4 , pp. 247-260
    • Dougherty, M.1
  • 5
    • 80855130320 scopus 로고    scopus 로고
    • An adaptive information fusion model to predict the short-term link travel time distribution in dynamic traffic networks
    • Du L., Peeta S., Kim Y.H. An adaptive information fusion model to predict the short-term link travel time distribution in dynamic traffic networks. Transport. Res. Part B: Methodol. 2012, 46(1):235-252.
    • (2012) Transport. Res. Part B: Methodol. , vol.46 , Issue.1 , pp. 235-252
    • Du, L.1    Peeta, S.2    Kim, Y.H.3
  • 6
    • 0035677754 scopus 로고    scopus 로고
    • An improvement to the interacting multiple model (IMM) algorithm
    • Johnston L.A., Krishnamurthy V. An improvement to the interacting multiple model (IMM) algorithm. IEEE Trans. Signal Process. 2001, 49(12):2909-2923.
    • (2001) IEEE Trans. Signal Process. , vol.49 , Issue.12 , pp. 2909-2923
    • Johnston, L.A.1    Krishnamurthy, V.2
  • 7
    • 79951775181 scopus 로고    scopus 로고
    • Statistical methods versus neural networks in transportation research: differences, similarities and some insights
    • Karlaftis M.G., Vlahogianni E.I. Statistical methods versus neural networks in transportation research: differences, similarities and some insights. Transport. Res. Part C: Emerg. Technol. 2011, 19(3):387-399.
    • (2011) Transport. Res. Part C: Emerg. Technol. , vol.19 , Issue.3 , pp. 387-399
    • Karlaftis, M.G.1    Vlahogianni, E.I.2
  • 8
    • 84877588888 scopus 로고    scopus 로고
    • A combined method to forecast and estimate traffic demand in urban networks
    • Pohlmann T., Friedrich B. A combined method to forecast and estimate traffic demand in urban networks. Transport. Res. Part C: Emerg. Technol. 2013, 31:131-144.
    • (2013) Transport. Res. Part C: Emerg. Technol. , vol.31 , pp. 131-144
    • Pohlmann, T.1    Friedrich, B.2
  • 9
    • 85015484047 scopus 로고    scopus 로고
    • Determination of the transition probabilities for the interacting multiple model probabilistic data association estimator
    • Radosavljević Z. Determination of the transition probabilities for the interacting multiple model probabilistic data association estimator. Sci. Tech. Rev. 2007, 57(2):31-37.
    • (2007) Sci. Tech. Rev. , vol.57 , Issue.2 , pp. 31-37
    • Radosavljević, Z.1
  • 11
    • 77956396779 scopus 로고    scopus 로고
    • Short-term prediction of traffic dynamics with real-time recurrent learning algorithms
    • Sheu J.-B., Lan L.W., Huang Y.-S. Short-term prediction of traffic dynamics with real-time recurrent learning algorithms. Transportmetrica 2009, 5(1):59-83.
    • (2009) Transportmetrica , vol.5 , Issue.1 , pp. 59-83
    • Sheu, J.-B.1    Lan, L.W.2    Huang, Y.-S.3
  • 13
    • 0037954189 scopus 로고    scopus 로고
    • A multivariate state space approach for urban traffic flow modeling and prediction
    • Stathopoulos A., Karlaftis M.G. A multivariate state space approach for urban traffic flow modeling and prediction. Transport. Res. Part C: Emerg. Technol. 2003, 11(2):121-135.
    • (2003) Transport. Res. Part C: Emerg. Technol. , vol.11 , Issue.2 , pp. 121-135
    • Stathopoulos, A.1    Karlaftis, M.G.2
  • 14
    • 33644989492 scopus 로고    scopus 로고
    • A Bayesian network approach to traffic flow forecasting
    • Sun S., Zhang C., Yu G. A Bayesian network approach to traffic flow forecasting. IEEE Trans. Intell. Transport. Syst 2006, 7(1):124-132.
    • (2006) IEEE Trans. Intell. Transport. Syst , vol.7 , Issue.1 , pp. 124-132
    • Sun, S.1    Zhang, C.2    Yu, G.3
  • 15
    • 69249196057 scopus 로고    scopus 로고
    • Multivariate traffic forecasting technique using cell transmission model and SARIMA model
    • Szeto W., Ghosh B., Basu B., O'Mahony M. Multivariate traffic forecasting technique using cell transmission model and SARIMA model. J. Transport. Eng. 2009, 135(9):658-667.
    • (2009) J. Transport. Eng. , vol.135 , Issue.9 , pp. 658-667
    • Szeto, W.1    Ghosh, B.2    Basu, B.3    O'Mahony, M.4
  • 17
    • 84880814486 scopus 로고    scopus 로고
    • Crowding in public transport systems: effects on users, operation and implications for the estimation of demand
    • Tirachini A., Hensher D.A., Rose J.M. Crowding in public transport systems: effects on users, operation and implications for the estimation of demand. Transport. Res. Part A: Policy Pract. 2013, 53:36-52.
    • (2013) Transport. Res. Part A: Policy Pract. , vol.53 , pp. 36-52
    • Tirachini, A.1    Hensher, D.A.2    Rose, J.M.3
  • 18
    • 56349087795 scopus 로고    scopus 로고
    • Neural network based temporal feature models for short-term railway passenger demand forecasting
    • Tsai T.-H., Lee C.-K., Wei C.-H. Neural network based temporal feature models for short-term railway passenger demand forecasting. Expert Syst. Appl. 2009, 36(2, Part 2):3728-3736.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 PART 2 , pp. 3728-3736
    • Tsai, T.-H.1    Lee, C.-K.2    Wei, C.-H.3
  • 19
    • 70349501971 scopus 로고    scopus 로고
    • Enhancing predictions in signalized arterials with information on short-term traffic flow dynamics
    • Vlahogianni E.I. Enhancing predictions in signalized arterials with information on short-term traffic flow dynamics. J. Intell. Transport. Syst. 2009, 13(2):73-84.
    • (2009) J. Intell. Transport. Syst. , vol.13 , Issue.2 , pp. 73-84
    • Vlahogianni, E.I.1
  • 20
    • 4444369422 scopus 로고    scopus 로고
    • Short-term traffic forecasting: overview of objectives and methods
    • Vlahogianni E.I., Golias J.C., Karlaftis M.G. Short-term traffic forecasting: overview of objectives and methods. Transp. Rev. 2004, 24(5):533-557.
    • (2004) Transp. Rev. , vol.24 , Issue.5 , pp. 533-557
    • Vlahogianni, E.I.1    Golias, J.C.2    Karlaftis, M.G.3
  • 21
    • 84862794714 scopus 로고    scopus 로고
    • Temporal aggregation in traffic data: implications for statistical characteristics and model choice
    • Vlahogianni E.I., Karlaftis M.G. Temporal aggregation in traffic data: implications for statistical characteristics and model choice. Transport. Lett. 2011, 3(1):37-49.
    • (2011) Transport. Lett. , vol.3 , Issue.1 , pp. 37-49
    • Vlahogianni, E.I.1    Karlaftis, M.G.2
  • 22
    • 23844513726 scopus 로고    scopus 로고
    • Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach
    • Vlahogianni E.I., Karlaftis M.G., Golias J.C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transport. Res. Part C: Emerg. Technol. 2005, 13(3):211-234.
    • (2005) Transport. Res. Part C: Emerg. Technol. , vol.13 , Issue.3 , pp. 211-234
    • Vlahogianni, E.I.1    Karlaftis, M.G.2    Golias, J.C.3
  • 23
    • 33750338259 scopus 로고    scopus 로고
    • Statistical methods for detecting nonlinearity and non-stationarity in univariate short-term time-series of traffic volume
    • Vlahogianni E.I., Karlaftis M.G., Golias J.C. Statistical methods for detecting nonlinearity and non-stationarity in univariate short-term time-series of traffic volume. Transport. Res. Part C: Emerg. Technol. 2006, 14(5):351-367.
    • (2006) Transport. Res. Part C: Emerg. Technol. , vol.14 , Issue.5 , pp. 351-367
    • Vlahogianni, E.I.1    Karlaftis, M.G.2    Golias, J.C.3
  • 25
    • 80155154044 scopus 로고    scopus 로고
    • Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks
    • Wei Y., Chen M.C. Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks. Transport. Res. Part C: Emerg. Technol. 2012, 21(1):148-162.
    • (2012) Transport. Res. Part C: Emerg. Technol. , vol.21 , Issue.1 , pp. 148-162
    • Wei, Y.1    Chen, M.C.2
  • 26
    • 0344944192 scopus 로고    scopus 로고
    • Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results
    • Williams B., Hoel L. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. J. Transport. Eng. 2003, 129(6):664-672.
    • (2003) J. Transport. Eng. , vol.129 , Issue.6 , pp. 664-672
    • Williams, B.1    Hoel, L.2
  • 28
    • 80052602451 scopus 로고    scopus 로고
    • Hourly traffic forecasts using interacting multiple model (IMM) predictor
    • Zhang Y. Hourly traffic forecasts using interacting multiple model (IMM) predictor. IEEE Signal Process. Lett. 2011, 18(10):607-610.
    • (2011) IEEE Signal Process. Lett. , vol.18 , Issue.10 , pp. 607-610
    • Zhang, Y.1
  • 29
    • 77956397184 scopus 로고    scopus 로고
    • Traffic forecasting using least squares support vector machines
    • Zhang Y., Liu Y. Traffic forecasting using least squares support vector machines. Transportmetrica 2009, 5(3):193-213.
    • (2009) Transportmetrica , vol.5 , Issue.3 , pp. 193-213
    • Zhang, Y.1    Liu, Y.2
  • 30
    • 78650867878 scopus 로고    scopus 로고
    • Analysis of peak and non-peak traffic forecasts using combined models
    • Zhang Y., Liu Y.C. Analysis of peak and non-peak traffic forecasts using combined models. J. Adv. Transport. 2011, 45(1):21-37.
    • (2011) J. Adv. Transport. , vol.45 , Issue.1 , pp. 21-37
    • Zhang, Y.1    Liu, Y.C.2
  • 31
    • 31044437283 scopus 로고    scopus 로고
    • Short-term freeway traffic flow prediction: Bayesian combined neural network approach
    • Zheng W., Lee D., Shi Q. Short-term freeway traffic flow prediction: Bayesian combined neural network approach. J. Transport. Eng. 2006, 132(2):114-121.
    • (2006) J. Transport. Eng. , vol.132 , Issue.2 , pp. 114-121
    • Zheng, W.1    Lee, D.2    Shi, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.