-
1
-
-
84892421782
-
-
The Demand for Public Transport: A Practical Guide, TRL Report, TRL593, TRL Limited.
-
Balcombe, R., Mackett, R., Paulley, N., Preston, J., Shires, J., Titheridge, H., Wardman, M., White, P., 2004. The Demand for Public Transport: A Practical Guide, TRL Report, TRL593, TRL Limited.
-
(2004)
-
-
Balcombe, R.1
Mackett, R.2
Paulley, N.3
Preston, J.4
Shires, J.5
Titheridge, H.6
Wardman, M.7
White, P.8
-
2
-
-
84880964130
-
Improving urban public transport service using new timetabling strategies with different vehicle sizes
-
(ahead-of-print).
-
Ceder, A., Hassold, S., Dunlop, C., Chen, I., 2013. Improving urban public transport service using new timetabling strategies with different vehicle sizes. Int. J. Urban Sci., 1-20 (ahead-of-print).
-
(2013)
Int. J. Urban Sci
, pp. 1-20
-
-
Ceder, A.1
Hassold, S.2
Dunlop, C.3
Chen, I.4
-
3
-
-
0035480351
-
Use of sequential learning for short-term traffic flow forecasting
-
Chen H., Grant-Muller S. Use of sequential learning for short-term traffic flow forecasting. Transport. Res. Part C: Emerg. Technol. 2001, 9(5):319-336.
-
(2001)
Transport. Res. Part C: Emerg. Technol.
, vol.9
, Issue.5
, pp. 319-336
-
-
Chen, H.1
Grant-Muller, S.2
-
4
-
-
0029485810
-
A review of neural networks applied to transport
-
Dougherty M. A review of neural networks applied to transport. Transport. Res. Part C: Emerg. Technol. 1995, 3(4):247-260.
-
(1995)
Transport. Res. Part C: Emerg. Technol.
, vol.3
, Issue.4
, pp. 247-260
-
-
Dougherty, M.1
-
5
-
-
80855130320
-
An adaptive information fusion model to predict the short-term link travel time distribution in dynamic traffic networks
-
Du L., Peeta S., Kim Y.H. An adaptive information fusion model to predict the short-term link travel time distribution in dynamic traffic networks. Transport. Res. Part B: Methodol. 2012, 46(1):235-252.
-
(2012)
Transport. Res. Part B: Methodol.
, vol.46
, Issue.1
, pp. 235-252
-
-
Du, L.1
Peeta, S.2
Kim, Y.H.3
-
6
-
-
0035677754
-
An improvement to the interacting multiple model (IMM) algorithm
-
Johnston L.A., Krishnamurthy V. An improvement to the interacting multiple model (IMM) algorithm. IEEE Trans. Signal Process. 2001, 49(12):2909-2923.
-
(2001)
IEEE Trans. Signal Process.
, vol.49
, Issue.12
, pp. 2909-2923
-
-
Johnston, L.A.1
Krishnamurthy, V.2
-
7
-
-
79951775181
-
Statistical methods versus neural networks in transportation research: differences, similarities and some insights
-
Karlaftis M.G., Vlahogianni E.I. Statistical methods versus neural networks in transportation research: differences, similarities and some insights. Transport. Res. Part C: Emerg. Technol. 2011, 19(3):387-399.
-
(2011)
Transport. Res. Part C: Emerg. Technol.
, vol.19
, Issue.3
, pp. 387-399
-
-
Karlaftis, M.G.1
Vlahogianni, E.I.2
-
8
-
-
84877588888
-
A combined method to forecast and estimate traffic demand in urban networks
-
Pohlmann T., Friedrich B. A combined method to forecast and estimate traffic demand in urban networks. Transport. Res. Part C: Emerg. Technol. 2013, 31:131-144.
-
(2013)
Transport. Res. Part C: Emerg. Technol.
, vol.31
, pp. 131-144
-
-
Pohlmann, T.1
Friedrich, B.2
-
9
-
-
85015484047
-
Determination of the transition probabilities for the interacting multiple model probabilistic data association estimator
-
Radosavljević Z. Determination of the transition probabilities for the interacting multiple model probabilistic data association estimator. Sci. Tech. Rev. 2007, 57(2):31-37.
-
(2007)
Sci. Tech. Rev.
, vol.57
, Issue.2
, pp. 31-37
-
-
Radosavljević, Z.1
-
11
-
-
77956396779
-
Short-term prediction of traffic dynamics with real-time recurrent learning algorithms
-
Sheu J.-B., Lan L.W., Huang Y.-S. Short-term prediction of traffic dynamics with real-time recurrent learning algorithms. Transportmetrica 2009, 5(1):59-83.
-
(2009)
Transportmetrica
, vol.5
, Issue.1
, pp. 59-83
-
-
Sheu, J.-B.1
Lan, L.W.2
Huang, Y.-S.3
-
13
-
-
0037954189
-
A multivariate state space approach for urban traffic flow modeling and prediction
-
Stathopoulos A., Karlaftis M.G. A multivariate state space approach for urban traffic flow modeling and prediction. Transport. Res. Part C: Emerg. Technol. 2003, 11(2):121-135.
-
(2003)
Transport. Res. Part C: Emerg. Technol.
, vol.11
, Issue.2
, pp. 121-135
-
-
Stathopoulos, A.1
Karlaftis, M.G.2
-
14
-
-
33644989492
-
A Bayesian network approach to traffic flow forecasting
-
Sun S., Zhang C., Yu G. A Bayesian network approach to traffic flow forecasting. IEEE Trans. Intell. Transport. Syst 2006, 7(1):124-132.
-
(2006)
IEEE Trans. Intell. Transport. Syst
, vol.7
, Issue.1
, pp. 124-132
-
-
Sun, S.1
Zhang, C.2
Yu, G.3
-
15
-
-
69249196057
-
Multivariate traffic forecasting technique using cell transmission model and SARIMA model
-
Szeto W., Ghosh B., Basu B., O'Mahony M. Multivariate traffic forecasting technique using cell transmission model and SARIMA model. J. Transport. Eng. 2009, 135(9):658-667.
-
(2009)
J. Transport. Eng.
, vol.135
, Issue.9
, pp. 658-667
-
-
Szeto, W.1
Ghosh, B.2
Basu, B.3
O'Mahony, M.4
-
16
-
-
61849156325
-
An aggregation approach to short-term traffic flow prediction
-
Tan M.-C., Wong S.C., Jian-Min X., Zhan-Rong G., Peng Z. An aggregation approach to short-term traffic flow prediction. IEEE Trans. Intell. Transport. Syst. 2009, 10(1):60-69.
-
(2009)
IEEE Trans. Intell. Transport. Syst.
, vol.10
, Issue.1
, pp. 60-69
-
-
Tan, M.-C.1
Wong, S.C.2
Jian-Min, X.3
Zhan-Rong, G.4
Peng, Z.5
-
17
-
-
84880814486
-
Crowding in public transport systems: effects on users, operation and implications for the estimation of demand
-
Tirachini A., Hensher D.A., Rose J.M. Crowding in public transport systems: effects on users, operation and implications for the estimation of demand. Transport. Res. Part A: Policy Pract. 2013, 53:36-52.
-
(2013)
Transport. Res. Part A: Policy Pract.
, vol.53
, pp. 36-52
-
-
Tirachini, A.1
Hensher, D.A.2
Rose, J.M.3
-
18
-
-
56349087795
-
Neural network based temporal feature models for short-term railway passenger demand forecasting
-
Tsai T.-H., Lee C.-K., Wei C.-H. Neural network based temporal feature models for short-term railway passenger demand forecasting. Expert Syst. Appl. 2009, 36(2, Part 2):3728-3736.
-
(2009)
Expert Syst. Appl.
, vol.36
, Issue.2 PART 2
, pp. 3728-3736
-
-
Tsai, T.-H.1
Lee, C.-K.2
Wei, C.-H.3
-
19
-
-
70349501971
-
Enhancing predictions in signalized arterials with information on short-term traffic flow dynamics
-
Vlahogianni E.I. Enhancing predictions in signalized arterials with information on short-term traffic flow dynamics. J. Intell. Transport. Syst. 2009, 13(2):73-84.
-
(2009)
J. Intell. Transport. Syst.
, vol.13
, Issue.2
, pp. 73-84
-
-
Vlahogianni, E.I.1
-
20
-
-
4444369422
-
Short-term traffic forecasting: overview of objectives and methods
-
Vlahogianni E.I., Golias J.C., Karlaftis M.G. Short-term traffic forecasting: overview of objectives and methods. Transp. Rev. 2004, 24(5):533-557.
-
(2004)
Transp. Rev.
, vol.24
, Issue.5
, pp. 533-557
-
-
Vlahogianni, E.I.1
Golias, J.C.2
Karlaftis, M.G.3
-
21
-
-
84862794714
-
Temporal aggregation in traffic data: implications for statistical characteristics and model choice
-
Vlahogianni E.I., Karlaftis M.G. Temporal aggregation in traffic data: implications for statistical characteristics and model choice. Transport. Lett. 2011, 3(1):37-49.
-
(2011)
Transport. Lett.
, vol.3
, Issue.1
, pp. 37-49
-
-
Vlahogianni, E.I.1
Karlaftis, M.G.2
-
22
-
-
23844513726
-
Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach
-
Vlahogianni E.I., Karlaftis M.G., Golias J.C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transport. Res. Part C: Emerg. Technol. 2005, 13(3):211-234.
-
(2005)
Transport. Res. Part C: Emerg. Technol.
, vol.13
, Issue.3
, pp. 211-234
-
-
Vlahogianni, E.I.1
Karlaftis, M.G.2
Golias, J.C.3
-
23
-
-
33750338259
-
Statistical methods for detecting nonlinearity and non-stationarity in univariate short-term time-series of traffic volume
-
Vlahogianni E.I., Karlaftis M.G., Golias J.C. Statistical methods for detecting nonlinearity and non-stationarity in univariate short-term time-series of traffic volume. Transport. Res. Part C: Emerg. Technol. 2006, 14(5):351-367.
-
(2006)
Transport. Res. Part C: Emerg. Technol.
, vol.14
, Issue.5
, pp. 351-367
-
-
Vlahogianni, E.I.1
Karlaftis, M.G.2
Golias, J.C.3
-
25
-
-
80155154044
-
Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks
-
Wei Y., Chen M.C. Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks. Transport. Res. Part C: Emerg. Technol. 2012, 21(1):148-162.
-
(2012)
Transport. Res. Part C: Emerg. Technol.
, vol.21
, Issue.1
, pp. 148-162
-
-
Wei, Y.1
Chen, M.C.2
-
26
-
-
0344944192
-
Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results
-
Williams B., Hoel L. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. J. Transport. Eng. 2003, 129(6):664-672.
-
(2003)
J. Transport. Eng.
, vol.129
, Issue.6
, pp. 664-672
-
-
Williams, B.1
Hoel, L.2
-
27
-
-
0036532655
-
Urban traffic flow prediction using a fuzzy-neural approach
-
Yin H., Wong S.C., Xu J., Wong C.K. Urban traffic flow prediction using a fuzzy-neural approach. Transport. Res. Part C: Emerg. Technol. 2002, 10(2):85-98.
-
(2002)
Transport. Res. Part C: Emerg. Technol.
, vol.10
, Issue.2
, pp. 85-98
-
-
Yin, H.1
Wong, S.C.2
Xu, J.3
Wong, C.K.4
-
28
-
-
80052602451
-
Hourly traffic forecasts using interacting multiple model (IMM) predictor
-
Zhang Y. Hourly traffic forecasts using interacting multiple model (IMM) predictor. IEEE Signal Process. Lett. 2011, 18(10):607-610.
-
(2011)
IEEE Signal Process. Lett.
, vol.18
, Issue.10
, pp. 607-610
-
-
Zhang, Y.1
-
29
-
-
77956397184
-
Traffic forecasting using least squares support vector machines
-
Zhang Y., Liu Y. Traffic forecasting using least squares support vector machines. Transportmetrica 2009, 5(3):193-213.
-
(2009)
Transportmetrica
, vol.5
, Issue.3
, pp. 193-213
-
-
Zhang, Y.1
Liu, Y.2
-
30
-
-
78650867878
-
Analysis of peak and non-peak traffic forecasts using combined models
-
Zhang Y., Liu Y.C. Analysis of peak and non-peak traffic forecasts using combined models. J. Adv. Transport. 2011, 45(1):21-37.
-
(2011)
J. Adv. Transport.
, vol.45
, Issue.1
, pp. 21-37
-
-
Zhang, Y.1
Liu, Y.C.2
-
31
-
-
31044437283
-
Short-term freeway traffic flow prediction: Bayesian combined neural network approach
-
Zheng W., Lee D., Shi Q. Short-term freeway traffic flow prediction: Bayesian combined neural network approach. J. Transport. Eng. 2006, 132(2):114-121.
-
(2006)
J. Transport. Eng.
, vol.132
, Issue.2
, pp. 114-121
-
-
Zheng, W.1
Lee, D.2
Shi, Q.3
|