메뉴 건너뛰기




Volumn 43, Issue , 2014, Pages 50-64

Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification

Author keywords

Adaptive Kalman filter; Congestion; GARCH; Intelligent transportation system; SARIMA; Short term traffic flow forecasting

Indexed keywords

ADAPTIVE FILTERING; ADAPTIVE FILTERS; FORECASTING; INTELLIGENT SYSTEMS; SENSITIVITY ANALYSIS; STOCHASTIC SYSTEMS; TRAFFIC CONGESTION;

EID: 84902553625     PISSN: 0968090X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trc.2014.02.006     Document Type: Article
Times cited : (575)

References (77)
  • 1
    • 0018729076 scopus 로고
    • Analysis of freeway traffic time-series data by using Box-Jenkins techniques
    • Ahmed M.S., Cook A.R. Analysis of freeway traffic time-series data by using Box-Jenkins techniques. Transp. Res. Rec. 1979, 722:1-9.
    • (1979) Transp. Res. Rec. , vol.722 , pp. 1-9
    • Ahmed, M.S.1    Cook, A.R.2
  • 2
    • 42449156579 scopus 로고
    • Generalized autoregressive conditional heteroscedasticity
    • Bollerslev T. Generalized autoregressive conditional heteroscedasticity. J. Econ. 1986, 31:307-327.
    • (1986) J. Econ. , vol.31 , pp. 307-327
    • Bollerslev, T.1
  • 5
    • 21144464610 scopus 로고
    • Calculating interval forecasts
    • Chatfield C. Calculating interval forecasts. J. Business Econ. Stat. 1993, 11(2):121-135.
    • (1993) J. Business Econ. Stat. , vol.11 , Issue.2 , pp. 121-135
    • Chatfield, C.1
  • 6
    • 0035480351 scopus 로고    scopus 로고
    • Use of sequential learning for short-term traffic flow forecasting
    • Chen H., Grant-Muller S. Use of sequential learning for short-term traffic flow forecasting. Transp. Res. Part C 2001, 9:319-336.
    • (2001) Transp. Res. Part C , vol.9 , pp. 319-336
    • Chen, H.1    Grant-Muller, S.2
  • 8
    • 85015404560 scopus 로고
    • Statistical Models for Predicting Short-term Changes in Traffic Flows: A Comparison with Neural Networks
    • Clark, S.D., Dougherty, M.S., Kirby, H.R., 1992. Statistical Models for Predicting Short-term Changes in Traffic Flows: A Comparison with Neural Networks. ITS Technical Note 317, Institute for Transport Studies, University of Leeds, United Kingdom.
    • (1992) ITS Technical Note 317
    • Clark, S.D.1    Dougherty, M.S.2    Kirby, H.R.3
  • 9
    • 0003523273 scopus 로고
    • ATHENA - A Method for Short-term Inter-urban Traffic Forecasting
    • Danech-Pajouh, M., Aron, M., 1991. ATHENA - A Method for Short-term Inter-urban Traffic Forecasting. English Version of Report 177, INRETS, Arcueil, Paris.
    • (1991) English Version of Report 177
    • Danech-Pajouh, M.1    Aron, M.2
  • 10
    • 0026128928 scopus 로고
    • Nonparametric regression and short-term freeway traffic forecasting
    • Davis G.A., Nihan N.L. Nonparametric regression and short-term freeway traffic forecasting. ASCE J. Transp. Eng. 1991, 117:178-188.
    • (1991) ASCE J. Transp. Eng. , vol.117 , pp. 178-188
    • Davis, G.A.1    Nihan, N.L.2
  • 11
    • 0030298951 scopus 로고    scopus 로고
    • Combining Kohonen maps with ARIMA time series models to forecast traffic flow
    • Der Voort M., Dougherty M., Watson S. Combining Kohonen maps with ARIMA time series models to forecast traffic flow. Transp. Res. Part C 1996, 4:307-318.
    • (1996) Transp. Res. Part C , vol.4 , pp. 307-318
    • Der Voort, M.1    Dougherty, M.2    Watson, S.3
  • 12
    • 0035372068 scopus 로고    scopus 로고
    • An object-oriented neural network approach to short-term traffic forecasting
    • Dia H. An object-oriented neural network approach to short-term traffic forecasting. Eur. J. Oper. Res. 2001, 131:253-261.
    • (2001) Eur. J. Oper. Res. , vol.131 , pp. 253-261
    • Dia, H.1
  • 13
    • 45849138568 scopus 로고    scopus 로고
    • Adaptive hybrid fuzzy rule-based system approach for modeling and predicting urban traffic flow
    • Dimitriou L., Tsekeris T., Stathopoulos A. Adaptive hybrid fuzzy rule-based system approach for modeling and predicting urban traffic flow. Transp. Res. Part C 2008, 16:554-573.
    • (2008) Transp. Res. Part C , vol.16 , pp. 554-573
    • Dimitriou, L.1    Tsekeris, T.2    Stathopoulos, A.3
  • 14
    • 84859981806 scopus 로고    scopus 로고
    • Regime-based short-term multivariate traffic condition forecasting algorithm
    • Dunne S., Ghosh B. Regime-based short-term multivariate traffic condition forecasting algorithm. ASCE J. Transp. Eng. 2012, 138:455-466.
    • (2012) ASCE J. Transp. Eng. , vol.138 , pp. 455-466
    • Dunne, S.1    Ghosh, B.2
  • 17
    • 85015436578 scopus 로고
    • Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation
    • Engle R.F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 1982, 50:987-1008.
    • (1982) Econometrica , vol.50 , pp. 987-1008
    • Engle, R.F.1
  • 18
    • 80052718938 scopus 로고    scopus 로고
    • A Bayesian dynamic linear model for real-time short-term freeway travel time prediction
    • Fei X., Lu C., Liu K. A Bayesian dynamic linear model for real-time short-term freeway travel time prediction. Transp. Res. Part C 2011, 19:1306-1318.
    • (2011) Transp. Res. Part C , vol.19 , pp. 1306-1318
    • Fei, X.1    Lu, C.2    Liu, K.3
  • 20
    • 0015112147 scopus 로고
    • On-line estimation of traffic densities from time-series of flow and speed data
    • Gazis D.C., Knapp C.H. On-line estimation of traffic densities from time-series of flow and speed data. Transp. Sci. 1971, 5:283-301.
    • (1971) Transp. Sci. , vol.5 , pp. 283-301
    • Gazis, D.C.1    Knapp, C.H.2
  • 21
    • 40449102853 scopus 로고    scopus 로고
    • Adaptive Estimation and Prediction of Univariate Traffic Condition Series
    • Guo, J., 2005. Adaptive Estimation and Prediction of Univariate Traffic Condition Series. Ph.D. Dissertation. North Carolina State University, Raleigh, NC.
    • (2005) Ph.D. Dissertation. North Carolina State University
    • Guo, J.1
  • 22
    • 78651271213 scopus 로고    scopus 로고
    • Real time short term traffic speed level forecasting and uncertainty quantification using layered Kalman filters
    • Guo J., Williams B.M. Real time short term traffic speed level forecasting and uncertainty quantification using layered Kalman filters. Transp. Res. Rec. 2010, 2175:28-37.
    • (2010) Transp. Res. Rec. , vol.2175 , pp. 28-37
    • Guo, J.1    Williams, B.M.2
  • 23
    • 40449106442 scopus 로고    scopus 로고
    • Data collection time intervals for stochastic short-term traffic flow forecasting
    • Guo J., Williams B.M., Smith B.L. Data collection time intervals for stochastic short-term traffic flow forecasting. Transp. Res. Rec. 2008, 2024:18-26.
    • (2008) Transp. Res. Rec. , vol.2024 , pp. 18-26
    • Guo, J.1    Williams, B.M.2    Smith, B.L.3
  • 24
    • 84876721756 scopus 로고    scopus 로고
    • Integrated heteroscedasticity test for vehicular traffic condition series
    • Guo J., Huang W., Williams B.M. Integrated heteroscedasticity test for vehicular traffic condition series. ASCE J. Transp. Eng. 2012, 138:1161-1170.
    • (2012) ASCE J. Transp. Eng. , vol.138 , pp. 1161-1170
    • Guo, J.1    Huang, W.2    Williams, B.M.3
  • 25
    • 0029308065 scopus 로고
    • Short-term prediction of traffic volume in urban arterials
    • Hamed M.M., Al-Masaeid H.R., Said Z.M.B. Short-term prediction of traffic volume in urban arterials. ASCE J. Transp. Eng. 1995, 12:249-254.
    • (1995) ASCE J. Transp. Eng. , vol.12 , pp. 249-254
    • Hamed, M.M.1    Al-Masaeid, H.R.2    Said, Z.M.B.3
  • 26
    • 18144367659 scopus 로고    scopus 로고
    • Quantifying uncertainties in a national forecasting model
    • Hugosson M.B. Quantifying uncertainties in a national forecasting model. Transp. Res. Part A 2005, 39:531-547.
    • (2005) Transp. Res. Part A , vol.39 , pp. 531-547
    • Hugosson, M.B.1
  • 27
    • 26444571471 scopus 로고    scopus 로고
    • Dynamic wavelet neural network model for traffic flow forecasting
    • Jiang X., Adeli H. Dynamic wavelet neural network model for traffic flow forecasting. ASCE J. Transp. Eng. 2005, 131:771-779.
    • (2005) ASCE J. Transp. Eng. , vol.131 , pp. 771-779
    • Jiang, X.1    Adeli, H.2
  • 28
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman R.E. A new approach to linear filtering and prediction problems. Trans. ASME - J. Basic Eng. D 1960, 82:35-45.
    • (1960) Trans. ASME - J. Basic Eng. D , vol.82 , pp. 35-45
    • Kalman, R.E.1
  • 29
    • 2142812984 scopus 로고    scopus 로고
    • Forecasting traffic flow conditions in an urban network: comparison of multivariate and univariate approaches
    • Kamarianakis Y., Prastacos P. Forecasting traffic flow conditions in an urban network: comparison of multivariate and univariate approaches. Transp. Res. Rec. 2003, 1857:74-84.
    • (2003) Transp. Res. Rec. , vol.1857 , pp. 74-84
    • Kamarianakis, Y.1    Prastacos, P.2
  • 30
    • 33645673658 scopus 로고    scopus 로고
    • Modeling traffic volatility dynamics in an urban network
    • Kamarianakis Y., Kanas A., Prastacos P. Modeling traffic volatility dynamics in an urban network. Transp. Res. Rec. 2005, 1923:18-27.
    • (2005) Transp. Res. Rec. , vol.1923 , pp. 18-27
    • Kamarianakis, Y.1    Kanas, A.2    Prastacos, P.3
  • 32
    • 67349277727 scopus 로고    scopus 로고
    • Memory properties and fractional integration in transportation time series
    • Karlaftis M.G., Vlahogianni E.I. Memory properties and fractional integration in transportation time series. Transp. Res. Part C 2009, 17:444-453.
    • (2009) Transp. Res. Part C , vol.17 , pp. 444-453
    • Karlaftis, M.G.1    Vlahogianni, E.I.2
  • 34
    • 0034773818 scopus 로고    scopus 로고
    • A recursive traffic flow predictor based on dynamic generalized linear model framework
    • Lan, C., 2001. A recursive traffic flow predictor based on dynamic generalized linear model framework. In: IEEE Intelligent Transportation Systems Proceedings, Oakland, CA, pp.410-415.
    • (2001) In: IEEE Intelligent Transportation Systems Proceedings
    • Lan, C.1
  • 35
    • 0342323736 scopus 로고    scopus 로고
    • Real-time prediction of traffic flows using dynamic generalized linear models
    • Lan C., Miaou S. Real-time prediction of traffic flows using dynamic generalized linear models. Transp. Res. Rec. 1999, 1687:410-415.
    • (1999) Transp. Res. Rec. , vol.1687 , pp. 410-415
    • Lan, C.1    Miaou, S.2
  • 36
    • 0343274484 scopus 로고
    • On forecasting freeway occupancies and volumes
    • Levin M., Tsao Y. On forecasting freeway occupancies and volumes. Transp. Res. Rec. 1980, 773:47-49.
    • (1980) Transp. Res. Rec. , vol.773 , pp. 47-49
    • Levin, M.1    Tsao, Y.2
  • 37
    • 84878696679 scopus 로고    scopus 로고
    • Short-term traffic flow forecasting: an experimental comparison of time series analysis and supervised learning
    • Lippi M., Bertini M., Frasconi P. Short-term traffic flow forecasting: an experimental comparison of time series analysis and supervised learning. IEEE Trans. Intell. Transp. Syst. 2013, 14:871-882.
    • (2013) IEEE Trans. Intell. Transp. Syst. , vol.14 , pp. 871-882
    • Lippi, M.1    Bertini, M.2    Frasconi, P.3
  • 38
    • 0002164363 scopus 로고
    • Prediction of traffic flow by an adaptive prediction system
    • Lu J. Prediction of traffic flow by an adaptive prediction system. Transp. Res. Rec. 1990, 1287:54-61.
    • (1990) Transp. Res. Rec. , vol.1287 , pp. 54-61
    • Lu, J.1
  • 39
    • 79951949165 scopus 로고    scopus 로고
    • Prediction intervals to account for uncertainties in neural network predictions: methodology and application in bus arrival time prediction
    • Mazloumi E., Rose G., Currie G., Moridpour S. Prediction intervals to account for uncertainties in neural network predictions: methodology and application in bus arrival time prediction. Eng. Appl. Artif. Intell. 2011, 24:534-542.
    • (2011) Eng. Appl. Artif. Intell. , vol.24 , pp. 534-542
    • Mazloumi, E.1    Rose, G.2    Currie, G.3    Moridpour, S.4
  • 40
    • 79952736659 scopus 로고    scopus 로고
    • Real-time road traffic prediction with spatio-temporal correlations
    • Min W., Wynter L. Real-time road traffic prediction with spatio-temporal correlations. Transp. Res. Part C 2011, 19:606-616.
    • (2011) Transp. Res. Part C , vol.19 , pp. 606-616
    • Min, W.1    Wynter, L.2
  • 41
    • 0016990568 scopus 로고
    • Adaptive sequential estimation with unknown noise structure
    • Myers K.A., Tapley B.D. Adaptive sequential estimation with unknown noise structure. IEEE Trans. Autom. Control 1976, 21:520-523.
    • (1976) IEEE Trans. Autom. Control , vol.21 , pp. 520-523
    • Myers, K.A.1    Tapley, B.D.2
  • 42
    • 0016349498 scopus 로고
    • The prediction of traffic flow volume based on spectral analysis
    • Nicholson H., Swann C.D. The prediction of traffic flow volume based on spectral analysis. Transp. Res. 1974, 8:533-538.
    • (1974) Transp. Res. , vol.8 , pp. 533-538
    • Nicholson, H.1    Swann, C.D.2
  • 43
    • 0019025588 scopus 로고
    • Use of the Box-Jenkins time series technique in traffic forecasting
    • Nihan N.L., Holersland K.O. Use of the Box-Jenkins time series technique in traffic forecasting. Transportation 1980, 9:125-143.
    • (1980) Transportation , vol.9 , pp. 125-143
    • Nihan, N.L.1    Holersland, K.O.2
  • 44
    • 0031233040 scopus 로고    scopus 로고
    • Adaptive estimation of noise covariance matrices in real-time preprocessing of geophysical data
    • Noriega G., Pasupathy S. Adaptive estimation of noise covariance matrices in real-time preprocessing of geophysical data. IEEE Trans. Geosci. Remote Sens. 1997, 35:1146-1159.
    • (1997) IEEE Trans. Geosci. Remote Sens. , vol.35 , pp. 1146-1159
    • Noriega, G.1    Pasupathy, S.2
  • 45
    • 0021375695 scopus 로고
    • Dynamic prediction of traffic volume through Kalman filtering theory
    • Okutani I., Stephanedes Y.J. Dynamic prediction of traffic volume through Kalman filtering theory. Transp. Res. Part B 1984, 18:1-11.
    • (1984) Transp. Res. Part B , vol.18 , pp. 1-11
    • Okutani, I.1    Stephanedes, Y.J.2
  • 46
    • 0003023581 scopus 로고    scopus 로고
    • Short-term freeway traffic volume forecasting using radial basis function neural network
    • Park B., Messer C.J., Urbanik T. Short-term freeway traffic volume forecasting using radial basis function neural network. Transp. Res. Rec. 1998, 1651:39-47.
    • (1998) Transp. Res. Rec. , vol.1651 , pp. 39-47
    • Park, B.1    Messer, C.J.2    Urbanik, T.3
  • 47
    • 0141613930 scopus 로고    scopus 로고
    • Dynamic and stochastic shortest path in transportation networks with two components of travel time uncertainty
    • Pattanamekar P., Dongjoo P., Laurence R.R., Lee J., Lee C. Dynamic and stochastic shortest path in transportation networks with two components of travel time uncertainty. Transp. Res. Part C 2003, 11:331-354.
    • (2003) Transp. Res. Part C , vol.11 , pp. 331-354
    • Pattanamekar, P.1    Dongjoo, P.2    Laurence, R.R.3    Lee, J.4    Lee, C.5
  • 48
    • 0001805729 scopus 로고
    • Exponential filtering of traffic data
    • Ross P. Exponential filtering of traffic data. Transp. Res. Rec. 1982, 869:43-49.
    • (1982) Transp. Res. Rec. , vol.869 , pp. 43-49
    • Ross, P.1
  • 49
    • 84902552364 scopus 로고    scopus 로고
    • SAS Institute Inc., 1999. SAS OnlineDoc®, Version 8. SAS Institute Inc., Cary, NC
    • SAS Institute Inc., 1999. SAS OnlineDoc®, Version 8. SAS Institute Inc., Cary, NC.
  • 50
    • 40449097001 scopus 로고    scopus 로고
    • Recursive Methods for Forecasting Short-term Traffic Flow using Seasonal ARIMA Time Series Model
    • Shekhar, S., 2004. Recursive Methods for Forecasting Short-term Traffic Flow using Seasonal ARIMA Time Series Model. Master Thesis. North Carolina State University, Raleigh, NC.
    • (2004) Master Thesis. North Carolina State University
    • Shekhar, S.1
  • 51
    • 40449101916 scopus 로고    scopus 로고
    • Adaptive seasonal time series models for forecasting short-term traffic flow
    • Shekhar S., Williams B.M. Adaptive seasonal time series models for forecasting short-term traffic flow. Transp. Res. Rec. 2008, 2024:116-125.
    • (2008) Transp. Res. Rec. , vol.2024 , pp. 116-125
    • Shekhar, S.1    Williams, B.M.2
  • 52
    • 0001891123 scopus 로고
    • Short-term traffic flow prediction: neural network approach
    • Smith B.L., Demetsky M.J. Short-term traffic flow prediction: neural network approach. Transp. Res. Rec. 1994, 1453:98-104.
    • (1994) Transp. Res. Rec. , vol.1453 , pp. 98-104
    • Smith, B.L.1    Demetsky, M.J.2
  • 53
    • 0030234980 scopus 로고    scopus 로고
    • Multiple-interval freeway traffic flow forecasting
    • Smith B.L., Demetsky M.J. Multiple-interval freeway traffic flow forecasting. Transp. Res. Rec. 1996, 1554:136-141.
    • (1996) Transp. Res. Rec. , vol.1554 , pp. 136-141
    • Smith, B.L.1    Demetsky, M.J.2
  • 54
    • 0031472064 scopus 로고    scopus 로고
    • Traffic flow forecasting: comparison of modeling approaches
    • Smith B.L., Demetsky M.J. Traffic flow forecasting: comparison of modeling approaches. ASCE J. Transp. Eng. 1997, 123:261-266.
    • (1997) ASCE J. Transp. Eng. , vol.123 , pp. 261-266
    • Smith, B.L.1    Demetsky, M.J.2
  • 55
    • 0036692982 scopus 로고    scopus 로고
    • Comparison of parametric and non-parametric models for traffic flow forecasting
    • Smith B.L., Williams B.M., Oswald R.K. Comparison of parametric and non-parametric models for traffic flow forecasting. Transp. Res. Part C 2003, 10:303-321.
    • (2003) Transp. Res. Part C , vol.10 , pp. 303-321
    • Smith, B.L.1    Williams, B.M.2    Oswald, R.K.3
  • 56
    • 67649171524 scopus 로고    scopus 로고
    • Statistical model for forecasting link travel time variability
    • Sohn K., Kim D. Statistical model for forecasting link travel time variability. ASCE J. Transp. Eng. 2009, 135(7):440-453.
    • (2009) ASCE J. Transp. Eng. , vol.135 , Issue.7 , pp. 440-453
    • Sohn, K.1    Kim, D.2
  • 57
    • 0037954189 scopus 로고    scopus 로고
    • A multivariate state space approach for urban traffic flow modeling and prediction
    • Stathopoulos A., Karlaftis M.G. A multivariate state space approach for urban traffic flow modeling and prediction. Transp. Res. Part C 2003, 11:121-135.
    • (2003) Transp. Res. Part C , vol.11 , pp. 121-135
    • Stathopoulos, A.1    Karlaftis, M.G.2
  • 59
    • 1642263251 scopus 로고    scopus 로고
    • Short-term traffic forecasting using the local linear regression model
    • Sun H., Liu H.X., Xiao H., He R.R., Ran B. Short-term traffic forecasting using the local linear regression model. Transp. Res. Rec. 2003, 1836:143-150.
    • (2003) Transp. Res. Rec. , vol.1836 , pp. 143-150
    • Sun, H.1    Liu, H.X.2    Xiao, H.3    He, R.R.4    Ran, B.5
  • 62
    • 84902552366 scopus 로고    scopus 로고
    • TRB, 2000. Highway Capacity Manual, Transportation Research Board, Washington, DC.
    • TRB, 2000. Highway Capacity Manual, Transportation Research Board, Washington, DC.
  • 63
    • 33846857346 scopus 로고    scopus 로고
    • Real-time traffic volatility forecasting in urban arterial networks
    • Tsekeris T., Stathopoulos A. Real-time traffic volatility forecasting in urban arterial networks. Transp. Res. Rec. 2006, 1964:146-156.
    • (2006) Transp. Res. Rec. , vol.1964 , pp. 146-156
    • Tsekeris, T.1    Stathopoulos, A.2
  • 64
    • 77955592775 scopus 로고    scopus 로고
    • Short-term prediction of urban traffic variability: stochastic volatility modeling approach
    • Tsekeris T., Stathopoulos A. Short-term prediction of urban traffic variability: stochastic volatility modeling approach. ASCE J. Transp. Eng. 2010, 136(7):606-613.
    • (2010) ASCE J. Transp. Eng. , vol.136 , Issue.7 , pp. 606-613
    • Tsekeris, T.1    Stathopoulos, A.2
  • 65
    • 67949102009 scopus 로고    scopus 로고
    • Bayesian committee of neural networks to predict travel times with confidence intervals
    • Van Hinsbergen C.P.I.J., van Lint J.W.C., van Zuylen H.J. Bayesian committee of neural networks to predict travel times with confidence intervals. Transp. Res. Part C 2009, 17:498-509.
    • (2009) Transp. Res. Part C , vol.17 , pp. 498-509
    • Van Hinsbergen, C.P.I.J.1    van Lint, J.W.C.2    van Zuylen, H.J.3
  • 66
    • 23844513726 scopus 로고    scopus 로고
    • Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach
    • Vlahogianni E.I., Karlaftis M.G., Golias J.C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transp. Res. Part C 2005, 13:211-234.
    • (2005) Transp. Res. Part C , vol.13 , pp. 211-234
    • Vlahogianni, E.I.1    Karlaftis, M.G.2    Golias, J.C.3
  • 67
    • 84873704499 scopus 로고    scopus 로고
    • Short-term traffic speed forecasting hybrid model based on chaos-wavelet analysis-support vector machine theory
    • Wang J., Shi Q. Short-term traffic speed forecasting hybrid model based on chaos-wavelet analysis-support vector machine theory. Transp. Res. Part C 2013, 27:219-232.
    • (2013) Transp. Res. Part C , vol.27 , pp. 219-232
    • Wang, J.1    Shi, Q.2
  • 68
    • 80155154044 scopus 로고    scopus 로고
    • Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks
    • Wei Y., Chen M. Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks. Transp. Res. Part C 2012, 21:148-162.
    • (2012) Transp. Res. Part C , vol.21 , pp. 148-162
    • Wei, Y.1    Chen, M.2
  • 69
    • 0010373099 scopus 로고    scopus 로고
    • Modeling and Forecasting Vehicular Traffic Flow as a Seasonal Stochastic Time Series Process
    • Dept. of Civil Eng.
    • Williams, B.M., 1999. Modeling and Forecasting Vehicular Traffic Flow as a Seasonal Stochastic Time Series Process. Ph.D. Dissertation. Dept. of Civil Eng., Univ. of Virginia, Charlottesville, VA.
    • (1999) Ph.D. Dissertation.
    • Williams, B.M.1
  • 70
    • 0035563672 scopus 로고    scopus 로고
    • Multivariate vehicular traffic flow prediction: evaluation of ARIMAX modeling
    • Williams B.M. Multivariate vehicular traffic flow prediction: evaluation of ARIMAX modeling. Transp. Res. Rec. 2001, 1776:194-200.
    • (2001) Transp. Res. Rec. , vol.1776 , pp. 194-200
    • Williams, B.M.1
  • 71
    • 0344944192 scopus 로고    scopus 로고
    • Modeling and forecasting vehicular traffic flow as a seasonal ARIMA: theoretical basis and empirical results
    • Williams B.M., Hoel L.A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA: theoretical basis and empirical results. ASCE J. Transp. Eng. 2003, 129:664-672.
    • (2003) ASCE J. Transp. Eng. , vol.129 , pp. 664-672
    • Williams, B.M.1    Hoel, L.A.2
  • 72
    • 14744291722 scopus 로고    scopus 로고
    • Online recursive algorithm for short-term traffic prediction
    • Yang F., Yin Z., Liu H.X., Ran B. Online recursive algorithm for short-term traffic prediction. Transp. Res. Rec. 2004, 1879:1-8.
    • (2004) Transp. Res. Rec. , vol.1879 , pp. 1-8
    • Yang, F.1    Yin, Z.2    Liu, H.X.3    Ran, B.4
  • 73
  • 74
    • 0036532655 scopus 로고    scopus 로고
    • Urban traffic flow prediction using a fuzzy-neural approach
    • Yin H., Wong S.C., Xu J., Wong C.K. Urban traffic flow prediction using a fuzzy-neural approach. Transp. Res. Part C 2002, 10:85-98.
    • (2002) Transp. Res. Part C , vol.10 , pp. 85-98
    • Yin, H.1    Wong, S.C.2    Xu, J.3    Wong, C.K.4
  • 75
    • 0034327468 scopus 로고    scopus 로고
    • Recursive prediction of traffic conditions with neural network models
    • Zhang H.M. Recursive prediction of traffic conditions with neural network models. ASCE J. Transp. Eng. 2000, 126:472-481.
    • (2000) ASCE J. Transp. Eng. , vol.126 , pp. 472-481
    • Zhang, H.M.1
  • 76
    • 84889844841 scopus 로고    scopus 로고
    • Univariate volatility-based models for improving quality of travel time reliability forecasting
    • Zhang Y., Sun R., Haghani A., Zeng X. Univariate volatility-based models for improving quality of travel time reliability forecasting. Transp. Res. Rec. 2013, 2365:73-81.
    • (2013) Transp. Res. Rec. , vol.2365 , pp. 73-81
    • Zhang, Y.1    Sun, R.2    Haghani, A.3    Zeng, X.4
  • 77
    • 31044437283 scopus 로고    scopus 로고
    • Short-term freeway traffic flow prediction: Bayesian combined neural network approach
    • Zheng W., Lee D., Shi Q. Short-term freeway traffic flow prediction: Bayesian combined neural network approach. ASCE J. Transp. Eng. 2006, 132:114-121.
    • (2006) ASCE J. Transp. Eng. , vol.132 , pp. 114-121
    • Zheng, W.1    Lee, D.2    Shi, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.