메뉴 건너뛰기




Volumn 26, Issue , 2015, Pages 435-443

Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm

Author keywords

Adaptive genetic algorithm; Back propagation neural network; Holiday daily tourist flow forecasting; Seasonal index adjustment; Support vector regression

Indexed keywords

BACKPROPAGATION; FORECASTING; GENETIC ALGORITHMS; LEISURE INDUSTRY; NEURAL NETWORKS; TORSIONAL STRESS; TOURISM INDUSTRY;

EID: 84912139704     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2014.10.022     Document Type: Review
Times cited : (230)

References (56)
  • 2
    • 51349124964 scopus 로고    scopus 로고
    • Golden week tourist flow forecasting based on neural network
    • K.L. Wu, and B. Dai Golden week tourist flow forecasting based on neural network IEEE Int. Conf. Ind. Technol. 2006 2866 2871
    • (2006) IEEE Int. Conf. Ind. Technol. , pp. 2866-2871
    • Wu, K.L.1    Dai, B.2
  • 3
    • 66449136989 scopus 로고    scopus 로고
    • Time series prediction using support vector machines: A survey
    • N. Sapankevych, and R. Sankar Time series prediction using support vector machines: a survey IEEE Comput. Intell. Manag. 4 2 2009 24 38
    • (2009) IEEE Comput. Intell. Manag. , vol.4 , Issue.2 , pp. 24-38
    • Sapankevych, N.1    Sankar, R.2
  • 4
    • 67349200976 scopus 로고    scopus 로고
    • Forecasting tourism demand with ARMA-based methods
    • F.L. Chu Forecasting tourism demand with ARMA-based methods Tour. Manag. 30 5 2009 740 751
    • (2009) Tour. Manag. , vol.30 , Issue.5 , pp. 740-751
    • Chu, F.L.1
  • 5
    • 0034934720 scopus 로고    scopus 로고
    • The impact of seasonal unit roots and vector ARMA modelling on forecasting monthly tourism flows
    • P. Gustavsson, and J. Nordstrom The impact of seasonal unit roots and vector ARMA modelling on forecasting monthly tourism flows Tour. Econ. 7 2 2001 117 133
    • (2001) Tour. Econ. , vol.7 , Issue.2 , pp. 117-133
    • Gustavsson, P.1    Nordstrom, J.2
  • 6
    • 0036079138 scopus 로고    scopus 로고
    • Time-series forecasts of international travel demand for Australia
    • C. Lim, and M. McAleer Time-series forecasts of international travel demand for Australia Tour. Manag. 23 4 2002 389 396
    • (2002) Tour. Manag. , vol.23 , Issue.4 , pp. 389-396
    • Lim, C.1    McAleer, M.2
  • 7
    • 0036783651 scopus 로고    scopus 로고
    • Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention
    • C. Goh, and R. Law Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention Tour. Manag. 23 5 2002 499 510
    • (2002) Tour. Manag. , vol.23 , Issue.5 , pp. 499-510
    • Goh, C.1    Law, R.2
  • 8
    • 0035021368 scopus 로고    scopus 로고
    • A practitioners guide to time-series methods for tourism demand forecasting - A case study of Durban, South Africa
    • C.J.S.C. Burger, M. Dohnal, M. Kathrada, and R. Law A practitioners guide to time-series methods for tourism demand forecasting - a case study of Durban, South Africa Tour. Manag. 22 4 2001 403 409
    • (2001) Tour. Manag. , vol.22 , Issue.4 , pp. 403-409
    • Burger, C.J.S.C.1    Dohnal, M.2    Kathrada, M.3    Law, R.4
  • 9
    • 0035206996 scopus 로고    scopus 로고
    • Modeling and forecasting monthly airline passenger flows among three major Australian cities
    • J.H. Kim, and M.T. Ngo Modeling and forecasting monthly airline passenger flows among three major Australian cities Tour. Econ. 7 4 2001 397 412
    • (2001) Tour. Econ. , vol.7 , Issue.4 , pp. 397-412
    • Kim, J.H.1    Ngo, M.T.2
  • 10
    • 77949261436 scopus 로고    scopus 로고
    • Combined modeling for electric load forecasting with adaptive particle swarm optimization
    • J.Z. Wang, S.L. Zhu, W.Y. Zhang, and H.Y. Lu Combined modeling for electric load forecasting with adaptive particle swarm optimization Energy 35 4 2010 1671 1678
    • (2010) Energy , vol.35 , Issue.4 , pp. 1671-1678
    • Wang, J.Z.1    Zhu, S.L.2    Zhang, W.Y.3    Lu, H.Y.4
  • 11
    • 0034057701 scopus 로고    scopus 로고
    • Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting
    • R. Law Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting Tour. Manag. 21 4 2000 331 340
    • (2000) Tour. Manag. , vol.21 , Issue.4 , pp. 331-340
    • Law, R.1
  • 12
    • 27744588529 scopus 로고    scopus 로고
    • An improved neural network model in forecasting arrivals
    • P.F. Pai, and W.C. Hong An improved neural network model in forecasting arrivals Ann. Tour. Res. 2 4 2005 1138 1141
    • (2005) Ann. Tour. Res. , vol.2 , Issue.4 , pp. 1138-1141
    • Pai, P.F.1    Hong, W.C.2
  • 13
    • 0041813336 scopus 로고    scopus 로고
    • A comparison of three different approaches to tourist arrival forecasting
    • V. Cho A comparison of three different approaches to tourist arrival forecasting Tour. Manag. 4 3 2003 323 330
    • (2003) Tour. Manag. , vol.4 , Issue.3 , pp. 323-330
    • Cho, V.1
  • 14
    • 33745933319 scopus 로고    scopus 로고
    • Designing an artificial neural network for forecasting tourism time-series
    • A. Palmer, J. José Montaño, and A. Sesé Designing an artificial neural network for forecasting tourism time-series Tour. Manag. 27 5 2006 781 790
    • (2006) Tour. Manag. , vol.27 , Issue.5 , pp. 781-790
    • Palmer, A.1    José Montaño, J.2    Sesé, A.3
  • 15
    • 0036140323 scopus 로고    scopus 로고
    • Combining neural network model with seasonal time series ARIMA model
    • F.M. Tseng, H.C. Yu, and G.H. Tzeng Combining neural network model with seasonal time series ARIMA model Technol. Forecast. Soc. Change 69 1 2002 71 87
    • (2002) Technol. Forecast. Soc. Change , vol.69 , Issue.1 , pp. 71-87
    • Tseng, F.M.1    Yu, H.C.2    Tzeng, G.H.3
  • 17
    • 0242351905 scopus 로고    scopus 로고
    • Financial time series forecasting using support vector machines
    • K.J. Kim Financial time series forecasting using support vector machines Neurocomputing 55 1-2 2003 307 319
    • (2003) Neurocomputing , vol.55 , Issue.12 , pp. 307-319
    • Kim, K.J.1
  • 18
    • 64949130686 scopus 로고    scopus 로고
    • Financial time series forecasting using independent component analysis and support vector regression
    • C.J. Lu, T.S. Lee, and C.C. Chiu Financial time series forecasting using independent component analysis and support vector regression Decis. Supp. Syst. 47 2 2009 115 125
    • (2009) Decis. Supp. Syst. , vol.47 , Issue.2 , pp. 115-125
    • Lu, C.J.1    Lee, T.S.2    Chiu, C.C.3
  • 19
    • 77149138054 scopus 로고    scopus 로고
    • Application of SVR with improved ant colony optimization algorithms in exchange rate forecasting
    • W.M. Hung, and W.C. Hong Application of SVR with improved ant colony optimization algorithms in exchange rate forecasting Control Cybern. 38 3 2009 863 891
    • (2009) Control Cybern. , vol.38 , Issue.3 , pp. 863-891
    • Hung, W.M.1    Hong, W.C.2
  • 20
    • 0037170654 scopus 로고    scopus 로고
    • Support vector machines for short-term electrical load forecasting
    • M. Mohandes Support vector machines for short-term electrical load forecasting Int. J. Energy Res. 26 4 2002 335 345
    • (2002) Int. J. Energy Res. , vol.26 , Issue.4 , pp. 335-345
    • Mohandes, M.1
  • 21
    • 77958467490 scopus 로고    scopus 로고
    • Application of chaotic ant swarm optimization in electric load forecasting
    • W.C. Hong Application of chaotic ant swarm optimization in electric load forecasting Energy Policy 38 10 2010 5830 5839
    • (2010) Energy Policy , vol.38 , Issue.10 , pp. 5830-5839
    • Hong, W.C.1
  • 22
    • 10644266188 scopus 로고    scopus 로고
    • Travel-time prediction with support vector regression
    • C.H. Wu, J.M. Ho, and D.T. Lee Travel-time prediction with support vector regression IEEE Trans. Intell. Transp. Syst. 5 4 2004 276 281
    • (2004) IEEE Trans. Intell. Transp. Syst. , vol.5 , Issue.4 , pp. 276-281
    • Wu, C.H.1    Ho, J.M.2    Lee, D.T.3
  • 23
    • 79956119798 scopus 로고    scopus 로고
    • Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm
    • W.C. Hong Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm Neurocomputing 74 12-13 2011 2096 2107
    • (2011) Neurocomputing , vol.74 , Issue.1213 , pp. 2096-2107
    • Hong, W.C.1
  • 24
    • 79953688315 scopus 로고    scopus 로고
    • Using genetic algorithms to optimize support vector regression in tourism demand forecasting
    • K.Y. Chen, and C.H. Wang Using genetic algorithms to optimize support vector regression in tourism demand forecasting J. Outdoor Recreat. Study 18 1 2005 47 72
    • (2005) J. Outdoor Recreat. Study , vol.18 , Issue.1 , pp. 47-72
    • Chen, K.Y.1    Wang, C.H.2
  • 25
    • 36549006345 scopus 로고    scopus 로고
    • The application of support vector machines to forecast tourist arrivals in Barbados: An empirical study
    • P.F. Pai, W.C. Hong, and P.T. Chang The application of support vector machines to forecast tourist arrivals in Barbados: an empirical study Int. J. Manag. 123 2 2006 375 385
    • (2006) Int. J. Manag. , vol.123 , Issue.2 , pp. 375-385
    • Pai, P.F.1    Hong, W.C.2    Chang, P.T.3
  • 26
    • 33748695973 scopus 로고    scopus 로고
    • Support vector regression with genetic algorithms in forecasting tourism demand
    • K.Y. Chen, and C.H. Wang Support vector regression with genetic algorithms in forecasting tourism demand Tour. Manag. 28 1 2007 215 226
    • (2007) Tour. Manag. , vol.28 , Issue.1 , pp. 215-226
    • Chen, K.Y.1    Wang, C.H.2
  • 27
    • 79953692971 scopus 로고    scopus 로고
    • Combining linear and nonlinear model in forecasting tourism demand
    • K.Y. Chen Combining linear and nonlinear model in forecasting tourism demand Expert Syst. Appl. 38 8 2011 10368 10376
    • (2011) Expert Syst. Appl. , vol.38 , Issue.8 , pp. 10368-10376
    • Chen, K.Y.1
  • 28
    • 17844363481 scopus 로고    scopus 로고
    • Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters
    • J.H. Min, and Y.C. Lee Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters Expert Syst. Appl. 28 4 2005 603 614
    • (2005) Expert Syst. Appl. , vol.28 , Issue.4 , pp. 603-614
    • Min, J.H.1    Lee, Y.C.2
  • 30
    • 79952444007 scopus 로고    scopus 로고
    • Electromechanical equipment state forecasting based on genetic algorithm-support vector regression
    • J. Huang, Y.C. Bo, and H.Y. Wang Electromechanical equipment state forecasting based on genetic algorithm-support vector regression Expert Syst. Appl. 38 7 2011 8399 8402
    • (2011) Expert Syst. Appl. , vol.38 , Issue.7 , pp. 8399-8402
    • Huang, J.1    Bo, Y.C.2    Wang, H.Y.3
  • 31
    • 78650714713 scopus 로고    scopus 로고
    • Housing price forecasting based on genetic algorithm and support vector machine
    • J.R. Gu, M.C. Zhu, and L.G.Y. Jiang Housing price forecasting based on genetic algorithm and support vector machine Expert Syst. Appl. 38 4 2011 3383 3386
    • (2011) Expert Syst. Appl. , vol.38 , Issue.4 , pp. 3383-3386
    • Gu, J.R.1    Zhu, M.C.2    Jiang, L.G.Y.3
  • 32
    • 84655163231 scopus 로고    scopus 로고
    • A hybrid stock selection model using genetic algorithms and support vector regression
    • C.F. Huang A hybrid stock selection model using genetic algorithms and support vector regression Appl. Soft Comput. 12 2012 807 818
    • (2012) Appl. Soft Comput. , vol.12 , pp. 807-818
    • Huang, C.F.1
  • 33
    • 0035090747 scopus 로고    scopus 로고
    • An improvement of the standard genetic algorithm fighting premature convergence in continuous optimization
    • J. Andre, P. Siarry, and T. Dognon An improvement of the standard genetic algorithm fighting premature convergence in continuous optimization Adv. Eng. Softw. 32 1 2001 49 60
    • (2001) Adv. Eng. Softw. , vol.32 , Issue.1 , pp. 49-60
    • Andre, J.1    Siarry, P.2    Dognon, T.3
  • 34
    • 34047260593 scopus 로고    scopus 로고
    • Adaptive genetic algorithms applied to dynamic multiobjective problems
    • Z. Bingul Adaptive genetic algorithms applied to dynamic multiobjective problems Appl. Soft Comput. 7 3 2007 791 799
    • (2007) Appl. Soft Comput. , vol.7 , Issue.3 , pp. 791-799
    • Bingul, Z.1
  • 35
    • 0028409149 scopus 로고
    • Adaptive probabilities of crossover and mutation in genetic algorithms
    • M. Srinivas, and L.M. Patnaik Adaptive probabilities of crossover and mutation in genetic algorithms IEEE Trans. Syst. Man Cybern. 24 4 1994 656 667
    • (1994) IEEE Trans. Syst. Man Cybern. , vol.24 , Issue.4 , pp. 656-667
    • Srinivas, M.1    Patnaik, L.M.2
  • 37
    • 36549022027 scopus 로고    scopus 로고
    • Tourism demand modelling and forecasting - A review of recent research
    • H.Y. Song, and G. Li Tourism demand modelling and forecasting - a review of recent research Tour. Manag. 29 2 2008 203 220
    • (2008) Tour. Manag. , vol.29 , Issue.2 , pp. 203-220
    • Song, H.Y.1    Li, G.2
  • 39
    • 84860838793 scopus 로고    scopus 로고
    • Analysis about the seasonality of China's crude oil import based on X-12-ARIMA
    • Z.B. Zhou, and X.C. Dong Analysis about the seasonality of China's crude oil import based on X-12-ARIMA Energy 2 1 2012 281 288
    • (2012) Energy , vol.2 , Issue.1 , pp. 281-288
    • Zhou, Z.B.1    Dong, X.C.2
  • 40
    • 84879535723 scopus 로고    scopus 로고
    • Masking of volatility by seasonal adjustment methods
    • A. Hayat, and M.I. Bhatti Masking of volatility by seasonal adjustment methods Econ. Model. 33 2013 676 688
    • (2013) Econ. Model. , vol.33 , pp. 676-688
    • Hayat, A.1    Bhatti, M.I.2
  • 41
    • 49049143455 scopus 로고
    • Trends and random walks in macroeconmic time series: Some evidence and implications
    • C.R. Nelson, and C.R. Plosser Trends and random walks in macroeconmic time series: some evidence and implications J. Monet. Econ. 10 2 1982 139 162
    • (1982) J. Monet. Econ. , vol.10 , Issue.2 , pp. 139-162
    • Nelson, C.R.1    Plosser, C.R.2
  • 42
    • 4344591889 scopus 로고    scopus 로고
    • Neural network forecasting for seasonal and trend time series
    • G.P. Zhang, and M. Qi Neural network forecasting for seasonal and trend time series Eur. J. Oper. Res. 60 2 2005 501 514
    • (2005) Eur. J. Oper. Res. , vol.60 , Issue.2 , pp. 501-514
    • Zhang, G.P.1    Qi, M.2
  • 43
    • 77249122037 scopus 로고    scopus 로고
    • Time series forecasting by a seasonal support vector regression model
    • P.F. Pai, K.P. Lin, C.S. Lin, and P.T. Chang Time series forecasting by a seasonal support vector regression model Expert Syst. Appl. 7 6 2010 4261 4265
    • (2010) Expert Syst. Appl. , vol.7 , Issue.6 , pp. 4261-4265
    • Pai, P.F.1    Lin, K.P.2    Lin, C.S.3    Chang, P.T.4
  • 44
    • 84886800470 scopus 로고    scopus 로고
    • Measuring the seasonality in tourism with the comparison of different methods
    • K. Kurtulus, and U. Sevki Measuring the seasonality in tourism with the comparison of different methods Euro. Med. J. Bus. 5 2 2010 191 214
    • (2010) Euro. Med. J. Bus. , vol.5 , Issue.2 , pp. 191-214
    • Kurtulus, K.1    Sevki, U.2
  • 45
    • 33644498904 scopus 로고    scopus 로고
    • Forecasting realized volatility using a long-memory stochastic volatility model: Estimation, prediction and seasonal adjustment
    • R. Deo, C. Hurvich, and Y. Lu Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment J. Econ. 131 1-2 2006 29 58
    • (2006) J. Econ. , vol.131 , Issue.12 , pp. 29-58
    • Deo, R.1    Hurvich, C.2    Lu, Y.3
  • 46
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • A.J. Smola, and B. Schölkopf A tutorial on support vector regression Stat. Comput. 4 3 2004 199 222
    • (2004) Stat. Comput. , vol.4 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 47
    • 49549103982 scopus 로고    scopus 로고
    • Robust face recognition under partial occlusion based on support vector machine with local Gaussian summation kernel
    • K. Hotta Robust face recognition under partial occlusion based on support vector machine with local Gaussian summation kernel Image Vis. Comput. 26 11 2008 1490 1498
    • (2008) Image Vis. Comput. , vol.26 , Issue.11 , pp. 1490-1498
    • Hotta, K.1
  • 48
    • 58349084263 scopus 로고    scopus 로고
    • A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression
    • C.H. Wu, G.H. Tzeng, and R.H. Lin A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression Expert Syst. Appl. 6 3 2009 4725 4735
    • (2009) Expert Syst. Appl. , vol.6 , Issue.3 , pp. 4725-4735
    • Wu, C.H.1    Tzeng, G.H.2    Lin, R.H.3
  • 49
    • 84888434020 scopus 로고    scopus 로고
    • Application of SVR with chaotic GASA algorithm to forecast Taiwanese 3G mobile phone demand
    • L.Y. Chen Application of SVR with chaotic GASA algorithm to forecast Taiwanese 3G mobile phone demand Neurocomputing 127 2014 206 213
    • (2014) Neurocomputing , vol.127 , pp. 206-213
    • Chen, L.Y.1
  • 50
    • 78751627947 scopus 로고    scopus 로고
    • SVR with hybrid chaotic genetic algorithms for tourism demand forecasting
    • W.C. Hong, Y.C. Dong, L.Y. Chen, and S.Y. Wei SVR with hybrid chaotic genetic algorithms for tourism demand forecasting Appl. Soft Comput. 11 2 2011 881 1890
    • (2011) Appl. Soft Comput. , vol.11 , Issue.2 , pp. 881-1890
    • Hong, W.C.1    Dong, Y.C.2    Chen, L.Y.3    Wei, S.Y.4
  • 51
    • 0027881392 scopus 로고
    • A preliminary assessment of the spatial and temporal characteristics of human comfort in China
    • G.R. McGregor A preliminary assessment of the spatial and temporal characteristics of human comfort in China Int. J. Climatol. 3 7 1993 707 725
    • (1993) Int. J. Climatol. , vol.3 , Issue.7 , pp. 707-725
    • McGregor, G.R.1
  • 52
    • 84912136930 scopus 로고    scopus 로고
    • The impact of new holiday institution on the tourist flow during "golden Week" and its significance-evidence from the key scenic areas monitored by National Holiday Office
    • F. Lee The impact of new holiday institution on the tourist flow during "Golden Week" and its significance-evidence from the key scenic areas monitored by National Holiday Office Tour. Tribune 24 6 2009 12 18
    • (2009) Tour. Tribune , vol.24 , Issue.6 , pp. 12-18
    • Lee, F.1
  • 53
    • 33750988786 scopus 로고    scopus 로고
    • Short term electric load forecasting: A tutorial
    • E. Kyriakides, and M. Polycarpou Short term electric load forecasting: a tutorial Stud. Comput. Intell. 35 2007 391 418
    • (2007) Stud. Comput. Intell. , vol.35 , pp. 391-418
    • Kyriakides, E.1    Polycarpou, M.2
  • 54
    • 33745758912 scopus 로고    scopus 로고
    • Quantifying the effects of tourism crises: An application to Scotland
    • J. Eugenio-Martin, M.T. Sinclair, and I. Yeoman Quantifying the effects of tourism crises: an application to Scotland J. Travel Tour. Mark. 19 2-3 2006 21 34
    • (2006) J. Travel Tour. Mark. , vol.19 , Issue.23 , pp. 21-34
    • Eugenio-Martin, J.1    Sinclair, M.T.2    Yeoman, I.3
  • 55
    • 36549046391 scopus 로고    scopus 로고
    • The effect of the SARS illness on tourism in Taiwan: An empirical study
    • J.C.H. Min The effect of the SARS illness on tourism in Taiwan: an empirical study Int. J. Manag. 22 3 2005 497 506
    • (2005) Int. J. Manag. , vol.22 , Issue.3 , pp. 497-506
    • Min, J.C.H.1
  • 56
    • 0042731488 scopus 로고    scopus 로고
    • Events in Indonesia: Exploring the limits to formal tourism trends forecasting methods in complex crisis situations
    • B. Prideaux, E. Laws, and B. Faulkner Events in Indonesia: exploring the limits to formal tourism trends forecasting methods in complex crisis situations Tour. Manag. 24 4 2003 475 487
    • (2003) Tour. Manag. , vol.24 , Issue.4 , pp. 475-487
    • Prideaux, B.1    Laws, E.2    Faulkner, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.