메뉴 건너뛰기




Volumn 12, Issue 1, 2012, Pages 274-279

Small-time scale network traffic prediction based on flexible neural tree

Author keywords

Flexible neural tree model; Genetic programming; Network traffic; Particle Swarm Optimization; Small time scale

Indexed keywords

ACTIVATION FUNCTIONS; FLEXIBLE NEURAL TREE MODEL; FLEXIBLE NEURAL TREES; INPUT VARIABLES; NETWORK TRAFFIC; PARTICLE SWARM OPTIMIZATION ALGORITHM; REAL TRAFFIC; SMALL-TIME SCALE; STATISTICAL FEATURES; TRAFFIC MEASUREMENTS;

EID: 81155130791     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2011.08.045     Document Type: Article
Times cited : (83)

References (32)
  • 1
    • 27644546832 scopus 로고    scopus 로고
    • Bifurcations and multiple traffic jams in a car-following model with reaction-time delay
    • DOI 10.1016/j.physd.2005.09.004, PII S0167278905003775
    • Orosz G., Krauskopf B., and Wilson R.E. Bifurcations and multiple traffic jams in a car-following model with reaction-time delay Physica D 211 2005 277 293 (Pubitemid 41550117)
    • (2005) Physica D: Nonlinear Phenomena , vol.211 , Issue.3-4 , pp. 277-293
    • Orosz, G.1    Krauskopf, B.2    Wilson, R.E.3
  • 2
    • 42749102192 scopus 로고    scopus 로고
    • Global bifurcation investigation of an optimal velocity traffic model with driver reaction time
    • Orosz G., Wilson R.E., and Krauskopf B. Global bifurcation investigation of an optimal velocity traffic model with driver reaction time Phys. Rev. E 70 2004 026207
    • (2004) Phys. Rev. e , vol.70 , pp. 026207
    • Orosz, G.1    Wilson, R.E.2    Krauskopf, B.3
  • 3
    • 4644234157 scopus 로고    scopus 로고
    • Bifurcation analysis of a class of 'car following' traffic models
    • Gasser I., Sirito G., and Werner B. Bifurcation analysis of a class of 'car following' traffic models Physica D 197 2004 222 241
    • (2004) Physica D , vol.197 , pp. 222-241
    • Gasser, I.1    Sirito, G.2    Werner, B.3
  • 4
    • 0037274637 scopus 로고    scopus 로고
    • An adaptable neural-network model for recursive nonlinear traffic prediction and modeling of MPEG video sources
    • Doulamis A.D., Doulamis N.D., and Kollias S.D. An adaptable neural-network model for recursive nonlinear traffic prediction and modeling of MPEG video sources IEEE Trans. Neural Netw. 14 2003 150 165
    • (2003) IEEE Trans. Neural Netw. , vol.14 , pp. 150-165
    • Doulamis, A.D.1    Doulamis, N.D.2    Kollias, S.D.3
  • 5
    • 33847617106 scopus 로고    scopus 로고
    • Modeling the coevolution of topology and traffic on weighted technological networks
    • Xie Y.B., Wang W.X., and Wang B.H. Modeling the coevolution of topology and traffic on weighted technological networks Phys. Rev. E 75 2007 026111
    • (2007) Phys. Rev. e , vol.75 , pp. 026111
    • Xie, Y.B.1    Wang, W.X.2    Wang, B.H.3
  • 6
    • 0042474246 scopus 로고    scopus 로고
    • Small-time scaling behaviors of Internet backbone traffic: An empirical study
    • Zhang Z.L., Ribeiro V.J., Mooon S., and Diot C. Small-time scaling behaviors of Internet backbone traffic: an empirical study IEEE INFOCOM 3 2003 1826 1836
    • (2003) IEEE INFOCOM , vol.3 , pp. 1826-1836
    • Zhang, Z.L.1    Ribeiro, V.J.2    Mooon, S.3    Diot, C.4
  • 7
    • 33645764183 scopus 로고    scopus 로고
    • Non-stationarity and high-order scaling in TCP flow arrivals: A methodological analysis
    • Uglig S. Non-stationarity and high-order scaling in TCP flow arrivals: a methodological analysis ACM SIGCOMM, Computer Communications Review, 34 2004
    • (2004) ACM SIGCOMM, Computer Communications Review, 34
    • Uglig, S.1
  • 8
    • 13544252457 scopus 로고    scopus 로고
    • Chaotic analysis of traffic time series
    • DOI 10.1016/j.chaos.2004.09.104, PII S0960077904006472
    • Shang P., Li X., and Kamae S. Chaotic analysis of traffic time series Chaos Solitons Fractals 25 2005 121 128 (Pubitemid 40220066)
    • (2005) Chaos, Solitons and Fractals , vol.25 , Issue.1 , pp. 121-128
    • Shang, P.1    Li, X.2    Kamae, S.3
  • 11
    • 33646572227 scopus 로고    scopus 로고
    • Chaotic time series prediction with a global model: Artificial neural network
    • DOI 10.1016/j.jhydrol.2005.07.048, PII S0022169405004142
    • Karunasinghe D.S.K., and Liong S.-Y. Chaotic time series prediction with a global model: artificial neural network J. Hydrol. 323 2006 92 105 (Pubitemid 43728879)
    • (2006) Journal of Hydrology , vol.323 , Issue.1-4 , pp. 92-105
    • Karunasinghe, D.S.K.1    Liong, S.-Y.2
  • 12
    • 37649032574 scopus 로고    scopus 로고
    • Learning and predicting time series by neural networks
    • Freking A., Kinzel W., and Kanter I. Learning and predicting time series by neural networks Phys. Rev. E 65 2002 050903
    • (2002) Phys. Rev. e , vol.65 , pp. 050903
    • Freking, A.1    Kinzel, W.2    Kanter, I.3
  • 13
    • 41349101486 scopus 로고    scopus 로고
    • Minimum description length neural networks for time series prediction
    • Small M., and Tse C.K. Minimum description length neural networks for time series prediction Phys. Rev. E 66 2002 066701
    • (2002) Phys. Rev. e , vol.66 , pp. 066701
    • Small, M.1    Tse, C.K.2
  • 14
    • 43649096310 scopus 로고    scopus 로고
    • Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network
    • DOI 10.1088/1674-1056/17/2/031
    • Ma Q.-L., Zheng Q.-L., Peng H., Zhong T.-W., and Qin J.-W. Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network Chin. Phys. B 17 2 2008 536 542 (Pubitemid 351682709)
    • (2008) Chinese Physics B , vol.17 , Issue.2 , pp. 536-542
    • Ma, Q.-L.1    Zheng, Q.-L.2    Peng, H.3    Zhong, T.-W.4    Qin, J.W.5
  • 16
    • 41349108278 scopus 로고    scopus 로고
    • Markov models from data by simple nonlinear time series predictors in delay embedding spaces
    • Zhang J.-F., and Hu S.-T. Markov models from data by simple nonlinear time series predictors in delay embedding spaces Phys. Rev. E 65 2002 056201
    • (2002) Phys. Rev. e , vol.65 , pp. 056201
    • Zhang, J.-F.1    Hu, S.-T.2
  • 17
    • 35348991143 scopus 로고    scopus 로고
    • A new local linear prediction model for chaotic time series
    • Meng Q., and Peng Y. A new local linear prediction model for chaotic time series Phys. Lett. A 370 2007 465 470
    • (2007) Phys. Lett. A , vol.370 , pp. 465-470
    • Meng, Q.1    Peng, Y.2
  • 18
    • 41949124029 scopus 로고    scopus 로고
    • The neighbor point selection method for local prediction based on information criterion
    • Meng Q.-F., Peng Y., Qu H., and Han M. The neighbor point selection method for local prediction based on information criterion Acta Phys. Sin. 57 3 2008 1423 1430
    • (2008) Acta Phys. Sin. , vol.57 , Issue.3 , pp. 1423-1430
    • Meng, Q.-F.1    Peng, Y.2    Qu, H.3    Han, M.4
  • 19
    • 33746645277 scopus 로고    scopus 로고
    • Chaotic time series prediction using fuzzy sigmoid kernel-based support vector machines
    • DOI 10.1088/1009-1963/15/6/012, 012
    • Liu H., Liu D., and Deng L.-F. Chaotic time series prediction using fuzzy sigmoid kernel-based support vector machines Chin. Phys. 15 6 2006 1196 1200 (Pubitemid 44149725)
    • (2006) Chinese Physics , vol.15 , Issue.6 , pp. 1196-1200
    • Liu, H.1    Liu, D.2    Deng, L.-F.3
  • 20
    • 27744562830 scopus 로고    scopus 로고
    • Neural Volterra filter for chaotic time series prediction
    • DOI 10.1088/1009-1963/14/11/007
    • Li H., Zhang J., and Xiao X. Neural Volterra filter for chaotic time series prediction Chin. Phys. 14 11 2005 2181 2188 (Pubitemid 41604373)
    • (2005) Chinese Physics , vol.14 , Issue.11 , pp. 2181-2188
    • Li, H.-C.1    Zhang, J.-S.2    Xiao, X.-C.3
  • 21
    • 33646341240 scopus 로고    scopus 로고
    • A novel multi-step adaptive prediction method for chaotic time series
    • Meng Q., Zhang Q., and Mu W. A novel multi-step adaptive prediction method for chaotic time series Acta Phys. Sin. 55 4 2006 1666 1671
    • (2006) Acta Phys. Sin. , vol.55 , Issue.4 , pp. 1666-1671
    • Meng, Q.1    Zhang, Q.2    Mu, W.3
  • 23
    • 21244438033 scopus 로고    scopus 로고
    • Time-series forecasting using flexible neural tree model
    • DOI 10.1016/j.ins.2004.10.005, PII S0020025504002944
    • Chen Y., Yang B., Dong J., and Abraham A. Time-series forecasting using flexible neural tree model Inf. Sci. 174 2005 219 235 (Pubitemid 40893971)
    • (2005) Information Sciences , vol.174 , Issue.3-4 , pp. 219-235
    • Chen, Y.1    Yang, B.2    Dong, J.3    Abraham, A.4
  • 24
    • 33845997779 scopus 로고    scopus 로고
    • Flexible neural trees ensemble for stock index modeling
    • DOI 10.1016/j.neucom.2006.10.005, PII S0925231206002736
    • Chen Y., Yang B., and Abraham A. Flexible neural trees ensemble for stock index modeling Neurocomputing 70 2007 697 703 (Pubitemid 46043966)
    • (2007) Neurocomputing , vol.70 , Issue.4-6 , pp. 697-703
    • Chen, Y.1    Yang, B.2    Abraham, A.3
  • 25
    • 16544392706 scopus 로고    scopus 로고
    • Nonlinear system modeling via optimal design of neural trees
    • Chen Y., Yang B., and Dong J. Nonlinear system modeling via optimal design of neural trees Int. J. Neural Syst. 14 2 2004 125 137
    • (2004) Int. J. Neural Syst. , vol.14 , Issue.2 , pp. 125-137
    • Chen, Y.1    Yang, B.2    Dong, J.3
  • 26
    • 0031221187 scopus 로고    scopus 로고
    • Fitness distributions in evolutionary computation
    • Chellapilla K. Fitness distributions in evolutionary computation IEEE Trans. Evol. Comput. 1 1997 209 216
    • (1997) IEEE Trans. Evol. Comput. , vol.1 , pp. 209-216
    • Chellapilla, K.1
  • 27
    • 0037274637 scopus 로고    scopus 로고
    • An adaptable neural-network model for recursive nonlinear traffic prediction and modeling of MPEG video sources
    • Doulamis A.D., Doulamis N.D., and Kollias S.D. An adaptable neural-network model for recursive nonlinear traffic prediction and modeling of MPEG video sources IEEE Trans. Neural Netw. 14 1 2003 150 165
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.1 , pp. 150-165
    • Doulamis, A.D.1    Doulamis, N.D.2    Kollias, S.D.3
  • 28
    • 84865654427 scopus 로고    scopus 로고
    • Modeling early-age hydration kinetics of Portland cement using flexible neural tree
    • doi:10.1007/s00521-010-0475-4 Online First, 3 November
    • L. Wang, B. Yang, Y. Chen, X. Zhao, J. Chang, Modeling early-age hydration kinetics of Portland cement using flexible neural tree, Neural Comput. Appl., doi:10.1007/s00521-010-0475-4, Online First, 3 November 2010.
    • (2010) Neural Comput. Appl.
    • Wang, L.1    Yang, B.2    Chen, Y.3    Zhao, X.4    Chang, J.5
  • 29
    • 70449705977 scopus 로고    scopus 로고
    • Network traffic prediction by a wavelet-based combined model
    • Sun H.-L., Jin Y.-H., Cui Y.-D., and Cheng S.-D. Network traffic prediction by a wavelet-based combined model Chin. Phys. B 18 11 2009 47 60
    • (2009) Chin. Phys. B , vol.18 , Issue.11 , pp. 47-60
    • Sun, H.-L.1    Jin, Y.-H.2    Cui, Y.-D.3    Cheng, S.-D.4
  • 30
    • 77953815096 scopus 로고    scopus 로고
    • A network traffic prediction approach based on multifractal modeling
    • Vieira F.H.T., Bianchi G.R., and Lee L.L. A network traffic prediction approach based on multifractal modeling J. High Speed Netw. 17 2 2010 83 96
    • (2010) J. High Speed Netw. , vol.17 , Issue.2 , pp. 83-96
    • Vieira, F.H.T.1    Bianchi, G.R.2    Lee, L.L.3
  • 31
    • 67650761049 scopus 로고    scopus 로고
    • Small-time scale network traffic prediction based on local support vector machine regression model
    • Meng Q., and Chen Y. Small-time scale network traffic prediction based on local support vector machine regression model Chin. Phys. B 18 2009 2112 2194
    • (2009) Chin. Phys. B , vol.18 , pp. 2112-2194
    • Meng, Q.1    Chen, Y.2
  • 32
    • 77955552432 scopus 로고    scopus 로고
    • Adaptive neural network model for time-series forecasting
    • Wonga W.K., Xia M., and Chu W.C. Adaptive neural network model for time-series forecasting Eur. J. Oper. Res. 207 2010 807 816
    • (2010) Eur. J. Oper. Res. , vol.207 , pp. 807-816
    • Wonga, W.K.1    Xia, M.2    Chu, W.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.