-
1
-
-
85023762808
-
-
(Accessed January 12, 2017)
-
IEA (2017) https://www.iea.org/ (Accessed January 12, 2017)
-
(2017)
-
-
-
3
-
-
0035976463
-
Lithium ion secondary batteries; past 10 years and the future
-
COI: 1:CAS:528:DC%2BD3MXot1Kgu7k%3D
-
Nishi Y (2001) Lithium ion secondary batteries; past 10 years and the future. J Power Sources 100(1–2):101–106
-
(2001)
J Power Sources
, vol.100
, Issue.1-2
, pp. 101-106
-
-
Nishi, Y.1
-
4
-
-
0035890440
-
Issues and challenges facing rechargeable lithium batteries
-
COI: 1:CAS:528:DC%2BD3MXovFGitrY%3D
-
Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367
-
(2001)
Nature
, vol.414
, Issue.6861
, pp. 359-367
-
-
Tarascon, J.M.1
Armand, M.2
-
5
-
-
7544234502
-
What are batteries, fuel cells, and supercapacitors?
-
COI: 1:CAS:528:DC%2BD2cXnvVKltrg%3D
-
Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4269
-
(2004)
Chem Rev
, vol.104
, Issue.10
, pp. 4245-4269
-
-
Winter, M.1
Brodd, R.J.2
-
6
-
-
38949102073
-
Building better batteries
-
COI: 1:CAS:528:DC%2BD1cXhs1Kntrc%3D
-
Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657
-
(2008)
Nature
, vol.451
, Issue.7179
, pp. 652-657
-
-
Armand, M.1
Tarascon, J.M.2
-
7
-
-
73249151335
-
Lithium batteries: status, prospects and future
-
COI: 1:CAS:528:DC%2BC3cXivF2htQ%3D%3D
-
Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430
-
(2010)
J Power Sources
, vol.195
, Issue.9
, pp. 2419-2430
-
-
Scrosati, B.1
Garche, J.2
-
8
-
-
80052230656
-
Challenges in the development of advanced Li-ion batteries: a review
-
COI: 1:CAS:528:DC%2BC3MXht1Cqs7jE
-
Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262
-
(2011)
Energy Environ Sci
, vol.4
, Issue.9
, pp. 3243-3262
-
-
Etacheri, V.1
Marom, R.2
Elazari, R.3
Salitra, G.4
Aurbach, D.5
-
9
-
-
80052186975
-
Lithium-ion batteries. A look into the future
-
COI: 1:CAS:528:DC%2BC3MXht1Cqs7nN
-
Scrosati B, Hassoun J, Sun Y-K (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4(9):3287–3295
-
(2011)
Energy Environ Sci
, vol.4
, Issue.9
, pp. 3287-3295
-
-
Scrosati, B.1
Hassoun, J.2
Sun, Y.-K.3
-
10
-
-
84880404469
-
Current research trends and prospects among the various materials and designs used in lithium-based batteries
-
COI: 1:CAS:528:DC%2BC3sXltFOmu7o%3D
-
Wagner R, Preschitschek N, Passerini S, Leker J, Winter M (2013) Current research trends and prospects among the various materials and designs used in lithium-based batteries. J Appl Electrochem 43(5):481–496
-
(2013)
J Appl Electrochem
, vol.43
, Issue.5
, pp. 481-496
-
-
Wagner, R.1
Preschitschek, N.2
Passerini, S.3
Leker, J.4
Winter, M.5
-
11
-
-
84949217063
-
The energy-storage frontier: lithium-ion batteries and beyond
-
COI: 1:CAS:528:DC%2BC2MXhvFGks7nL
-
Crabtree G, Kócs E, Trahey L (2015) The energy-storage frontier: lithium-ion batteries and beyond. MRS Bull 40(12):1067–1078
-
(2015)
MRS Bull
, vol.40
, Issue.12
, pp. 1067-1078
-
-
Crabtree, G.1
Kócs, E.2
Trahey, L.3
-
12
-
-
84924528297
-
Towards greener and more sustainable batteries for electrical energy storage
-
COI: 1:CAS:528:DC%2BC2cXhvFKlsrjF
-
Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7(1):19–29
-
(2015)
Nat Chem
, vol.7
, Issue.1
, pp. 19-29
-
-
Larcher, D.1
Tarascon, J.M.2
-
13
-
-
85006372668
-
A brief review: past, present and future of lithium ion batteries
-
COI: 1:CAS:528:DC%2BC28XitFSlsLzP
-
Schipper F, Aurbach D (2016) A brief review: past, present and future of lithium ion batteries. Russ J Electrochem 52(12):1095–1121
-
(2016)
Russ J Electrochem
, vol.52
, Issue.12
, pp. 1095-1121
-
-
Schipper, F.1
Aurbach, D.2
-
14
-
-
84979026439
-
Li-ion batteries: basics, progress, and challenges
-
Deng D (2015) Li-ion batteries: basics, progress, and challenges. Energy Sci Eng 3(5):385–418
-
(2015)
Energy Sci Eng
, vol.3
, Issue.5
, pp. 385-418
-
-
Deng, D.1
-
15
-
-
85012928318
-
The development and future of lithium ion batteries
-
COI: 1:CAS:528:DC%2BC2sXitlKnsbk%3D
-
Blomgren GE (2017) The development and future of lithium ion batteries. J Electrochem Soc 164(1):A5019–A5025
-
(2017)
J Electrochem Soc
, vol.164
, Issue.1
, pp. A5019-A5025
-
-
Blomgren, G.E.1
-
16
-
-
85020147359
-
The Li-ion battery: 25 years of exciting and enriching experiences
-
COI: 1:CAS:528:DC%2BC2sXktlWhurk%3D
-
Tarascon JM (2016) The Li-ion battery: 25 years of exciting and enriching experiences. Electrochem Soc Interface 25(3):79–83
-
(2016)
Electrochem Soc Interface
, vol.25
, Issue.3
, pp. 79-83
-
-
Tarascon, J.M.1
-
17
-
-
0542421761
-
Insertion reactions in advanced electrochemical energy storage
-
COI: 1:CAS:528:DyaK1cXksV2gtb4%3D
-
Besenhard JO, Winter M (1998) Insertion reactions in advanced electrochemical energy storage. Pure Appl Chem 70(3):603–608
-
(1998)
Pure Appl Chem
, vol.70
, Issue.3
, pp. 603-608
-
-
Besenhard, J.O.1
Winter, M.2
-
18
-
-
84925064096
-
Future generations of cathode materials: an automotive industry perspective
-
COI: 1:CAS:528:DC%2BC2MXitlalsLk%3D
-
Andre D, Kim S-J, Lamp P, Lux SF, Maglia F, Paschos O, Stiaszny B (2015) Future generations of cathode materials: an automotive industry perspective. J Mater Chem A 3:6709–6732
-
(2015)
J Mater Chem A
, vol.3
, pp. 6709-6732
-
-
Andre, D.1
Kim, S.-J.2
Lamp, P.3
Lux, S.F.4
Maglia, F.5
Paschos, O.6
Stiaszny, B.7
-
19
-
-
84946039702
-
Cost modeling of lithium-ion battery cells for automotive applications
-
Patry G, Romagny A, Martinet S, Froelich D (2014) Cost modeling of lithium-ion battery cells for automotive applications. Energy Sci Eng 3(1):71–82
-
(2014)
Energy Sci Eng
, vol.3
, Issue.1
, pp. 71-82
-
-
Patry, G.1
Romagny, A.2
Martinet, S.3
Froelich, D.4
-
21
-
-
84865279343
-
Recent advances in the development of Li-air batteries
-
COI: 1:CAS:528:DC%2BC38Xhtl2gtbzL
-
Capsoni D, Bini M, Ferrari S, Quartarone E, Mustarelli P (2012) Recent advances in the development of Li-air batteries. J Power Sources 220:253–263
-
(2012)
J Power Sources
, vol.220
, pp. 253-263
-
-
Capsoni, D.1
Bini, M.2
Ferrari, S.3
Quartarone, E.4
Mustarelli, P.5
-
22
-
-
84855328636
-
A critical review of Li/air batteries
-
COI: 1:CAS:528:DC%2BC38XjvFI%3D
-
Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A (2012) A critical review of Li/air batteries. J Electrochem Soc 159(2):R1–R30
-
(2012)
J Electrochem Soc
, vol.159
, Issue.2
, pp. R1-R30
-
-
Christensen, J.1
Albertus, P.2
Sanchez-Carrera, R.S.3
Lohmann, T.4
Kozinsky, B.5
Liedtke, R.6
Ahmed, J.7
Kojic, A.8
-
23
-
-
84886872456
-
Recent progress and remaining challenges in sulfur-based lithium secondary batteries—a review
-
COI: 1:CAS:528:DC%2BC3sXhs1CisLvI
-
Bresser D, Passerini S, Scrosati B (2013) Recent progress and remaining challenges in sulfur-based lithium secondary batteries—a review. Chem Commun 49(90):10545–10562
-
(2013)
Chem Commun
, vol.49
, Issue.90
, pp. 10545-10562
-
-
Bresser, D.1
Passerini, S.2
Scrosati, B.3
-
24
-
-
84912542845
-
Rechargeable lithium–sulfur batteries
-
COI: 1:CAS:528:DC%2BC2cXhtFGms77J
-
Manthiram A, Fu Y, Chung S-H, Zu C, Su Y-S (2014) Rechargeable lithium–sulfur batteries. Chem Rev 114(23):11751–11787
-
(2014)
Chem Rev
, vol.114
, Issue.23
, pp. 11751-11787
-
-
Manthiram, A.1
Fu, Y.2
Chung, S.-H.3
Zu, C.4
Su, Y.-S.5
-
25
-
-
85014713058
-
Odyssey of multivalent cathode materials: open questions and future challenges
-
Canepa P, Sai Gautam G, Hannah DC, Malik R, Liu M, Gallagher KG, Persson KA, Ceder G (2017) Odyssey of multivalent cathode materials: open questions and future challenges. Chem Rev 117(5):4287–4341
-
(2017)
Chem Rev
, vol.117
, Issue.5
, pp. 4287-4341
-
-
Canepa, P.1
Sai Gautam, G.2
Hannah, D.C.3
Malik, R.4
Liu, M.5
Gallagher, K.G.6
Persson, K.A.7
Ceder, G.8
-
26
-
-
0037085209
-
Advances in battery technology: rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries
-
COI: 1:CAS:528:DC%2BD38XhvVels78%3D
-
Besenhard JO, Winter M (2002) Advances in battery technology: rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries. ChemPhysChem 3(2):155–159
-
(2002)
ChemPhysChem
, vol.3
, Issue.2
, pp. 155-159
-
-
Besenhard, J.O.1
Winter, M.2
-
27
-
-
84944319922
-
A review of lithium and non-lithium based solid state batteries
-
Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, Choi MJ, Chung HY, Park S (2015) A review of lithium and non-lithium based solid state batteries. J Power Sources 282:299–322
-
(2015)
J Power Sources
, vol.282
, pp. 299-322
-
-
Kim, J.G.1
Son, B.2
Mukherjee, S.3
Schuppert, N.4
Bates, A.5
Kwon, O.6
Choi, M.J.7
Chung, H.Y.8
Park, S.9
-
28
-
-
85019545448
-
A solid future for battery development
-
Janek J, Zeier WG (2016) A solid future for battery development. Nature Energy 1:16141
-
(2016)
Nature Energy
, vol.1
, pp. 16141
-
-
Janek, J.1
Zeier, W.G.2
-
29
-
-
84869408653
-
-
Argonne National Laboratory, Argonne, IL US
-
Nelson P, Gallagher K, Bloom I, Dees D (2011) Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles. Chemical Sciences and Engineering Division. Argonne National Laboratory, Argonne, IL US
-
(2011)
Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles. Chemical Sciences and Engineering Division
-
-
Nelson, P.1
Gallagher, K.2
Bloom, I.3
Dees, D.4
-
30
-
-
84863114260
-
Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries
-
COI: 1:CAS:528:DC%2BC38XptVWku70%3D
-
Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci 5(7):7854–7863
-
(2012)
Energy Environ Sci
, vol.5
, Issue.7
, pp. 7854-7863
-
-
Thackeray, M.M.1
Wolverton, C.2
Isaacs, E.D.3
-
31
-
-
84898801617
-
Quantifying the promise of lithium-air batteries for electric vehicles
-
COI: 1:CAS:528:DC%2BC2cXmslyqtLc%3D
-
Gallagher KG, Goebel S, Greszler T, Mathias M, Oelerich W, Eroglu D, Srinivasan V (2014) Quantifying the promise of lithium-air batteries for electric vehicles. Energy Environ Sci 7(5):1555–1563
-
(2014)
Energy Environ Sci
, vol.7
, Issue.5
, pp. 1555-1563
-
-
Gallagher, K.G.1
Goebel, S.2
Greszler, T.3
Mathias, M.4
Oelerich, W.5
Eroglu, D.6
Srinivasan, V.7
-
32
-
-
84895882850
-
A better battery
-
COI: 1:CAS:528:DC%2BC2cXjs1Ghsb0%3D
-
Van Noorden R (2014) A better battery. Nature 507(7490):26–28
-
(2014)
Nature
, vol.507
, Issue.7490
, pp. 26-28
-
-
Van Noorden, R.1
-
33
-
-
84946076543
-
Rechargeable batteries: grasping for the limits of chemistry
-
COI: 1:CAS:528:DC%2BC2MXhslelu73K
-
Berg EJ, Villevieille C, Streich D, Trabesinger S, Novák P (2015) Rechargeable batteries: grasping for the limits of chemistry. J Electrochem Soc 162(14):A2468–A2475
-
(2015)
J Electrochem Soc
, vol.162
, Issue.14
, pp. A2468-A2475
-
-
Berg, E.J.1
Villevieille, C.2
Streich, D.3
Trabesinger, S.4
Novák, P.5
-
35
-
-
84910603733
-
Prospects for reducing the processing cost of lithium ion batteries
-
Wood Iii DL, Li J, Daniel C (2015) Prospects for reducing the processing cost of lithium ion batteries. J Power Sources 275:234–242
-
(2015)
J Power Sources
, vol.275
, pp. 234-242
-
-
Wood Iii, D.L.1
Li, J.2
Daniel, C.3
-
36
-
-
84869197275
-
History of lithium batteries
-
COI: 1:CAS:528:DC%2BC3MXhtVOnsLvK
-
Scrosati B (2011) History of lithium batteries. J Solid State Electrochem 15(7–8):1623–1630
-
(2011)
J Solid State Electrochem
, vol.15
, Issue.7-8
, pp. 1623-1630
-
-
Scrosati, B.1
-
37
-
-
84926290118
-
Batterien für medizinische Anwendungen
-
Placke T, Winter M (2015) Batterien für medizinische Anwendungen. Z Herz- Thorax- Gefäßchir 29(2):139–149
-
(2015)
Z Herz- Thorax- Gefäßchir
, vol.29
, Issue.2
, pp. 139-149
-
-
Placke, T.1
Winter, M.2
-
38
-
-
84957426986
-
Was braucht man für eine Super-Batterie?
-
Bieker P, Winter M (2015) Was braucht man für eine Super-Batterie? Chem Unserer Zeit 50(1):26–33
-
(2015)
Chem Unserer Zeit
, vol.50
, Issue.1
, pp. 26-33
-
-
Bieker, P.1
Winter, M.2
-
39
-
-
0011798522
-
Wiederaufladbare Batterien. Teil 1: Akkumulatoren mit wäßriger Elektrolytlösung
-
COI: 1:CAS:528:DC%2BD3cXis1eisL8%3D
-
Winter M, Besenhard JO (1999) Wiederaufladbare Batterien. Teil 1: Akkumulatoren mit wäßriger Elektrolytlösung. Chem Unserer Zeit 33(5):252–266
-
(1999)
Chem Unserer Zeit
, vol.33
, Issue.5
, pp. 252-266
-
-
Winter, M.1
Besenhard, J.O.2
-
42
-
-
84969513285
-
Electrode for use in secondary electrical energy storage devices—avoids any substantial change in dimension during repeated electrical charge and discharge cycles
-
McCullough FP, Beale AF (1989) Electrode for use in secondary electrical energy storage devices—avoids any substantial change in dimension during repeated electrical charge and discharge cycles. US Pat 4:865,931
-
(1989)
US Pat
, vol.4
, pp. 865,931
-
-
McCullough, F.P.1
Beale, A.F.2
-
44
-
-
85023764682
-
Flexible carbon fiber, carbon fiber electrode and secondary energy storage devices
-
McCullough FP (1996) Flexible carbon fiber, carbon fiber electrode and secondary energy storage devices. US Pat 5:518,836
-
(1996)
US Pat
, vol.5
, pp. 518,836
-
-
McCullough, F.P.1
-
45
-
-
84929121882
-
Flexible carbon fiber electrode with low modulus and high electrical conductivity, battery employing the carbon fiber electrode, and method of manufacture
-
McCullough FP (1996) Flexible carbon fiber electrode with low modulus and high electrical conductivity, battery employing the carbon fiber electrode, and method of manufacture. US Pat 5:532,083
-
(1996)
US Pat
, vol.5
, pp. 532,083
-
-
McCullough, F.P.1
-
46
-
-
0028464216
-
Dual intercalating molten electrolyte batteries
-
COI: 1:CAS:528:DyaK2cXltlOnurY%3D
-
Carlin RT, Delong HC, Fuller J, Trulove PC (1994) Dual intercalating molten electrolyte batteries. J Electrochem Soc 141(7):L73–L76
-
(1994)
J Electrochem Soc
, vol.141
, Issue.7
, pp. L73-L76
-
-
Carlin, R.T.1
Delong, H.C.2
Fuller, J.3
Trulove, P.C.4
-
47
-
-
0030290271
-
Electrochemistry of room-temperature chloroaluminate molten salts at graphitic and nongraphitic electrodes
-
COI: 1:CAS:528:DyaK28Xnt1OqsLY%3D
-
Carlin RT, Fuller J, Kuhn WK, Lysaght MJ, Trulove PC (1996) Electrochemistry of room-temperature chloroaluminate molten salts at graphitic and nongraphitic electrodes. J Appl Electrochem 26(11):1147–1160
-
(1996)
J Appl Electrochem
, vol.26
, Issue.11
, pp. 1147-1160
-
-
Carlin, R.T.1
Fuller, J.2
Kuhn, W.K.3
Lysaght, M.J.4
Trulove, P.C.5
-
48
-
-
0033906639
-
Energy and capacity projections for practical dual-graphite cells
-
COI: 1:CAS:528:DC%2BD3cXitVyqtLk%3D
-
Dahn JR, Seel JA (2000) Energy and capacity projections for practical dual-graphite cells. J Electrochem Soc 147(3):899–901
-
(2000)
J Electrochem Soc
, vol.147
, Issue.3
, pp. 899-901
-
-
Dahn, J.R.1
Seel, J.A.2
-
49
-
-
0033894084
-
6 into graphite
-
COI: 1:CAS:528:DC%2BD3cXitVyqtLg%3D
-
6 into graphite. J Electrochem Soc 147(3):892–898
-
(2000)
J Electrochem Soc
, vol.147
, Issue.3
, pp. 892-898
-
-
Seel, J.A.1
Dahn, J.R.2
-
50
-
-
84862880243
-
Dual-ion cells based on anion intercalation into graphite from ionic liquid-based electrolytes
-
COI: 1:CAS:528:DC%2BC38XhtV2ht7jN
-
Placke T, Bieker P, Lux SF, Fromm O, Meyer HW, Passerini S, Winter M (2012) Dual-ion cells based on anion intercalation into graphite from ionic liquid-based electrolytes. Z Phys Chem 226:391–407
-
(2012)
Z Phys Chem
, vol.226
, pp. 391-407
-
-
Placke, T.1
Bieker, P.2
Lux, S.F.3
Fromm, O.4
Meyer, H.W.5
Passerini, S.6
Winter, M.7
-
51
-
-
84875591420
-
Reversible intercalation of bis (trifluoromethanesulfonyl) imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells
-
COI: 1:CAS:528:DC%2BC38Xhs1yhu7nK
-
Placke T, Fromm O, Lux SF, Bieker P, Rothermel S, Meyer HW, Passerini S, Winter M (2012) Reversible intercalation of bis (trifluoromethanesulfonyl) imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells. J Electrochem Soc 159(11):A1755–A1765
-
(2012)
J Electrochem Soc
, vol.159
, Issue.11
, pp. A1755-A1765
-
-
Placke, T.1
Fromm, O.2
Lux, S.F.3
Bieker, P.4
Rothermel, S.5
Meyer, H.W.6
Passerini, S.7
Winter, M.8
-
52
-
-
84908010734
-
Dual-graphite cells based on the reversible intercalation of bis (trifluoromethanesulfonyl) imide anions from an ionic liquid electrolyte
-
COI: 1:CAS:528:DC%2BC2cXhtlClu73E
-
Rothermel S, Meister P, Schmuelling G, Fromm O, Meyer HW, Nowak S, Winter M, Placke T (2014) Dual-graphite cells based on the reversible intercalation of bis (trifluoromethanesulfonyl) imide anions from an ionic liquid electrolyte. Energy Environ Sci 7(10):3412–3423
-
(2014)
Energy Environ Sci
, vol.7
, Issue.10
, pp. 3412-3423
-
-
Rothermel, S.1
Meister, P.2
Schmuelling, G.3
Fromm, O.4
Meyer, H.W.5
Nowak, S.6
Winter, M.7
Placke, T.8
-
53
-
-
84893055943
-
Dual-graphite chemistry enabled by a high voltage electrolyte
-
COI: 1:CAS:528:DC%2BC2cXhsFaktrw%3D
-
Read JA, Cresce AV, Ervin MH, Xu K (2014) Dual-graphite chemistry enabled by a high voltage electrolyte. Energy Environ Sci 7(2):617–620
-
(2014)
Energy Environ Sci
, vol.7
, Issue.2
, pp. 617-620
-
-
Read, J.A.1
Cresce, A.V.2
Ervin, M.H.3
Xu, K.4
-
54
-
-
84961266957
-
A novel aluminum–graphite dual-ion battery
-
Zhang X, Tang Y, Zhang F, Lee C-S (2016) A novel aluminum–graphite dual-ion battery. Adv Energy Mater 6(11):1502588–1502593
-
(2016)
Adv Energy Mater
, vol.6
, Issue.11
, pp. 1502588-1502593
-
-
Zhang, X.1
Tang, Y.2
Zhang, F.3
Lee, C.-S.4
-
55
-
-
84989244981
-
Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries
-
COI: 1:CAS:528:DC%2BC28XhsFymtrrI
-
Tong X, Zhang F, Ji B, Sheng M, Tang Y (2016) Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries. Adv Mater 28(45):9979–9985
-
(2016)
Adv Mater
, vol.28
, Issue.45
, pp. 9979-9985
-
-
Tong, X.1
Zhang, F.2
Ji, B.3
Sheng, M.4
Tang, Y.5
-
56
-
-
84964681264
-
6 in dimethyl carbonate (DMC) electrolyte
-
COI: 1:CAS:528:DC%2BC28XnvFWjurc%3D
-
6 in dimethyl carbonate (DMC) electrolyte. J Electrochem Soc 163(7):A1206–A1213
-
(2016)
J Electrochem Soc
, vol.163
, Issue.7
, pp. A1206-A1213
-
-
Miyoshi, S.1
Nagano, H.2
Fukuda, T.3
Kurihara, T.4
Watanabe, M.5
Ida, S.6
Ishihara, T.7
-
57
-
-
84898444351
-
Dual-ion cells based on the electrochemical intercalation of asymmetric fluorosulfonyl-(trifluoromethanesulfonyl) imide anions into graphite
-
Meister P, Siozios V, Reiter J, Klamor S, Rothermel S, Fromm O, Meyer HW, Winter M, Placke T (2014) Dual-ion cells based on the electrochemical intercalation of asymmetric fluorosulfonyl-(trifluoromethanesulfonyl) imide anions into graphite. Electrochim Acta 130 (0):625–633
-
(2014)
Electrochim Acta
, vol.130
, pp. 625-633
-
-
Meister, P.1
Siozios, V.2
Reiter, J.3
Klamor, S.4
Rothermel, S.5
Fromm, O.6
Meyer, H.W.7
Winter, M.8
Placke, T.9
-
59
-
-
0042995336
-
Wiederaufladbare Batterien. Teil 2: Akkumulatoren mit nichtwäßriger Elektrolytlösung
-
COI: 1:CAS:528:DC%2BD3cXis1eitrc%3D
-
Winter M, Besenhard JO (1999) Wiederaufladbare Batterien. Teil 2: Akkumulatoren mit nichtwäßriger Elektrolytlösung. Chem Unserer Zeit 33(6):320–332
-
(1999)
Chem Unserer Zeit
, vol.33
, Issue.6
, pp. 320-332
-
-
Winter, M.1
Besenhard, J.O.2
-
60
-
-
0018739724
-
The electrochemical-behavior of alkali and alkaline-earth metals in non-aqueous battery systems - the solid electrolyte interphase model
-
COI: 1:CAS:528:DyaL3cXms1Knsg%3D%3D
-
Peled E (1979) The electrochemical-behavior of alkali and alkaline-earth metals in non-aqueous battery systems - the solid electrolyte interphase model. J Electrochem Soc 126(12):2047–2051
-
(1979)
J Electrochem Soc
, vol.126
, Issue.12
, pp. 2047-2051
-
-
Peled, E.1
-
61
-
-
0029291925
-
Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes
-
COI: 1:CAS:528:DyaK2MXmtVyrtr4%3D
-
Besenhard JO, Winter M, Yang J, Biberacher W (1995) Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. J Power Sources 54(2):228–231
-
(1995)
J Power Sources
, vol.54
, Issue.2
, pp. 228-231
-
-
Besenhard, J.O.1
Winter, M.2
Yang, J.3
Biberacher, W.4
-
62
-
-
0031211597
-
Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes
-
COI: 1:CAS:528:DyaK2sXlvFOhs7o%3D
-
Peled E, Golodnitsky D, Ardel G (1997) Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc 144(8):L208–L210
-
(1997)
J Electrochem Soc
, vol.144
, Issue.8
, pp. L208-L210
-
-
Peled, E.1
Golodnitsky, D.2
Ardel, G.3
-
63
-
-
57249107849
-
Studies on the anode/electrolyte interface in lithium ion batteries
-
COI: 1:CAS:528:DC%2BD3MXjslynsLo%3D
-
Winter M, Appel WK, Evers B, Hodal T, Moller KC, Schneider I, Wachtler M, Wagner MR, Wrodnigg GH, Besenhard JO (2001) Studies on the anode/electrolyte interface in lithium ion batteries. Chem Mon 132(4):473–486
-
(2001)
Chem Mon
, vol.132
, Issue.4
, pp. 473-486
-
-
Winter, M.1
Appel, W.K.2
Evers, B.3
Hodal, T.4
Moller, K.C.5
Schneider, I.6
Wachtler, M.7
Wagner, M.R.8
Wrodnigg, G.H.9
Besenhard, J.O.10
-
64
-
-
33644547352
-
A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries
-
Edström K, Herstedt M, Abraham DP (2006) A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries. J Power Sources 153(2):380–384
-
(2006)
J Power Sources
, vol.153
, Issue.2
, pp. 380-384
-
-
Edström, K.1
Herstedt, M.2
Abraham, D.P.3
-
65
-
-
75249099168
-
The solid electrolyte interphase—the most important and the least understood solid electrolyte in rechargeable Li batteries
-
COI: 1:CAS:528:DC%2BC3cXhtVagtrg%3D
-
Winter M (2009) The solid electrolyte interphase—the most important and the least understood solid electrolyte in rechargeable Li batteries. Z Phys Chem 223(10–11):1395–1406
-
(2009)
Z Phys Chem
, vol.223
, Issue.10-11
, pp. 1395-1406
-
-
Winter, M.1
-
66
-
-
77955716717
-
A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
-
COI: 1:CAS:528:DC%2BC3cXhtVajsbvM
-
Verma P, Maire P, Novak P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55(22):6332–6341
-
(2010)
Electrochim Acta
, vol.55
, Issue.22
, pp. 6332-6341
-
-
Verma, P.1
Maire, P.2
Novak, P.3
-
67
-
-
84963507386
-
The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling
-
COI: 1:CAS:528:DC%2BC28XmtFCltLc%3D
-
An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood III DL (2016) The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105:52–76
-
(2016)
Carbon
, vol.105
, pp. 52-76
-
-
An, S.J.1
Li, J.2
Daniel, C.3
Mohanty, D.4
Nagpure, S.5
-
68
-
-
33644521746
-
Electrochemical impedance spectroscopy study of the SEI formation on graphite and metal electrodes
-
COI: 1:CAS:528:DC%2BD28XhslKhu7c%3D
-
Schranzhofer H, Bugajski J, Santner H, Korepp C, Möller K-C, Besenhard J, Winter M, Sitte W (2006) Electrochemical impedance spectroscopy study of the SEI formation on graphite and metal electrodes. J Power Sources 153(2):391–395
-
(2006)
J Power Sources
, vol.153
, Issue.2
, pp. 391-395
-
-
Schranzhofer, H.1
Bugajski, J.2
Santner, H.3
Korepp, C.4
Möller, K.-C.5
Besenhard, J.6
Winter, M.7
Sitte, W.8
-
70
-
-
84984276875
-
Lithiumbatterien I. Chemische Grundlagen
-
COI: 1:CAS:528:DyaK3cXitVWqtbc%3D
-
Eichinger G, Semrau G (1990) Lithiumbatterien I. Chemische Grundlagen. Chem Unserer Zeit 24(1):32–36
-
(1990)
Chem Unserer Zeit
, vol.24
, Issue.1
, pp. 32-36
-
-
Eichinger, G.1
Semrau, G.2
-
71
-
-
84984366035
-
Lithiumbatterien II. Entladereaktionen und komplette Zellen
-
COI: 1:CAS:528:DyaK3cXktV2gtLw%3D
-
Eichinger G, Semrau G (1990) Lithiumbatterien II. Entladereaktionen und komplette Zellen. Chem Unserer Zeit 24(2):90–96
-
(1990)
Chem Unserer Zeit
, vol.24
, Issue.2
, pp. 90-96
-
-
Eichinger, G.1
Semrau, G.2
-
72
-
-
0028480342
-
Historical development of secondary lithium batteries
-
COI: 1:CAS:528:DyaK2cXlvVegsrc%3D
-
Brandt K (1994) Historical development of secondary lithium batteries. Solid State Ionics 69(3–4):173–183
-
(1994)
Solid State Ionics
, vol.69
, Issue.3-4
, pp. 173-183
-
-
Brandt, K.1
-
73
-
-
84869121479
-
Primary cell for electric batteries
-
Watanabe K, Fukuda M (1970) Primary cell for electric batteries. US Patent No 3:536,532
-
(1970)
US Patent No
, vol.3
, pp. 536,532
-
-
Watanabe, K.1
Fukuda, M.2
-
74
-
-
85023751437
-
Primary cells and iodine-containing cathodes therefore
-
Schneider AA, Moser JR (1972) Primary cells and iodine-containing cathodes therefore. US Patent 3:674,562
-
(1972)
US Patent
, vol.3
, pp. 674,562
-
-
Schneider, A.A.1
Moser, J.R.2
-
75
-
-
84949987175
-
Lithium batteries
-
Springer International Publishing, Switzerland
-
Julien C, Mauger A, Vijh A, Zaghib K (2016) Lithium batteries. Science and Technology, Springer International Publishing, Switzerland
-
(2016)
Science and Technology
-
-
Julien, C.1
Mauger, A.2
Vijh, A.3
Zaghib, K.4
-
77
-
-
0001658455
-
Electrical energy-storage and intercalation cehmistry
-
COI: 1:CAS:528:DyaE28XlvFGhs74%3D
-
Whittingham MS (1976) Electrical energy-storage and intercalation cehmistry. Science 192(4244):1126–1127
-
(1976)
Science
, vol.192
, Issue.4244
, pp. 1126-1127
-
-
Whittingham, M.S.1
-
78
-
-
0018063484
-
Chemistry of intercalation compounds—metal guests in chalcogenide hosts
-
COI: 1:CAS:528:DyaE1MXps1OjsQ%3D%3D
-
Whittingham MS (1978) Chemistry of intercalation compounds—metal guests in chalcogenide hosts. Prog Solid State Chem 12(1):41–99
-
(1978)
Prog Solid State Chem
, vol.12
, Issue.1
, pp. 41-99
-
-
Whittingham, M.S.1
-
79
-
-
7644220712
-
Lithium batteries and cathode materials
-
COI: 1:CAS:528:DC%2BD2cXnsVOnsbk%3D
-
Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4301
-
(2004)
Chem Rev
, vol.104
, Issue.10
, pp. 4271-4301
-
-
Whittingham, M.S.1
-
80
-
-
84921403413
-
Lithium-titanium disulfide rechargeable cell performance after 35 years of storage
-
COI: 1:CAS:528:DC%2BC2MXos1Sqsg%3D%3D
-
Pereira N, Amatucci GG, Whittingham MS, Hamlen R (2015) Lithium-titanium disulfide rechargeable cell performance after 35 years of storage. J Power Sources 280:18–22
-
(2015)
J Power Sources
, vol.280
, pp. 18-22
-
-
Pereira, N.1
Amatucci, G.G.2
Whittingham, M.S.3
Hamlen, R.4
-
81
-
-
0022797722
-
The Molicel rechargeable lithium system—multicell aspects
-
COI: 1:CAS:528:DyaL1cXoslOq
-
Fouchard D, Taylor JB (1987) The Molicel rechargeable lithium system—multicell aspects. J Power Sources 21(3–4):195–205
-
(1987)
J Power Sources
, vol.21
, Issue.3-4
, pp. 195-205
-
-
Fouchard, D.1
Taylor, J.B.2
-
82
-
-
0024646679
-
Reproducibility and reliability of rechargeable lithium molybdenum-disulfide batteries
-
COI: 1:CAS:528:DyaL1MXksVarsLY%3D
-
Brandt K, Laman FC (1989) Reproducibility and reliability of rechargeable lithium molybdenum-disulfide batteries. J Power Sources 25(4):265–276
-
(1989)
J Power Sources
, vol.25
, Issue.4
, pp. 265-276
-
-
Brandt, K.1
Laman, F.C.2
-
83
-
-
27144531075
-
Proc IEEE Power Engineering Society General Meeting
-
Robillard C (2005) Proc IEEE Power Engineering Society General Meeting. San Francisco, CA, June 12–16:1223–1227
-
(2005)
San Francisco, CA, June
, vol.12-16
, pp. 1223-1227
-
-
Robillard, C.1
-
85
-
-
0030195534
-
Safety and performance of Tadiran TLR-7103 rechargeable batteries
-
COI: 1:CAS:528:DyaK28XksVOrt70%3D
-
Mengeritsky E, Dan P, Weissman I, Zaban A, Aurbach D (1996) Safety and performance of Tadiran TLR-7103 rechargeable batteries. J Electrochem Soc 143(7):2110–2116
-
(1996)
J Electrochem Soc
, vol.143
, Issue.7
, pp. 2110-2116
-
-
Mengeritsky, E.1
Dan, P.2
Weissman, I.3
Zaban, A.4
Aurbach, D.5
-
86
-
-
0027607199
-
Analysis of safety and reliability in secondary lithium batteries
-
COI: 1:CAS:528:DyaK3sXksFarsbk%3D
-
Fouchard D, Lechner L (1993) Analysis of safety and reliability in secondary lithium batteries. Electrochim Acta 38(9):1193–1198
-
(1993)
Electrochim Acta
, vol.38
, Issue.9
, pp. 1193-1198
-
-
Fouchard, D.1
Lechner, L.2
-
87
-
-
0032499862
-
Insertion electrode materials for rechargeable lithium batteries
-
COI: 1:CAS:528:DyaK1cXksFGmu7g%3D
-
Winter M, Besenhard JO, Spahr ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10(10):725–763
-
(1998)
Adv Mater
, vol.10
, Issue.10
, pp. 725-763
-
-
Winter, M.1
Besenhard, J.O.2
Spahr, M.E.3
Novak, P.4
-
88
-
-
84928315215
-
Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based electrolytes for application in lithium ion and lithium metal batteries
-
COI: 1:CAS:528:DC%2BC2MXltFSkurw%3D
-
Heine J, Hilbig P, Qi X, Niehoff P, Winter M, Bieker P (2015) Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based electrolytes for application in lithium ion and lithium metal batteries. J Electrochem Soc 162(6):A1094–A1101
-
(2015)
J Electrochem Soc
, vol.162
, Issue.6
, pp. A1094-A1101
-
-
Heine, J.1
Hilbig, P.2
Qi, X.3
Niehoff, P.4
Winter, M.5
Bieker, P.6
-
89
-
-
0001093640
-
Cyclable lithium organic electrolyte cell based on 2 intercalation electrodes
-
COI: 1:CAS:528:DyaL3cXhvVelt78%3D
-
Lazzari M, Scrosati B (1980) Cyclable lithium organic electrolyte cell based on 2 intercalation electrodes. J Electrochem Soc 127(3):773–774
-
(1980)
J Electrochem Soc
, vol.127
, Issue.3
, pp. 773-774
-
-
Lazzari, M.1
Scrosati, B.2
-
90
-
-
0026928795
-
Lithium rocking chair batteries—an old concept
-
COI: 1:CAS:528:DyaK38XmtFKisrc%3D
-
Scrosati B (1992) Lithium rocking chair batteries—an old concept. J Electrochem Soc 139(10):2776–2781
-
(1992)
J Electrochem Soc
, vol.139
, Issue.10
, pp. 2776-2781
-
-
Scrosati, B.1
-
93
-
-
84860556526
-
Carbonaceous and graphitic anodes
-
Nazri G-A, Pistoia G, (eds), Springer US, Boston
-
Winter M, Möller K-C, Besenhard JO (2003) Carbonaceous and graphitic anodes. In: Nazri G-A, Pistoia G (eds) Lithium batteries: Science and Technology. Springer US, Boston, pp 145–194
-
(2003)
Lithium batteries: Science and Technology
, pp. 145-194
-
-
Winter, M.1
Möller, K.-C.2
Besenhard, J.O.3
-
94
-
-
34250959689
-
Lithium-Graphit-Einlagerungsverbindungen
-
COI: 1:CAS:528:DyaF28XptFSj
-
Juza R, Wehle V (1965) Lithium-Graphit-Einlagerungsverbindungen. Naturwissenschaften 52(20):560
-
(1965)
Naturwissenschaften
, vol.52
, Issue.20
, pp. 560
-
-
Juza, R.1
Wehle, V.2
-
97
-
-
33644674105
-
Intercalation of lithium into graphite and other carbons
-
COI: 1:CAS:528:DyaE28XjvVWjtg%3D%3D
-
Guerard D, Herold A (1975) Intercalation of lithium into graphite and other carbons. Carbon 13(4):337–345
-
(1975)
Carbon
, vol.13
, Issue.4
, pp. 337-345
-
-
Guerard, D.1
Herold, A.2
-
98
-
-
84975348581
-
Electrochemical decomposition of propylene carbonate on graphite
-
COI: 1:CAS:528:DyaE3cXhtVKmtrY%3D
-
Dey AN, Sullivan BP (1970) Electrochemical decomposition of propylene carbonate on graphite. J Electrochem Soc 117(2):222
-
(1970)
J Electrochem Soc
, vol.117
, Issue.2
, pp. 222
-
-
Dey, A.N.1
Sullivan, B.P.2
-
99
-
-
0023314178
-
The cathodic decomposition of propylene carbonate in lithium batteries
-
COI: 1:CAS:528:DyaL2sXhsl2ktro%3D
-
Arakawa M, Yamaki JI (1987) The cathodic decomposition of propylene carbonate in lithium batteries. J Electroanal Chem 219(1–2):273–280
-
(1987)
J Electroanal Chem
, vol.219
, Issue.1-2
, pp. 273-280
-
-
Arakawa, M.1
Yamaki, J.I.2
-
100
-
-
0025450991
-
Studies of lithium intercalation into carbons using nonaqueous electrochemical cells
-
COI: 1:CAS:528:DyaK3cXlsVSksLk%3D
-
Fong R, von Sacken U, Dahn JR (1990) Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J Electrochem Soc 137(7):2009–2013
-
(1990)
J Electrochem Soc
, vol.137
, Issue.7
, pp. 2009-2013
-
-
Fong, R.1
von Sacken, U.2
Dahn, J.R.3
-
101
-
-
0001373946
-
4-graphite intercalation compounds in organic electrolytes
-
COI: 1:CAS:528:DyaE2sXhs1akt78%3D
-
4-graphite intercalation compounds in organic electrolytes. Carbon 14(2):111–115
-
(1976)
Carbon
, vol.14
, Issue.2
, pp. 111-115
-
-
Besenhard, J.O.1
-
102
-
-
84945953067
-
New insights into the structure-property relationship of high-voltage electrolyte components for lithium-ion batteries using the pKa value
-
COI: 1:CAS:528:DC%2BC2MXhslGjtrbN
-
Gallus DR, Wagner R, Wiemers-Meyer S, Winter M, Cekic-Laskovic I (2015) New insights into the structure-property relationship of high-voltage electrolyte components for lithium-ion batteries using the pKa value. Electrochim Acta 184:410–416
-
(2015)
Electrochim Acta
, vol.184
, pp. 410-416
-
-
Gallus, D.R.1
Wagner, R.2
Wiemers-Meyer, S.3
Winter, M.4
Cekic-Laskovic, I.5
-
103
-
-
84966262592
-
Counterintuitive role of magnesium salts as effective electrolyte additives for high voltage lithium-ion batteries
-
Wagner R, Streipert B, Kraft V, Reyes Jiménez A, Röser S, Kasnatscheew J, Gallus DR, Börner M, Mayer C, Arlinghaus HF (2016) Counterintuitive role of magnesium salts as effective electrolyte additives for high voltage lithium-ion batteries. Adv Mater Interfaces 3(15)
-
(2016)
Adv Mater Interfaces
, vol.3
, Issue.15
-
-
Wagner, R.1
Streipert, B.2
Kraft, V.3
Reyes Jiménez, A.4
Röser, S.5
Kasnatscheew, J.6
Gallus, D.R.7
Börner, M.8
Mayer, C.9
Arlinghaus, H.F.10
-
104
-
-
84996477114
-
Impact of selected LiPF6 hydrolysis products on the high voltage stability of lithium-ion battery cells
-
COI: 1:CAS:528:DC%2BC28XhslGhtbjP
-
Wagner R, Korth M, Streipert B, Kasnatscheew J, Gallus DR, Brox S, Amereller M, Cekic-Laskovic I, Winter M (2016) Impact of selected LiPF6 hydrolysis products on the high voltage stability of lithium-ion battery cells. ACS Appl Mater Interfaces 8(45):30871–30878
-
(2016)
ACS Appl Mater Interfaces
, vol.8
, Issue.45
, pp. 30871-30878
-
-
Wagner, R.1
Korth, M.2
Streipert, B.3
Kasnatscheew, J.4
Gallus, D.R.5
Brox, S.6
Amereller, M.7
Cekic-Laskovic, I.8
Winter, M.9
-
105
-
-
0020113612
-
A reversible graphite-lithium negative electrode for electrochemical generators
-
COI: 1:CAS:528:DyaL3sXktVyhu7k%3D
-
Yazami R, Touzain P (1983) A reversible graphite-lithium negative electrode for electrochemical generators. J Power Sources 9(3):365–371
-
(1983)
J Power Sources
, vol.9
, Issue.3
, pp. 365-371
-
-
Yazami, R.1
Touzain, P.2
-
107
-
-
84961291435
-
Lithium-cyclo-difluoromethane-1, 1-bis (sulfonyl) imide as a stabilizing electrolyte additive for improved high voltage applications in lithium-ion batteries
-
COI: 1:CAS:528:DC%2BC2MXjsFGlsbo%3D
-
Murmann P, Streipert B, Kloepsch R, Ignatiev N, Sartori P, Winter M, Cekic-Laskovic I (2015) Lithium-cyclo-difluoromethane-1, 1-bis (sulfonyl) imide as a stabilizing electrolyte additive for improved high voltage applications in lithium-ion batteries. Phys Chem Chem Phys 17(14):9352–9358
-
(2015)
Phys Chem Chem Phys
, vol.17
, Issue.14
, pp. 9352-9358
-
-
Murmann, P.1
Streipert, B.2
Kloepsch, R.3
Ignatiev, N.4
Sartori, P.5
Winter, M.6
Cekic-Laskovic, I.7
-
108
-
-
0028481975
-
2/ C system
-
COI: 1:CAS:528:DyaK2cXlvVenurY%3D
-
2/ C system. Solid State Ionics 69(3–4):212–221
-
(1994)
Solid State Ionics
, vol.69
, Issue.3-4
, pp. 212-221
-
-
Ozawa, K.1
-
109
-
-
0028491207
-
Lithium-ion rechargeable batteries
-
COI: 1:CAS:528:DyaK2MXitlalsLk%3D
-
Megahed S, Scrosati B (1994) Lithium-ion rechargeable batteries. J Power Sources 51(1–2):79–104
-
(1994)
J Power Sources
, vol.51
, Issue.1-2
, pp. 79-104
-
-
Megahed, S.1
Scrosati, B.2
-
110
-
-
84959454395
-
Lithium-Ionen-Technologie und was danach kommen könnte
-
COI: 1:CAS:528:DC%2BC28Xpt1Gms70%3D
-
Bieker P, Winter M (2016) Lithium-Ionen-Technologie und was danach kommen könnte. Chem Unserer Zeit 50(3):172–186
-
(2016)
Chem Unserer Zeit
, vol.50
, Issue.3
, pp. 172-186
-
-
Bieker, P.1
Winter, M.2
-
111
-
-
84875419818
-
Mechanism of anodic dissolution of the aluminum current collector in 1 M LiTFSI EC: DEC 3: 7 in rechargeable lithium batteries
-
Krämer E, Schedlbauer T, Hoffmann B, Terborg L, Nowak S, Gores HJ, Passerini S, Winter M (2013) Mechanism of anodic dissolution of the aluminum current collector in 1 M LiTFSI EC: DEC 3: 7 in rechargeable lithium batteries. J Electrochem Soc 160(2):A356–A360
-
(2013)
J Electrochem Soc
, vol.160
, Issue.2
, pp. A356-A360
-
-
Krämer, E.1
Schedlbauer, T.2
Hoffmann, B.3
Terborg, L.4
Nowak, S.5
Gores, H.J.6
Passerini, S.7
Winter, M.8
-
112
-
-
84875427965
-
Dependency of aluminum collector corrosion in lithium ion batteries on the electrolyte solvent
-
Krämer E, Passerini S, Winter M (2012) Dependency of aluminum collector corrosion in lithium ion batteries on the electrolyte solvent. ECS Electrochem Lett 1(5):C9–C11
-
(2012)
ECS Electrochem Lett
, vol.1
, Issue.5
, pp. C9-C11
-
-
Krämer, E.1
Passerini, S.2
Winter, M.3
-
113
-
-
85008386247
-
Suppression of aluminum current collector dissolution by protective ceramic coatings for better high-voltage battery performance
-
COI: 1:CAS:528:DC%2BC28XhvFCnurjF
-
Heckmann A, Krott M, Streipert B, Uhlenbruck S, Winter M, Placke T (2017) Suppression of aluminum current collector dissolution by protective ceramic coatings for better high-voltage battery performance. ChemPhysChem 18(1):156–163
-
(2017)
ChemPhysChem
, vol.18
, Issue.1
, pp. 156-163
-
-
Heckmann, A.1
Krott, M.2
Streipert, B.3
Uhlenbruck, S.4
Winter, M.5
Placke, T.6
-
114
-
-
84920158271
-
Syntheses of novel delocalized cations and fluorinated anions, new fluorinated solvents and additives for lithium ion batteries
-
Böttcher T, Duda B, Kalinovich N, Kazakova O, Ponomarenko M, Vlasov K, Winter M, Röschenthaler G-V (2014) Syntheses of novel delocalized cations and fluorinated anions, new fluorinated solvents and additives for lithium ion batteries. Prog Solid State Chem 42(4):202–217
-
(2014)
Prog Solid State Chem
, vol.42
, Issue.4
, pp. 202-217
-
-
Böttcher, T.1
Duda, B.2
Kalinovich, N.3
Kazakova, O.4
Ponomarenko, M.5
Vlasov, K.6
Winter, M.7
Röschenthaler, G.-V.8
-
115
-
-
84920182666
-
Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: systematic electrochemical characterization and detailed analysis by spectroscopic methods
-
COI: 1:CAS:528:DC%2BC2cXnsFChs7Y%3D
-
Schmitz RW, Murmann P, Schmitz R, Müller R, Krämer L, Kasnatscheew J, Isken P, Niehoff P, Nowak S, Röschenthaler G-V (2014) Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: systematic electrochemical characterization and detailed analysis by spectroscopic methods. Prog Solid State Chem 42(4):65–84
-
(2014)
Prog Solid State Chem
, vol.42
, Issue.4
, pp. 65-84
-
-
Schmitz, R.W.1
Murmann, P.2
Schmitz, R.3
Müller, R.4
Krämer, L.5
Kasnatscheew, J.6
Isken, P.7
Niehoff, P.8
Nowak, S.9
Röschenthaler, G.-V.10
-
116
-
-
84920184220
-
Electrolytes for lithium and lithium ion batteries: from synthesis of novel lithium borates and ionic liquids to development of novel measurement methods
-
COI: 1:CAS:528:DC%2BC2cXntl2gtr8%3D
-
Amereller M, Schedlbauer T, Moosbauer D, Schreiner C, Stock C, Wudy F, Zugmann S, Hammer H, Maurer A, Gschwind R (2014) Electrolytes for lithium and lithium ion batteries: from synthesis of novel lithium borates and ionic liquids to development of novel measurement methods. Prog Solid State Chem 42(4):39–56
-
(2014)
Prog Solid State Chem
, vol.42
, Issue.4
, pp. 39-56
-
-
Amereller, M.1
Schedlbauer, T.2
Moosbauer, D.3
Schreiner, C.4
Stock, C.5
Wudy, F.6
Zugmann, S.7
Hammer, H.8
Maurer, A.9
Gschwind, R.10
-
117
-
-
33646717658
-
The development of lithium ion secondary batteries
-
COI: 1:CAS:528:DC%2BD3MXnsFKrtb0%3D
-
Nishi Y (2001) The development of lithium ion secondary batteries. Chem Rec 1(5):406–413
-
(2001)
Chem Rec
, vol.1
, Issue.5
, pp. 406-413
-
-
Nishi, Y.1
-
118
-
-
4544261142
-
Li-ion batteries and portable power source prospects for the next 5–10 years
-
COI: 1:CAS:528:DC%2BD2cXns1CmtLg%3D
-
Broussely M, Archdale G (2004) Li-ion batteries and portable power source prospects for the next 5–10 years. J Power Sources 136(2):386–394
-
(2004)
J Power Sources
, vol.136
, Issue.2
, pp. 386-394
-
-
Broussely, M.1
Archdale, G.2
-
119
-
-
85017177791
-
The rechargeable battery market and main trends 2016–2025
-
AABC) Europe, Mainz
-
Pillot C (2017) The rechargeable battery market and main trends 2016–2025. Talk at Advanced Automotive Battery Conference (AABC) Europe, Mainz
-
(2017)
Talk at Advanced Automotive Battery Conference
-
-
Pillot, C.1
-
120
-
-
84916613059
-
Ultimate limits to intercalation reactions for lithium batteries
-
COI: 1:CAS:528:DC%2BC2cXhvVens77J
-
Whittingham MS (2014) Ultimate limits to intercalation reactions for lithium batteries. Chem Rev 114(23):11414–11443
-
(2014)
Chem Rev
, vol.114
, Issue.23
, pp. 11414-11443
-
-
Whittingham, M.S.1
-
121
-
-
84873969908
-
Making Li-air batteries rechargeable: material challenges
-
COI: 1:CAS:528:DC%2BC38Xns1Wmtro%3D
-
Shao YY, Ding F, Xiao J, Zhang J, Xu W, Park S, Zhang JG, Wang Y, Liu J (2013) Making Li-air batteries rechargeable: material challenges. Adv Funct Mater 23(8):987–1004
-
(2013)
Adv Funct Mater
, vol.23
, Issue.8
, pp. 987-1004
-
-
Shao, Y.Y.1
Ding, F.2
Xiao, J.3
Zhang, J.4
Xu, W.5
Park, S.6
Zhang, J.G.7
Wang, Y.8
Liu, J.9
-
122
-
-
84872731191
-
Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions
-
COI: 1:CAS:528:DC%2BC3sXis1Sjsro%3D
-
Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162
-
(2013)
J Power Sources
, vol.231
, pp. 153-162
-
-
Zhang, S.S.1
-
123
-
-
84903151152
-
Recent advances in lithium-sulfur batteries
-
COI: 1:CAS:528:DC%2BC2cXhtFWhsr%2FL
-
Chen L, Shaw LL (2014) Recent advances in lithium-sulfur batteries. J Power Sources 267:770–783
-
(2014)
J Power Sources
, vol.267
, pp. 770-783
-
-
Chen, L.1
Shaw, L.L.2
-
124
-
-
84961289081
-
The lithium/air battery: still an emerging system or a practical reality?
-
Grande L, Paillard E, Hassoun J, Park J-B, Lee Y-J, Sun Y-K, Passerini S, Scrosati B (2014) The lithium/air battery: still an emerging system or a practical reality? Adv Mater 27(5):784-800
-
(2014)
Adv Mater
, vol.27
, Issue.5
, pp. 784-800
-
-
Grande, L.1
Paillard, E.2
Hassoun, J.3
Park, J.-B.4
Lee, Y.-J.5
Sun, Y.-K.6
Passerini, S.7
Scrosati, B.8
-
126
-
-
84940436286
-
Lithium–sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells
-
Hagen M, Hanselmann D, Ahlbrecht K, Maça R, Gerber D, Tübke J (2015) Lithium–sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv Energy Mater 5(16):1401986
-
(2015)
Adv Energy Mater
, vol.5
, Issue.16
, pp. 1401986
-
-
Hagen, M.1
Hanselmann, D.2
Ahlbrecht, K.3
Maça, R.4
Gerber, D.5
Tübke, J.6
-
127
-
-
0018714016
-
Metal/air batteries: their status and potential—a review
-
COI: 1:CAS:528:DyaL3cXksFSgt7k%3D
-
Blurton KF, Sammells AF (1979) Metal/air batteries: their status and potential—a review. J Power Sources 4(4):263–279
-
(1979)
J Power Sources
, vol.4
, Issue.4
, pp. 263-279
-
-
Blurton, K.F.1
Sammells, A.F.2
-
128
-
-
85023747891
-
Solid polymer electrolyte-based oxygen batteries
-
Abraham KM, Jiang Z (1996) Solid polymer electrolyte-based oxygen batteries. US Patent 5:510,209
-
(1996)
US Patent
, vol.5
, pp. 510,209
-
-
Abraham, K.M.1
Jiang, Z.2
-
129
-
-
0029769438
-
A polymer electrolyte-based rechargeable lithium/oxygen battery
-
COI: 1:CAS:528:DyaK28XksVyisA%3D%3D
-
Abraham KM, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143(1):1–5
-
(1996)
J Electrochem Soc
, vol.143
, Issue.1
, pp. 1-5
-
-
Abraham, K.M.1
Jiang, Z.2
-
130
-
-
85011821718
-
Promise and reality of post-lithium-ion batteries with high energy densities
-
COI: 1:CAS:528:DC%2BC2sXhtVert7k%3D
-
Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 1:16013
-
(2016)
Nature Reviews Materials
, vol.1
, pp. 16013
-
-
Choi, J.W.1
Aurbach, D.2
-
131
-
-
78650597453
-
Electric dry cells and storage batteries
-
Danuta H, Juliusz U (1962) Electric dry cells and storage batteries. US Patent 3:043,896
-
(1962)
US Patent
, vol.3
, pp. 043,896
-
-
Danuta, H.1
Juliusz, U.2
-
133
-
-
0018456767
-
A lithium/dissolved sulfur battery with an organic electrolyte
-
COI: 1:CAS:528:DyaE1MXlsVehsr8%3D
-
Rauh RD, Abraham KM, Pearson GF, Surprenant JK, Brummer SB (1979) A lithium/dissolved sulfur battery with an organic electrolyte. J Electrochem Soc 126(4):523–527
-
(1979)
J Electrochem Soc
, vol.126
, Issue.4
, pp. 523-527
-
-
Rauh, R.D.1
Abraham, K.M.2
Pearson, G.F.3
Surprenant, J.K.4
Brummer, S.B.5
-
134
-
-
67349275043
-
A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries
-
COI: 1:CAS:528:DC%2BD1MXmtFenu7Y%3D
-
Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8(6):500–506
-
(2009)
Nat Mater
, vol.8
, Issue.6
, pp. 500-506
-
-
Ji, X.1
Lee, K.T.2
Nazar, L.F.3
-
135
-
-
67650595207
-
On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries
-
COI: 1:CAS:528:DC%2BD1MXosV2lsb8%3D
-
Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J (2009) On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J Electrochem Soc 156(8):A694–A702
-
(2009)
J Electrochem Soc
, vol.156
, Issue.8
, pp. A694-A702
-
-
Aurbach, D.1
Pollak, E.2
Elazari, R.3
Salitra, G.4
Kelley, C.S.5
Affinito, J.6
-
136
-
-
84889672090
-
Lithium–sulfur batteries: electrochemistry, materials, and prospects
-
COI: 1:CAS:528:DC%2BC3sXhslOlt7fI
-
Yin Y-X, Xin S, Guo Y-G, Wan L-J (2013) Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed 52(50):13186–13200
-
(2013)
Angew Chem Int Ed
, vol.52
, Issue.50
, pp. 13186-13200
-
-
Yin, Y.-X.1
Xin, S.2
Guo, Y.-G.3
Wan, L.-J.4
-
137
-
-
85023759763
-
-
(Accessed January 20, 2017)
-
SionPower http://www.sionpower.com (Accessed January 20, 2017)
-
-
-
-
138
-
-
84916624817
-
Research development on sodium-ion batteries
-
COI: 1:CAS:528:DC%2BC2cXhvFSiu7bL
-
Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682
-
(2014)
Chem Rev
, vol.114
, Issue.23
, pp. 11636-11682
-
-
Yabuuchi, N.1
Kubota, K.2
Dahbi, M.3
Komaba, S.4
-
139
-
-
84884158265
-
Conversion reactions for sodium-ion batteries
-
COI: 1:CAS:528:DC%2BC3sXhsVWrtbrE
-
Klein F, Jache B, Bhide A, Adelhelm P (2013) Conversion reactions for sodium-ion batteries. Phys Chem Chem Phys 15(38):15876–15887
-
(2013)
Phys Chem Chem Phys
, vol.15
, Issue.38
, pp. 15876-15887
-
-
Klein, F.1
Jache, B.2
Bhide, A.3
Adelhelm, P.4
-
140
-
-
84863721145
-
Sodium and sodium-ion energy storage batteries
-
COI: 1:CAS:528:DC%2BC38XntVWisLc%3D
-
Ellis BL, Nazar LF (2012) Sodium and sodium-ion energy storage batteries. Curr Opin Solid State Mat Sci 16(4):168–177
-
(2012)
Curr Opin Solid State Mat Sci
, vol.16
, Issue.4
, pp. 168-177
-
-
Ellis, B.L.1
Nazar, L.F.2
-
141
-
-
84954461069
-
Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction
-
COI: 1:CAS:528:DC%2BC28XjtF2itA%3D%3D
-
Bachman JC, Muy S, Grimaud A, Chang H-H, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y (2016) Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116(1):140–162
-
(2016)
Chem Rev
, vol.116
, Issue.1
, pp. 140-162
-
-
Bachman, J.C.1
Muy, S.2
Grimaud, A.3
Chang, H.-H.4
Pour, N.5
Lux, S.F.6
Paschos, O.7
Maglia, F.8
Lupart, S.9
Lamp, P.10
Giordano, L.11
Shao-Horn, Y.12
-
142
-
-
85013378169
-
Batteries: getting solid
-
COI: 1:CAS:528:DC%2BC2sXhtVekur0%3D
-
Hu Y-S (2016) Batteries: getting solid. Nature Energy 1:16042
-
(2016)
Nature Energy
, vol.1
, pp. 16042
-
-
Hu, Y.-S.1
-
143
-
-
83155172384
-
Redox flow batteries: a review
-
COI: 1:CAS:528:DC%2BC3MXht1yjsr7O
-
Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu QH (2011) Redox flow batteries: a review. J Appl Electrochem 41(10):1137–1164
-
(2011)
J Appl Electrochem
, vol.41
, Issue.10
, pp. 1137-1164
-
-
Weber, A.Z.1
Mench, M.M.2
Meyers, J.P.3
Ross, P.N.4
Gostick, J.T.5
Liu, Q.H.6
-
144
-
-
2342437604
-
Nonaqueous magnesium electrochemistry and its application in secondary batteries
-
COI: 1:CAS:528:DC%2BD3sXhvFels7w%3D
-
Aurbach D, Weissman I, Gofer Y, Levi E (2003) Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem Rec 3(1):61–73
-
(2003)
Chem Rec
, vol.3
, Issue.1
, pp. 61-73
-
-
Aurbach, D.1
Weissman, I.2
Gofer, Y.3
Levi, E.4
-
145
-
-
84902574171
-
Rechargeable magnesium battery: current status and key challenges for the future
-
Saha P, Datta MK, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN (2014) Rechargeable magnesium battery: current status and key challenges for the future. Prog Mater Sci 66(0):1–86
-
(2014)
Prog Mater Sci
, vol.66
, pp. 1-86
-
-
Saha, P.1
Datta, M.K.2
Velikokhatnyi, O.I.3
Manivannan, A.4
Alman, D.5
Kumta, P.N.6
-
146
-
-
84941778021
-
Carbon electrodes for K-ion batteries
-
Jian Z, Luo W, Ji X (2015) Carbon electrodes for K-ion batteries. J Am Chem Soc 137:11566–11569
-
(2015)
J Am Chem Soc
, vol.137
, pp. 11566-11569
-
-
Jian, Z.1
Luo, W.2
Ji, X.3
-
148
-
-
84955747591
-
Towards a calcium-based rechargeable battery
-
COI: 1:CAS:528:DC%2BC2MXhslantLzK
-
Ponrouch A, Frontera C, Barde F, Palacin MR (2016) Towards a calcium-based rechargeable battery. Nat Mater 15(2):169
-
(2016)
Nat Mater
, vol.15
, Issue.2
, pp. 169
-
-
Ponrouch, A.1
Frontera, C.2
Barde, F.3
Palacin, M.R.4
-
149
-
-
84990049983
-
Calcium-oxygen batteries as a promising alternative to sodium-oxygen batteries
-
COI: 1:CAS:528:DC%2BC28XhsVehtL3E
-
Reinsberg P, Bondue CJ, Baltruschat H (2016) Calcium-oxygen batteries as a promising alternative to sodium-oxygen batteries. J Phys Chem C 120(39):22179–22185
-
(2016)
J Phys Chem C
, vol.120
, Issue.39
, pp. 22179-22185
-
-
Reinsberg, P.1
Bondue, C.J.2
Baltruschat, H.3
-
150
-
-
0035822903
-
The effect of the binder morphology on the cycling stability of Li–alloy composite electrodes
-
COI: 1:CAS:528:DC%2BD3MXlsFKisLo%3D
-
Wachtler M, Wagner MR, Schmied M, Winter M, Besenhard JO (2001) The effect of the binder morphology on the cycling stability of Li–alloy composite electrodes. J Electroanal Chem 510(1):12–19
-
(2001)
J Electroanal Chem
, vol.510
, Issue.1
, pp. 12-19
-
-
Wachtler, M.1
Wagner, M.R.2
Schmied, M.3
Winter, M.4
Besenhard, J.O.5
-
151
-
-
76349108559
-
Low cost, environmentally benign binders for lithium-ion batteries
-
COI: 1:CAS:528:DC%2BC3cXhs1Krsrg%3D
-
Lux S, Schappacher F, Balducci A, Passerini S, Winter M (2010) Low cost, environmentally benign binders for lithium-ion batteries. J Electrochem Soc 157(3):A320–A325
-
(2010)
J Electrochem Soc
, vol.157
, Issue.3
, pp. A320-A325
-
-
Lux, S.1
Schappacher, F.2
Balducci, A.3
Passerini, S.4
Winter, M.5
-
153
-
-
84908590592
-
− anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries
-
COI: 1:CAS:528:DC%2BC2cXhslCgsbvE
-
− anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries. Phys Chem Chem Phys 16(46):25306–25313
-
(2014)
Phys Chem Chem Phys
, vol.16
, Issue.46
, pp. 25306-25313
-
-
Qi, X.1
Blizanac, B.2
DuPasquier, A.3
Meister, P.4
Placke, T.5
Oljaca, M.6
Li, J.7
Winter, M.8
-
154
-
-
84923321818
-
4 composite cathode electrode
-
COI: 1:CAS:528:DC%2BC2MXhtFCmt78%3D
-
4 composite cathode electrode. J Electrochem Soc 162(3):A339–A343
-
(2015)
J Electrochem Soc
, vol.162
, Issue.3
, pp. A339-A343
-
-
Qi, X.1
Blizanac, B.2
DuPasquier, A.3
Lal, A.4
Niehoff, P.5
Placke, T.6
Oljaca, M.7
Li, J.8
Winter, M.9
-
155
-
-
84885831397
-
Intensive dry and wet mixing influencing the structural and electrochemical properties of secondary lithium-ion battery cathodes
-
Bockholt H, Haselrieder W, Kwade A (2013) Intensive dry and wet mixing influencing the structural and electrochemical properties of secondary lithium-ion battery cathodes. ECS Trans 50(26):25–35
-
(2013)
ECS Trans
, vol.50
, Issue.26
, pp. 25-35
-
-
Bockholt, H.1
Haselrieder, W.2
Kwade, A.3
-
156
-
-
84964829585
-
Intensive powder mixing for dry dispersing of carbon black and its relevance for lithium-ion battery cathodes
-
COI: 1:CAS:528:DC%2BC28XnsFaiurc%3D
-
Bockholt H, Haselrieder W, Kwade A (2016) Intensive powder mixing for dry dispersing of carbon black and its relevance for lithium-ion battery cathodes. Powder Technol 297:266–274
-
(2016)
Powder Technol
, vol.297
, pp. 266-274
-
-
Bockholt, H.1
Haselrieder, W.2
Kwade, A.3
-
157
-
-
84940494570
-
Influence of dry mixing and distribution of conductive additives in cathodes for lithium ion batteries
-
COI: 1:CAS:528:DC%2BC2MXmslelsbc%3D
-
Bauer W, Nötzel D, Wenzel V, Nirschl H (2015) Influence of dry mixing and distribution of conductive additives in cathodes for lithium ion batteries. J Power Sources 288:359–367
-
(2015)
J Power Sources
, vol.288
, pp. 359-367
-
-
Bauer, W.1
Nötzel, D.2
Wenzel, V.3
Nirschl, H.4
-
158
-
-
84921721403
-
Critical roles of binders and formulation at multiscales of silicon-based composite electrodes
-
COI: 1:CAS:528:DC%2BC2MXhsVegsLo%3D
-
Mazouzi D, Karkar Z, Hernandez CR, Manero PJ, Guyomard D, Roue L, Lestriez B (2015) Critical roles of binders and formulation at multiscales of silicon-based composite electrodes. J Power Sources 280:533–549
-
(2015)
J Power Sources
, vol.280
, pp. 533-549
-
-
Mazouzi, D.1
Karkar, Z.2
Hernandez, C.R.3
Manero, P.J.4
Guyomard, D.5
Roue, L.6
Lestriez, B.7
-
160
-
-
85011824742
-
Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries
-
Du Z, Wood III DL, Daniel C, Kalnaus S, Li J (2017) Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries. J Appl Electrochem 47(3):405–415
-
(2017)
J Appl Electrochem
, vol.47
, Issue.3
, pp. 405-415
-
-
Du, Z.1
Wood, I.I.I.D.L.2
Daniel, C.3
Kalnaus, S.4
Li, J.5
-
161
-
-
84980691839
-
Capillary suspensions as beneficial formulation concept for high energy density Li-ion battery electrodes
-
COI: 1:CAS:528:DC%2BC28XhtlSlt7vP
-
Bitsch B, Gallasch T, Schroeder M, Börner M, Winter M, Willenbacher N (2016) Capillary suspensions as beneficial formulation concept for high energy density Li-ion battery electrodes. J Power Sources 328:114–123
-
(2016)
J Power Sources
, vol.328
, pp. 114-123
-
-
Bitsch, B.1
Gallasch, T.2
Schroeder, M.3
Börner, M.4
Winter, M.5
Willenbacher, N.6
-
162
-
-
0031249698
-
Graphite electrodes with tailored porosity for rechargeable ion-transfer batteries
-
Novák P, Scheifele W, Winter M, Haas O (1997) Graphite electrodes with tailored porosity for rechargeable ion-transfer batteries. J Power Sources 68(2):267–270
-
(1997)
J Power Sources
, vol.68
, Issue.2
, pp. 267-270
-
-
Novák, P.1
Scheifele, W.2
Winter, M.3
Haas, O.4
-
163
-
-
84885784040
-
Impact of the calendering process on the interfacial structure and the related electrochemical performance of secondary lithium-ion batteries
-
Haselrieder W, Ivanov S, Christen DK, Bockholt H, Kwade A (2013) Impact of the calendering process on the interfacial structure and the related electrochemical performance of secondary lithium-ion batteries. ECS Trans 50(26):59–70
-
(2013)
ECS Trans
, vol.50
, Issue.26
, pp. 59-70
-
-
Haselrieder, W.1
Ivanov, S.2
Christen, D.K.3
Bockholt, H.4
Kwade, A.5
-
164
-
-
84930744891
-
Effect of porosity on electrochemical and mechanical properties of composite Li-ion anodes
-
Antartis D, Dillon S, Chasiotis I (2015) Effect of porosity on electrochemical and mechanical properties of composite Li-ion anodes. J Compos Mater 49(15):1849–1862
-
(2015)
J Compos Mater
, vol.49
, Issue.15
, pp. 1849-1862
-
-
Antartis, D.1
Dillon, S.2
Chasiotis, I.3
-
165
-
-
78049371315
-
Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries
-
COI: 1:CAS:528:DC%2BC3cXhtlGnurbJ
-
Zhang W-J (2011) Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. J Power Sources 196(3):877–885
-
(2011)
J Power Sources
, vol.196
, Issue.3
, pp. 877-885
-
-
Zhang, W.-J.1
-
166
-
-
84934887492
-
Hierarchical electrode design of high-capacity alloy nanomaterials for lithium-ion batteries
-
COI: 1:CAS:528:DC%2BC2MXktVCis78%3D
-
Zhao H, Yuan W, Liu G (2015) Hierarchical electrode design of high-capacity alloy nanomaterials for lithium-ion batteries. Nano Today 10(2):193–212
-
(2015)
Nano Today
, vol.10
, Issue.2
, pp. 193-212
-
-
Zhao, H.1
Yuan, W.2
Liu, G.3
-
167
-
-
40849094479
-
Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability
-
COI: 1:CAS:528:DC%2BD1cXksF2mtb0%3D
-
Hochgatterer N, Schweiger M, Koller S, Raimann P, Wöhrle T, Wurm C, Winter M (2008) Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability. Electrochem Solid-State Lett 11(5):A76–A80
-
(2008)
Electrochem Solid-State Lett
, vol.11
, Issue.5
, pp. A76-A80
-
-
Hochgatterer, N.1
Schweiger, M.2
Koller, S.3
Raimann, P.4
Wöhrle, T.5
Wurm, C.6
Winter, M.7
-
168
-
-
84906874882
-
Mechanism of interactions between CMC binder and Si single crystal facets
-
COI: 1:CAS:528:DC%2BC2cXhtlaisLjK
-
Vogl U, Das P, Weber A, Winter M, Kostecki R, Lux S (2014) Mechanism of interactions between CMC binder and Si single crystal facets. Langmuir 30(34):10299–10307
-
(2014)
Langmuir
, vol.30
, Issue.34
, pp. 10299-10307
-
-
Vogl, U.1
Das, P.2
Weber, A.3
Winter, M.4
Kostecki, R.5
Lux, S.6
-
169
-
-
85023767339
-
-
Nelson P, Gallagher K, Bloom I BatPaC (battery performance and cost)(Accessed on January 10, 2017)
-
Nelson P, Gallagher K, Bloom I BatPaC (battery performance and cost) software, Argonne National Lab, http://www.cse.anl.gov/BatPaC/ (Accessed on January 10, 2017)
-
(2017)
Software, Argonne National Lab
-
-
-
170
-
-
85053744298
-
The handbook of lithium-ion battery pack design—chemistry, components
-
Elsevier Science, Burlington
-
Warner J (2015) The handbook of lithium-ion battery pack design—chemistry, components, types and terminology. Elsevier Science, Burlington
-
(2015)
Types and terminology
-
-
Warner, J.1
-
171
-
-
85023752365
-
-
3M (Accessed March 20, 2017)
-
3M http://multimedia.3m.com/mws/media/756169O/3mtm-battery-materials.pdf (Accessed March 20, 2017)
-
-
-
-
173
-
-
33845622840
-
Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells
-
COI: 1:CAS:528:DC%2BD28XhtlCmtLfP
-
Kasavajjula U, Wang C, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163(2):1003–1039
-
(2007)
J Power Sources
, vol.163
, Issue.2
, pp. 1003-1039
-
-
Kasavajjula, U.1
Wang, C.2
Appleby, A.J.3
-
174
-
-
84916608418
-
Alloy negative electrodes for Li-ion batteries
-
COI: 1:CAS:528:DC%2BC2cXhvFagtr3N
-
Obrovac MN, Chevrier VL (2014) Alloy negative electrodes for Li-ion batteries. Chem Rev 114(23):11444–11502
-
(2014)
Chem Rev
, vol.114
, Issue.23
, pp. 11444-11502
-
-
Obrovac, M.N.1
Chevrier, V.L.2
-
175
-
-
77956345139
-
A review of the electrochemical performance of alloy anodes for lithium-ion batteries
-
COI: 1:CAS:528:DC%2BC3cXhtFWntrnL
-
Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196(1):13–24
-
(2011)
J Power Sources
, vol.196
, Issue.1
, pp. 13-24
-
-
Zhang, W.-J.1
-
176
-
-
85012894527
-
Understanding and controlling anionic electrochemical activity in high-capacity oxides for next generation Li-ion batteries
-
COI: 1:CAS:528:DC%2BC2sXps1amsQ%3D%3D
-
Qiu B, Zhang M, Xia Y, Liu Z, Meng YS (2017) Understanding and controlling anionic electrochemical activity in high-capacity oxides for next generation Li-ion batteries. Chem Mater 29(3):908–915
-
(2017)
Chem Mater
, vol.29
, Issue.3
, pp. 908-915
-
-
Qiu, B.1
Zhang, M.2
Xia, Y.3
Liu, Z.4
Meng, Y.S.5
-
177
-
-
84873642236
-
2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries
-
COI: 1:CAS:528:DC%2BC3sXjvFaqu78%3D
-
2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources 233:121–130
-
(2013)
J Power Sources
, vol.233
, pp. 121-130
-
-
Noh, H.-J.1
Youn, S.2
Yoon, C.S.3
Sun, Y.-K.4
-
178
-
-
79952283444
-
2 with improved rate capability
-
COI: 1:CAS:528:DC%2BC3MXjtlSitro%3D
-
2 with improved rate capability. J Power Sources 196(10):4821–4825
-
(2011)
J Power Sources
, vol.196
, Issue.10
, pp. 4821-4825
-
-
Li, J.1
Kloepsch, R.2
Stan, M.C.3
Nowak, S.4
Kunze, M.5
Winter, M.6
Passerini, S.7
-
179
-
-
84922767703
-
A Li-rich Layered@ Spinel@ Carbon heterostructured cathode material for high capacity and high rate lithium-ion batteries fabricated via an in situ synchronous carbonization-reduction method
-
COI: 1:CAS:528:DC%2BC2MXjtV2rsA%3D%3D
-
Xia Q, Zhao X, Xu M, Ding Z, Liu J, Chen L, Ivey DG, Wei W (2015) A Li-rich Layered@ Spinel@ Carbon heterostructured cathode material for high capacity and high rate lithium-ion batteries fabricated via an in situ synchronous carbonization-reduction method. J Mater Chem A 3(7):3995–4003
-
(2015)
J Mater Chem A
, vol.3
, Issue.7
, pp. 3995-4003
-
-
Xia, Q.1
Zhao, X.2
Xu, M.3
Ding, Z.4
Liu, J.5
Chen, L.6
Ivey, D.G.7
Wei, W.8
-
180
-
-
84962562591
-
4 cathode materials for lithium-ion batteries: the critical effects of surface orientations and particle size
-
4 cathode materials for lithium-ion batteries: the critical effects of surface orientations and particle size. ACS Appl Mater Interfaces 8(7):4661–4675
-
(2016)
ACS Appl Mater Interfaces
, vol.8
, Issue.7
, pp. 4661-4675
-
-
Liu, H.1
Wang, J.2
Zhang, X.3
Zhou, D.4
Qi, X.5
Qiu, B.6
Fang, J.7
Kloepsch, R.8
Schumacher, G.9
Liu, Z.10
Li, J.11
-
181
-
-
84895920205
-
A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
-
COI: 1:CAS:528:DC%2BC2cXisFOnsL0%3D
-
Liu N, Lu Z, Zhao J, McDowell MT, Lee H-W, Zhao W, Cui Y (2014) A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nano 9(3):187–192
-
(2014)
Nat Nano
, vol.9
, Issue.3
, pp. 187-192
-
-
Liu, N.1
Lu, Z.2
Zhao, J.3
McDowell, M.T.4
Lee, H.-W.5
Zhao, W.6
Cui, Y.7
-
182
-
-
0000431966
-
Lithium storage alloys as anode materials for lithium ion batteries
-
COI: 1:CAS:528:DyaK1MXitVSgsr4%3D
-
Winter M, Besenhard JO, Albering JH, Yang J, Wachtler M (1998) Lithium storage alloys as anode materials for lithium ion batteries. Prog Batt Batt Mater 17:208
-
(1998)
Prog Batt Batt Mater
, vol.17
, pp. 208
-
-
Winter, M.1
Besenhard, J.O.2
Albering, J.H.3
Yang, J.4
Wachtler, M.5
-
183
-
-
0031222006
-
Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?
-
COI: 1:CAS:528:DyaK2sXnt1ersrk%3D
-
Besenhard J, Yang J, Winter M (1997) Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J Power Sources 68(1):87–90
-
(1997)
J Power Sources
, vol.68
, Issue.1
, pp. 87-90
-
-
Besenhard, J.1
Yang, J.2
Winter, M.3
-
184
-
-
84982236973
-
Anode-free rechargeable lithium metal batteries
-
COI: 1:CAS:528:DC%2BC28XhtlOnsrfL
-
Qian J, Adams BD, Zheng J, Xu W, Henderson WA, Wang J, Bowden ME, Xu S, Hu J, Zhang J-G (2016) Anode-free rechargeable lithium metal batteries. Adv Funct Mater 26(39):7094–7102
-
(2016)
Adv Funct Mater
, vol.26
, Issue.39
, pp. 7094-7102
-
-
Qian, J.1
Adams, B.D.2
Zheng, J.3
Xu, W.4
Henderson, W.A.5
Wang, J.6
Bowden, M.E.7
Xu, S.8
Hu, J.9
Zhang, J.-G.10
-
185
-
-
84903220267
-
Lithium–sulfur batteries: influence of C-rate, amount of electrolyte and sulfur loading on cycle performance
-
Brückner J, Thieme S, Grossmann HT, Dörfler S, Althues H, Kaskel S (2014) Lithium–sulfur batteries: influence of C-rate, amount of electrolyte and sulfur loading on cycle performance. J Power Sources 268:82–87
-
(2014)
J Power Sources
, vol.268
, pp. 82-87
-
-
Brückner, J.1
Thieme, S.2
Grossmann, H.T.3
Dörfler, S.4
Althues, H.5
Kaskel, S.6
-
186
-
-
85023755568
-
Li-air and Li-sulfur in an automotive system context
-
Berkeley: CA
-
Greszler T, Gu W, Goebel S, Masten D, Lakshmanan B (2012) Li-air and Li-sulfur in an automotive system context. Talk at Beyond Lithium Ion 5, Berkeley, CA
-
(2012)
Talk at Beyond Lithium Ion
-
-
Greszler, T.1
Gu, W.2
Goebel, S.3
Masten, D.4
Lakshmanan, B.5
-
187
-
-
0028480278
-
The history of polymer electrolytes
-
COI: 1:CAS:528:DyaK2cXlvVSrs74%3D
-
Armand M (1994) The history of polymer electrolytes. Solid State Ionics 69(3):309–319
-
(1994)
Solid State Ionics
, vol.69
, Issue.3
, pp. 309-319
-
-
Armand, M.1
-
188
-
-
0026592227
-
The lithium/iodine battery: a historical perspective
-
COI: 1:STN:280:DyaK3s%2FmsFCqtg%3D%3D
-
Greatbatch W, Holmes CF (1992) The lithium/iodine battery: a historical perspective. Pacing Clin Electrophysiol 15(11):2034–2036
-
(1992)
Pacing Clin Electrophysiol
, vol.15
, Issue.11
, pp. 2034-2036
-
-
Greatbatch, W.1
Holmes, C.F.2
-
189
-
-
24044485109
-
Ageing mechanisms in lithium-ion batteries
-
COI: 1:CAS:528:DC%2BD2MXptVWgsrc%3D
-
Vetter J, Novak P, Wagner MR, Veit C, Möller KC, Besenhard JO, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147(1–2):269–281
-
(2005)
J Power Sources
, vol.147
, Issue.1-2
, pp. 269-281
-
-
Vetter, J.1
Novak, P.2
Wagner, M.R.3
Veit, C.4
Möller, K.C.5
Besenhard, J.O.6
Winter, M.7
Wohlfahrt-Mehrens, M.8
Vogler, C.9
Hammouche, A.10
-
190
-
-
84893028915
-
A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
-
COI: 1:CAS:528:DC%2BC2cXhsFakt7Y%3D
-
Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M (2014) A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci 7(2):627–631
-
(2014)
Energy Environ Sci
, vol.7
, Issue.2
, pp. 627-631
-
-
Seino, Y.1
Ota, T.2
Takada, K.3
Hayashi, A.4
Tatsumisago, M.5
-
191
-
-
85018623391
-
Lithium battery chemistries enabled by solid-state electrolytes
-
COI: 1:CAS:528:DC%2BC2sXislGitr0%3D
-
Manthiram A, Yu X, Wang S (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2:16103
-
(2017)
Nat Rev Mater
, vol.2
, pp. 16103
-
-
Manthiram, A.1
Yu, X.2
Wang, S.3
-
192
-
-
84881411637
-
4 high-voltage spinel for lithium ion batteries
-
COI: 1:CAS:528:DC%2BC3sXhtV2ktb7I
-
4 high-voltage spinel for lithium ion batteries. J Phys Chem C 117(31):15947–15957
-
(2013)
J Phys Chem C
, vol.117
, Issue.31
, pp. 15947-15957
-
-
Pieczonka, N.P.W.1
Liu, Z.2
Lu, P.3
Olson, K.L.4
Moote, J.5
Powell, B.R.6
Kim, J.-H.7
-
193
-
-
84901246256
-
The influence of different conducting salts on the metal dissolution and capacity fading of NCM cathode material
-
COI: 1:CAS:528:DC%2BC2cXps12nsL8%3D
-
Gallus DR, Schmitz R, Wagner R, Hoffmann B, Nowak S, Cekic-Laskovic I, Schmitz RW, Winter M (2014) The influence of different conducting salts on the metal dissolution and capacity fading of NCM cathode material. Electrochim Acta 134:393–398
-
(2014)
Electrochim Acta
, vol.134
, pp. 393-398
-
-
Gallus, D.R.1
Schmitz, R.2
Wagner, R.3
Hoffmann, B.4
Nowak, S.5
Cekic-Laskovic, I.6
Schmitz, R.W.7
Winter, M.8
-
194
-
-
84963569101
-
12 lithium ion batteries
-
12 lithium ion batteries. J Electrochem Soc 163(6):A831–A837
-
(2016)
J Electrochem Soc
, vol.163
, Issue.6
, pp. A831-A837
-
-
Börner, M.1
Klamor, S.2
Hoffmann, B.3
Schroeder, M.4
Nowak, S.5
Würsig, A.6
Winter, M.7
Schappacher, F.8
-
196
-
-
84987621226
-
4 as anode material for lithium ion batteries: ionic liquid-assisted synthesis and performance evaluation with special emphasis on comparative metal dissolution
-
COI: 1:CAS:528:DC%2BC2sXptVOjsbo%3D
-
4 as anode material for lithium ion batteries: ionic liquid-assisted synthesis and performance evaluation with special emphasis on comparative metal dissolution. Acta Chim Slov 63(3):470–483
-
(2016)
Acta Chim Slov
, vol.63
, Issue.3
, pp. 470-483
-
-
Jia, H.1
Kloepsch, R.2
He, X.3
Evertz, M.4
Nowak, S.5
Li, J.6
Winter, M.7
Placke, T.8
-
197
-
-
84893029597
-
Lithium metal anodes for rechargeable batteries
-
COI: 1:CAS:528:DC%2BC2cXhsFaktL8%3D
-
Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7(2):513–537
-
(2014)
Energy Environ Sci
, vol.7
, Issue.2
, pp. 513-537
-
-
Xu, W.1
Wang, J.2
Ding, F.3
Chen, X.4
Nasybulin, E.5
Zhang, Y.6
Zhang, J.-G.7
-
199
-
-
84924352511
-
Development of bipolar all-solid-state lithium battery based on quasi-solid-state electrolyte containing tetraglyme-LiTFSA equimolar complex
-
Gambe Y, Sun Y, Honma I (2015) Development of bipolar all-solid-state lithium battery based on quasi-solid-state electrolyte containing tetraglyme-LiTFSA equimolar complex. Sci Rep 5:8869–8872
-
(2015)
Sci Rep
, vol.5
, pp. 8869-8872
-
-
Gambe, Y.1
Sun, Y.2
Honma, I.3
-
200
-
-
85023739690
-
Festelektrolytbatterien: Sinn, Unsinn, Realitätssinn. Proceedings, Batterieforum Deutschland
-
Berlin, Germany
-
Kloepsch R, Placke T, Winter M (2017) Festelektrolytbatterien: Sinn, Unsinn, Realitätssinn. Proceedings, Batterieforum Deutschland, January 25–27, Berlin, Germany
-
(2017)
January
-
-
Kloepsch, R.1
Placke, T.2
Winter, M.3
-
201
-
-
3342894970
-
Polymer solid electrolytes—an overview
-
Armand M (1983) Polymer solid electrolytes—an overview. Solid State Ionics 9:745–754
-
(1983)
Solid State Ionics
, vol.9
, pp. 745-754
-
-
Armand, M.1
-
202
-
-
0022905945
-
Polymer electrolytes
-
COI: 1:CAS:528:DyaL28Xlt1Crtbo%3D
-
Armand MB (1986) Polymer electrolytes. Annu Rev Mater Sci 16(1):245–261
-
(1986)
Annu Rev Mater Sci
, vol.16
, Issue.1
, pp. 245-261
-
-
Armand, M.B.1
-
203
-
-
0031073509
-
Electrochemistry of liquids vs. solids: polymer electrolytes
-
COI: 1:CAS:528:DyaK2sXitFGitLk%3D
-
Baril D, Michot C, Armand M (1997) Electrochemistry of liquids vs. solids: polymer electrolytes. Solid State Ionics 94(1):35–47
-
(1997)
Solid State Ionics
, vol.94
, Issue.1
, pp. 35-47
-
-
Baril, D.1
Michot, C.2
Armand, M.3
-
204
-
-
0033883931
-
An overview of the research and development of solid polymer electrolyte batteries
-
COI: 1:CAS:528:DC%2BD3cXntVGitQ%3D%3D
-
Murata K, Izuchi S, Yoshihisa Y (2000) An overview of the research and development of solid polymer electrolyte batteries. Electrochim Acta 45(8–9):1501–1508
-
(2000)
Electrochim Acta
, vol.45
, Issue.8-9
, pp. 1501-1508
-
-
Murata, K.1
Izuchi, S.2
Yoshihisa, Y.3
-
205
-
-
50849115475
-
Polymer electrolyte for lithium batteries based on photochemically crosslinked poly (ethylene oxide) and ionic liquid
-
COI: 1:CAS:528:DC%2BD1cXhtFent7jN
-
Rupp B, Schmuck M, Balducci A, Winter M, Kern W (2008) Polymer electrolyte for lithium batteries based on photochemically crosslinked poly (ethylene oxide) and ionic liquid. Eur Polym J 44(9):2986–2990
-
(2008)
Eur Polym J
, vol.44
, Issue.9
, pp. 2986-2990
-
-
Rupp, B.1
Schmuck, M.2
Balducci, A.3
Winter, M.4
Kern, W.5
-
206
-
-
84868322054
-
Methacrylate based gel polymer electrolyte for lithium-ion batteries
-
COI: 1:CAS:528:DC%2BC38XhslKqsbnL
-
Isken P, Winter M, Passerini S, Lex-Balducci A (2013) Methacrylate based gel polymer electrolyte for lithium-ion batteries. J Power Sources 225:157–162
-
(2013)
J Power Sources
, vol.225
, pp. 157-162
-
-
Isken, P.1
Winter, M.2
Passerini, S.3
Lex-Balducci, A.4
-
207
-
-
85016898223
-
An investigation on the use of a methacrylate-based gel polymer electrolyte in high power devices
-
COI: 1:CAS:528:DC%2BC3sXhslCjsbfM
-
Schroeder M, Isken P, Winter M, Passerini S, Lex-Balducci A, Balducci A (2013) An investigation on the use of a methacrylate-based gel polymer electrolyte in high power devices. J Electrochem Soc 160(10):A1753–A1758
-
(2013)
J Electrochem Soc
, vol.160
, Issue.10
, pp. A1753-A1758
-
-
Schroeder, M.1
Isken, P.2
Winter, M.3
Passerini, S.4
Lex-Balducci, A.5
Balducci, A.6
-
208
-
-
84920673307
-
Enhanced lithium-ion transport in polyphosphazene based gel polymer electrolytes
-
COI: 1:CAS:528:DC%2BC2cXitFOnu77M
-
Jankowsky S, Hiller MM, Fromm O, Winter M, Wiemhoefer H-D (2015) Enhanced lithium-ion transport in polyphosphazene based gel polymer electrolytes. Electrochim Acta 155:364–371
-
(2015)
Electrochim Acta
, vol.155
, pp. 364-371
-
-
Jankowsky, S.1
Hiller, M.M.2
Fromm, O.3
Winter, M.4
Wiemhoefer, H.-D.5
-
209
-
-
0020721391
-
4, and a model for intergranular constriction resistances
-
COI: 1:CAS:528:DyaL3sXhvV2ltrk%3D
-
4, and a model for intergranular constriction resistances. J Electrochem Soc 130(3):662–669
-
(1983)
J Electrochem Soc
, vol.130
, Issue.3
, pp. 662-669
-
-
Bruce, P.G.1
West, A.R.2
-
210
-
-
0025418194
-
Ionic-conductivity of solid electrolytes based on lithium titanium phosphate
-
COI: 1:CAS:528:DyaK3cXktlamtLo%3D
-
Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G (1990) Ionic-conductivity of solid electrolytes based on lithium titanium phosphate. J Electrochem Soc 137(4):1023–1027
-
(1990)
J Electrochem Soc
, vol.137
, Issue.4
, pp. 1023-1027
-
-
Aono, H.1
Sugimoto, E.2
Sadaoka, Y.3
Imanaka, N.4
Adachi, G.5
-
211
-
-
0027610976
-
High ionic-conductivity in lithium lanthanum titanate
-
COI: 1:CAS:528:DyaK3sXltVKmsbY%3D
-
Inaguma Y, Chen LQ, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M (1993) High ionic-conductivity in lithium lanthanum titanate. Solid State Commun 86(10):689–693
-
(1993)
Solid State Commun
, vol.86
, Issue.10
, pp. 689-693
-
-
Inaguma, Y.1
Chen, L.Q.2
Itoh, M.3
Nakamura, T.4
Uchida, T.5
Ikuta, H.6
Wakihara, M.7
-
213
-
-
0031076663
-
A stable thin-film lithium electrolyte: lithium phosphorus oxynitride
-
COI: 1:CAS:528:DyaK2sXhslaru78%3D
-
Yu XH, Bates JB, Jellison GE, Hart FX (1997) A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J Electrochem Soc 144(2):524–532
-
(1997)
J Electrochem Soc
, vol.144
, Issue.2
, pp. 524-532
-
-
Yu, X.H.1
Bates, J.B.2
Jellison, G.E.3
Hart, F.X.4
-
214
-
-
84942365540
-
Design principles for solid-state lithium superionic conductors
-
COI: 1:CAS:528:DC%2BC2MXhtlCksb%2FI
-
Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo YF, Ceder G (2015) Design principles for solid-state lithium superionic conductors. Nat Mater 14(10):1026
-
(2015)
Nat Mater
, vol.14
, Issue.10
, pp. 1026
-
-
Wang, Y.1
Richards, W.D.2
Ong, S.P.3
Miara, L.J.4
Kim, J.C.5
Mo, Y.F.6
Ceder, G.7
-
215
-
-
84880812616
-
Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery
-
Sakuda A, Hayashi A, Tatsumisago M (2013) Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci Rep 3:2261
-
(2013)
Sci Rep
, vol.3
, pp. 2261
-
-
Sakuda, A.1
Hayashi, A.2
Tatsumisago, M.3
-
217
-
-
80052054095
-
A lithium superionic conductor
-
COI: 1:CAS:528:DC%2BC3MXpsFaisLc%3D
-
Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) A lithium superionic conductor. Nat Mater 10(9):682–686
-
(2011)
Nat Mater
, vol.10
, Issue.9
, pp. 682-686
-
-
Kamaya, N.1
Homma, K.2
Yamakawa, Y.3
Hirayama, M.4
Kanno, R.5
Yonemura, M.6
Kamiyama, T.7
Kato, Y.8
Hama, S.9
Kawamoto, K.10
Mitsui, A.11
-
218
-
-
84964623378
-
12 at the lithium metal anode
-
COI: 1:CAS:528:DC%2BC28XjvFyksbY%3D
-
12 at the lithium metal anode. Chem Mater 28(7):2400–2407
-
(2016)
Chem Mater
, vol.28
, Issue.7
, pp. 2400-2407
-
-
Wenzel, S.1
Randau, S.2
Leichtweiss, T.3
Weber, D.A.4
Sann, J.5
Zeier, W.G.6
Janek, J.7
-
219
-
-
84955588338
-
Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte
-
COI: 1:CAS:528:DC%2BC2MXitVemt7vI
-
Wenzel S, Weber DA, Leichtweiss T, Busche MR, Sann J, Janek J (2016) Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ionics 286:24–33
-
(2016)
Solid State Ionics
, vol.286
, pp. 24-33
-
-
Wenzel, S.1
Weber, D.A.2
Leichtweiss, T.3
Busche, M.R.4
Sann, J.5
Janek, J.6
-
220
-
-
84959323489
-
First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries
-
COI: 1:CAS:528:DC%2BC2MXitVagtLfO
-
Zhu YZ, He XF, Mo YF (2016) First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A 4(9):3253–3266
-
(2016)
J Mater Chem A
, vol.4
, Issue.9
, pp. 3253-3266
-
-
Zhu, Y.Z.1
He, X.F.2
Mo, Y.F.3
-
221
-
-
85023765192
-
-
Accessed 8 March 2017
-
Metalary http://metalary.com/lithium-price/. Accessed 8 March 2017
-
Metalary
-
-
-
222
-
-
85023764929
-
Liquid electrolytes—just a commodity and a phase-out model? Proceedings, Graz Battery Days
-
Graz, Austria
-
Cekic-Laskovic I, Wagner R, Wiemers-Meyer S, Nowak S, Winter M (2016) Liquid electrolytes—just a commodity and a phase-out model? Proceedings, Graz Battery Days, September 26–28, Graz, Austria
-
(2016)
September
-
-
Cekic-Laskovic, I.1
Wagner, R.2
Wiemers-Meyer, S.3
Nowak, S.4
Winter, M.5
-
223
-
-
84961289456
-
Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode
-
COI: 1:CAS:528:DC%2BC2MXjtVarsbs%3D
-
Bieker G, Winter M, Bieker P (2015) Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys Chem Chem Phys 17(14):8670–8679
-
(2015)
Phys Chem Chem Phys
, vol.17
, Issue.14
, pp. 8670-8679
-
-
Bieker, G.1
Winter, M.2
Bieker, P.3
-
224
-
-
85027922821
-
Surface treatment: mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating
-
Ryou MH, Lee YM, Lee Y, Winter M, Bieker P (2015) Surface treatment: mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating. Adv Funct Mater 25(6):825–825
-
(2015)
Adv Funct Mater
, vol.25
, Issue.6
, pp. 825
-
-
Ryou, M.H.1
Lee, Y.M.2
Lee, Y.3
Winter, M.4
Bieker, P.5
-
226
-
-
84893087423
-
Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application
-
COI: 1:CAS:528:DC%2BC2cXhsFaksLc%3D
-
Li XF, Liu J, Banis MN, Lushington A, Li RY, Cai M, Sun XL (2014) Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy Environ Sci 7(2):768–778
-
(2014)
Energy Environ Sci
, vol.7
, Issue.2
, pp. 768-778
-
-
Li, X.F.1
Liu, J.2
Banis, M.N.3
Lushington, A.4
Li, R.Y.5
Cai, M.6
Sun, X.L.7
-
227
-
-
84863087493
-
Design criteria for electrochemical shock resistant battery electrodes
-
COI: 1:CAS:528:DC%2BC38XptVWku7s%3D
-
Woodford WH, Carter WC, Chiang Y-M (2012) Design criteria for electrochemical shock resistant battery electrodes. Energy Environ Sci 5(7):8014–8024
-
(2012)
Energy Environ Sci
, vol.5
, Issue.7
, pp. 8014-8024
-
-
Woodford, W.H.1
Carter, W.C.2
Chiang, Y.-M.3
|