-
1
-
-
0035890440
-
Issues and challenges facing rechargeable lithium batteries
-
Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359-367 (2001).
-
(2001)
Nature
, vol.414
, pp. 359-367
-
-
Tarascon, J.M.1
Armand, M.2
-
2
-
-
80052230656
-
Challenges in the development of advanced Li-ion batteries: A review
-
Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243-3262 (2011).
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 3243-3262
-
-
Etacheri, V.1
Marom, R.2
Elazari, R.3
Salitra, G.4
Aurbach, D.5
-
4
-
-
38949102073
-
Building better batteries
-
Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652-657 (2008).
-
(2008)
Nature
, vol.451
, pp. 652-657
-
-
Armand, M.1
Tarascon, J.M.2
-
6
-
-
77956958084
-
Beyond intercalation-based Li ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions
-
Cabana, J., Monconduit, L., Larcher, D. & Palacín, M. R. Beyond intercalation-based Li ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170-E192 (2010).
-
(2010)
Adv. Mater
, vol.22
, pp. E170-E192
-
-
Cabana, J.1
Monconduit, L.2
Larcher, D.3
Palacín, M.R.4
-
7
-
-
81555207951
-
Electrical energy storage for the grid: A battery of choices
-
Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928-935 (2011).
-
(2011)
Science
, vol.334
, pp. 928-935
-
-
Dunn, B.1
Kamath, H.2
Tarascon, J.-M.3
-
8
-
-
76249131385
-
Challenges for rechargeable Li batteries
-
Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587-603 (2010).
-
(2010)
Chem. Mater
, vol.22
, pp. 587-603
-
-
Goodenough, J.B.1
Kim, Y.2
-
9
-
-
84863114260
-
Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries
-
Thackeray, M. M., Wolverton, C. & Isaacs, E. D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5, 7854-7863 (2012).
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 7854-7863
-
-
Thackeray, M.M.1
Wolverton, C.2
Isaacs, E.D.3
-
10
-
-
81555222327
-
Semi-solid lithium rechargeable flow battery
-
Duduta, M. et al. Semi-solid lithium rechargeable flow battery. Adv. Energy Mater. 1, 511-516 (2011).
-
(2011)
Adv. Energy Mater
, vol.1
, pp. 511-516
-
-
Duduta, M.1
-
11
-
-
33847327926
-
Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries
-
Howard, W. F. & Spotnitz, R. M. Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries. J. Power Sources 165, 887-891 (2007).
-
(2007)
J. Power Sources
, vol.165
, pp. 887-891
-
-
Howard, W.F.1
Spotnitz, R.M.2
-
12
-
-
0020113612
-
A reversible graphite-lithium negative electrode for electrochemical generators
-
Yazami, R. & Touzain, P. A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources 9, 365-371 (1983).
-
(1983)
J. Power Sources
, vol.9
, pp. 365-371
-
-
Yazami, R.1
Touzain, P.2
-
13
-
-
0032499862
-
Insertion electrode materials for rechargeable lithium batteries
-
Winter, M., Besenhard, J. O., Spahr, M. E. & Novák, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725-763 (1998).
-
(1998)
Adv. Mater
, vol.10
, pp. 725-763
-
-
Winter, M.1
Besenhard, J.O.2
Spahr, M.E.3
Novák, P.4
-
14
-
-
0033185278
-
Lithium alloy negative electrodes
-
Huggins, R. A. Lithium alloy negative electrodes. J. Power Sources 81-82, 13-19 (1999).
-
(1999)
J. Power Sources
, vol.81-82
, pp. 13-19
-
-
Huggins, R.A.1
-
15
-
-
0035469714
-
Colossal reversible volume changes in lithium alloys
-
Beaulieu, L. Y., Eberman, K. W., Turner, R. L., Krause, L. J. & Dahn, J. R. Colossal reversible volume changes in lithium alloys. Electrochem. Solid State Lett. 4, A137-A140 (2001).
-
(2001)
Electrochem. Solid State Lett.
, vol.4
, pp. A137-A140
-
-
Beaulieu, L.Y.1
Eberman, K.W.2
Turner, R.L.3
Krause, L.J.4
Dahn, J.R.5
-
16
-
-
84867672114
-
Designing nanostructured Si anodes for high energy lithium ion batteries
-
Wu, H. & Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414-429 (2012).
-
(2012)
Nano Today
, vol.7
, pp. 414-429
-
-
Wu, H.1
Cui, Y.2
-
17
-
-
84884907143
-
25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries
-
McDowell, M. T., Lee, S. W., Nix, W. D. & Cui, Y. 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25, 4966-4985 (2013).
-
(2013)
Adv. Mater
, vol.25
, pp. 4966-4985
-
-
McDowell, M.T.1
Lee, S.W.2
Nix, W.D.3
Cui, Y.4
-
19
-
-
0017269529
-
Thermodynamic properties of the lithium-silicon system
-
Sharma, R. A. & Seefurth, R. N. Thermodynamic properties of the lithium-silicon system. J. Electrochem. Soc. 123, 1763-1768 (1976).
-
(1976)
J. Electrochem. Soc.
, vol.123
, pp. 1763-1768
-
-
Sharma, R.A.1
Seefurth, R.N.2
-
20
-
-
84975349897
-
Investigation of lithium utilization from a lithium-silicon electrode
-
Seefurth, R. N. & Sharma, R. A. Investigation of lithium utilization from a lithium-silicon electrode. J. Electrochem. Soc. 124, 1207-1214 (1977).
-
(1977)
J. Electrochem. Soc.
, vol.124
, pp. 1207-1214
-
-
Seefurth, R.N.1
Sharma, R.A.2
-
21
-
-
0029250585
-
Lithium insertion in carbons containing nanodispersed silicon
-
Wilson, A. M. & Dahn, J. R. Lithium insertion in carbons containing nanodispersed silicon. J. Electrochem. Soc. 142, 326-332 (1995).
-
(1995)
J. Electrochem. Soc.
, vol.142
, pp. 326-332
-
-
Wilson, A.M.1
Dahn, J.R.2
-
22
-
-
77953141927
-
Reversible storage of lithium in silver-coated three-dimensional macroporous silicon
-
Yu, Y. et al. Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. Adv. Mater. 22, 2247-2250 (2010).
-
(2010)
Adv. Mater
, vol.22
, pp. 2247-2250
-
-
Yu, Y.1
-
23
-
-
84856957712
-
Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes
-
Hwang, T. H., Lee, Y. M., Kong, B.-S., Seo, J.S. & Choi, J. W. Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 12, 802-807 (2012).
-
(2012)
Nano Lett.
, vol.12
, pp. 802-807
-
-
Hwang, T.H.1
Lee, Y.M.2
Kong, B.-S.3
Seo, J.S.4
Choi, J.W.5
-
24
-
-
84862281347
-
A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes
-
Liu, N. et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 12, 3315-3321 (2012).
-
(2012)
Nano Lett.
, vol.12
, pp. 3315-3321
-
-
Liu, N.1
-
25
-
-
84877257015
-
Spray drying method for large-scale and high-performance silicon negative electrodes in Li ion batteries
-
Jung, D. S., Hwang, T. H., Park, S. B. & Choi, J. W. Spray drying method for large-scale and high-performance silicon negative electrodes in Li ion batteries. Nano Lett. 13, 2092-2097 (2013).
-
(2013)
Nano Lett.
, vol.13
, pp. 2092-2097
-
-
Jung, D.S.1
Hwang, T.H.2
Park, S.B.3
Choi, J.W.4
-
26
-
-
84933060055
-
Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density
-
Son, I. H. et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat. Commun. 6, 7393 (2015).
-
(2015)
Nat. Commun.
, vol.6
, pp. 7393
-
-
Son, I.H.1
-
27
-
-
84865414506
-
A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries
-
Koo, B. et al. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem. Int. Ed. Engl. 51, 8762-8767 (2012).
-
(2012)
Angew. Chem. Int. Ed. Engl.
, vol.51
, pp. 8762-8767
-
-
Koo, B.1
-
28
-
-
84919772741
-
Systematic molecular-level design of binders incorporating Meldrum's acid for silicon anodes in lithium rechargeable batteries
-
Kwon, T.-w. et al. Systematic molecular-level design of binders incorporating meldrum's acid for silicon anodes in lithium rechargeable batteries. Adv. Mater. 26, 7979-7985 (2014).
-
(2014)
Adv. Mater
, vol.26
, pp. 7979-7985
-
-
Kwon, T.-W.1
-
29
-
-
84890095656
-
Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries
-
Wang, C. et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042-1048 (2013).
-
(2013)
Nat. Chem.
, vol.5
, pp. 1042-1048
-
-
Wang, C.1
-
30
-
-
84928209223
-
High-areal-capacity silicon electrodes with low-cost silicon particles based on spatial control of self-healing binder
-
Chen, Z. et al. High-areal-capacity silicon electrodes with low-cost silicon particles based on spatial control of self-healing binder. Adv. Energy Mater. 5, 1401826 (2015).
-
(2015)
Adv. Energy Mater
, vol.5
, pp. 1401826
-
-
Chen, Z.1
-
31
-
-
33845952094
-
Sodium carboxymethyl cellulose: A potential binder for Si negative electrodes for Li-ion batteries
-
Li, J., Lewis, R. B. & Dahn, J. R. Sodium carboxymethyl cellulose: a potential binder for Si negative electrodes for Li-ion batteries. Electrochem. Solid State Lett. 10, A17-A20 (2007).
-
(2007)
Electrochem. Solid State Lett.
, vol.10
, pp. A17-A20
-
-
Li, J.1
Lewis, R.B.2
Dahn, J.R.3
-
32
-
-
80053579364
-
A major constituent of brown algae for use in high-capacity Li-ion batteries
-
Kovalenko, I. et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75-79 (2011).
-
(2011)
Science
, vol.334
, pp. 75-79
-
-
Kovalenko, I.1
-
33
-
-
84870607196
-
Crop-derived polysaccharides as binders for high-capacity silicon/graphite-based electrodes in lithium-ion batteries
-
Murase, M. et al. Crop-derived polysaccharides as binders for high-capacity silicon/graphite-based electrodes in lithium-ion batteries. Chem Sus Chem 5, 2307-2311 (2012).
-
(2012)
Chem Sus Chem
, vol.5
, pp. 2307-2311
-
-
Murase, M.1
-
34
-
-
84894216054
-
Hyperbranched β cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries
-
Jeong, Y. K. et al. Hyperbranched β cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. Nano Lett. 14, 864-870 (2014).
-
(2014)
Nano Lett.
, vol.14
, pp. 864-870
-
-
Jeong, Y.K.1
-
35
-
-
84926482951
-
Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes
-
Jeong, Y. K. et al. Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes. Energy Environ. Sci. 8, 1224-1230 (2015).
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 1224-1230
-
-
Jeong, Y.K.1
-
36
-
-
80054810677
-
Polymers with tailored electronic structure for high capacity lithium battery electrodes
-
Liu, G. et al. Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv. Mater. 23, 4679-4683 (2011).
-
(2011)
Adv. Mater
, vol.23
, pp. 4679-4683
-
-
Liu, G.1
-
37
-
-
84901467517
-
Stable Li-ion battery anodes by in situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles
-
Wu, H. et al. Stable Li-ion battery anodes by in situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 4, 1943 (2013).
-
(2013)
Nat. Commun.
, vol.4
, pp. 1943
-
-
Wu, H.1
-
38
-
-
84946017499
-
Review - development of advanced rechargeable batteries: A continuous challenge in the choice of suitable electrolyte solutions
-
Erickson, E. M. et al. Review - development of advanced rechargeable batteries: a continuous challenge in the choice of suitable electrolyte solutions. J. Electrochem. Soc. 162, A2424-A2438 (2015).
-
(2015)
J. Electrochem. Soc.
, vol.162
, pp. A2424-A2438
-
-
Erickson, E.M.1
-
39
-
-
84859578088
-
Exceptional electrochemical performance of Si nanowires in 1,3-dioxolane solutions: A surface chemical investigation
-
Etacheri, V. et al. Exceptional electrochemical performance of Si nanowires in 1,3-dioxolane solutions: a surface chemical investigation. Langmuir 28, 6175-6184 (2012).
-
(2012)
Langmuir
, vol.28
, pp. 6175-6184
-
-
Etacheri, V.1
-
40
-
-
84903736128
-
Amorphous columnar silicon anodes for advanced high voltage lithium ion full cells: Dominant factors governing cycling performance
-
Markevich, E. et al. Amorphous columnar silicon anodes for advanced high voltage lithium ion full cells: dominant factors governing cycling performance. J. Electrochem. Soc. 160, A1824-A1833 (2013).
-
(2013)
J. Electrochem. Soc.
, vol.160
, pp. A1824-A1833
-
-
Markevich, E.1
-
41
-
-
84908004603
-
High performance of thick amorphous columnar monolithic film silicon anodes in ionic liquid electrolytes at elevated temperature
-
Markevich, E. et al. High performance of thick amorphous columnar monolithic film silicon anodes in ionic liquid electrolytes at elevated temperature. RSC Adv. 4, 48572-48575 (2014).
-
(2014)
RSC Adv.
, vol.4
, pp. 48572-48575
-
-
Markevich, E.1
-
43
-
-
84951255986
-
Preparation and properties of silicon monoxide
-
DeWet Erasmus, H. & Persson, J. A. Preparation and properties of silicon monoxide. J. Electrochem. Soc. 95, 316-318 (1949).
-
(1949)
J. Electrochem. Soc.
, vol.95
, pp. 316-318
-
-
DeWet Erasmus, H.1
Persson, J.A.2
-
44
-
-
84938150015
-
x nanocomposite as a high-capacity lithium storage material
-
x nanocomposite as a high-capacity lithium storage material. ACS Nano 9, 7690-7696 (2015).
-
(2015)
ACS Nano
, vol.9
, pp. 7690-7696
-
-
Park, E.1
-
45
-
-
40049104080
-
A new SiO/C anode composition for lithium-ion battery
-
Doh, C.H. et al. A new SiO/C anode composition for lithium-ion battery. J. Power Sources 179, 367-370 (2008).
-
(2008)
J. Power Sources
, vol.179
, pp. 367-370
-
-
Doh, C.H.1
-
46
-
-
84923378266
-
Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents
-
Zhao, J. et al. Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents. Nat. Commun. 5, 5088 (2014).
-
(2014)
Nat. Commun.
, vol.5
, pp. 5088
-
-
Zhao, J.1
-
47
-
-
80052063686
-
Prelithiated silicon nanowires as an anode for lithium ion batteries
-
Liu, N., Hu, L., McDowell, M. T., Jackson, A. & Cui, Y. Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 5, 6487-6493 (2011).
-
(2011)
ACS Nano
, vol.5
, pp. 6487-6493
-
-
Liu, N.1
Hu, L.2
McDowell, M.T.3
Jackson, A.4
Cui, Y.5
-
48
-
-
84957568957
-
Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells
-
Kim, H. J. et al. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett. 16, 282-288 (2015).
-
(2015)
Nano Lett.
, vol.16
, pp. 282-288
-
-
Kim, H.J.1
-
49
-
-
27644545392
-
Analysis of SiO anodes for lithium-ion batteries
-
Miyachi, M., Yamamoto, H., Kawai, H., Ohta, T. & Shirakata, M. Analysis of SiO anodes for lithium-ion batteries. J. Electrochem. Soc. 152, A2089-A2091 (2005).
-
(2005)
J. Electrochem. Soc.
, vol.152
, pp. A2089-A2091
-
-
Miyachi, M.1
Yamamoto, H.2
Kawai, H.3
Ohta, T.4
Shirakata, M.5
-
50
-
-
80053911440
-
Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries
-
Komaba, S. et al. Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries. J. Phys. Chem. C 115, 13487-13495 (2011).
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 13487-13495
-
-
Komaba, S.1
-
53
-
-
84885785334
-
A review of blended cathode materials for use in Li ion batteries
-
Chikkannanavar, S. B., Bernardi, D. M. & Liu, L. A review of blended cathode materials for use in Li ion batteries. J. Power Sources 248, 91-100 (2014).
-
(2014)
J. Power Sources
, vol.248
, pp. 91-100
-
-
Chikkannanavar, S.B.1
Bernardi, D.M.2
Liu, L.3
-
54
-
-
84891845606
-
2 cathode material in lithium ion batteries
-
2 cathode material in lithium ion batteries. Adv. Energy Mater. 4, 1300787 (2014).
-
(2014)
Adv. Energy Mater
, vol.4
, pp. 1300787
-
-
Jung, S.K.1
-
55
-
-
1542363244
-
Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries
-
Chen, C. H. et al. Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries. J. Power Sources 128, 278-285 (2004).
-
(2004)
J. Power Sources
, vol.128
, pp. 278-285
-
-
Chen, C.H.1
-
56
-
-
84954076749
-
Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives
-
Manthiram, A., Knight, J. C., Myung, S.T., Oh, S.M. & Sun, Y.K. Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv. Energy Mater. 6, 1501010 (2015).
-
(2015)
Adv. Energy Mater
, vol.6
, pp. 1501010
-
-
Manthiram, A.1
Knight, J.C.2
Myung, S.T.3
Oh, S.M.4
Sun, Y.K.5
-
57
-
-
84926357570
-
Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries
-
Liu, W. et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. Engl. 54, 4440-4457 (2015).
-
(2015)
Angew. Chem. Int. Ed. Engl.
, vol.54
, pp. 4440-4457
-
-
Liu, W.1
-
58
-
-
84902671218
-
Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
-
Lin, F. et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014).
-
(2014)
Nat. Commun.
, vol.5
, pp. 3529
-
-
Lin, F.1
-
61
-
-
84907517079
-
2 (x = 0.2, 0.4, 0.6) upon cycling
-
2 (x = 0.2, 0.4, 0.6) upon cycling. J. Electrochem. Soc. 161, A1534-A1547 (2014).
-
(2014)
J. Electrochem. Soc.
, vol.161
, pp. A1534-A1547
-
-
Nayak, P.K.1
Grinblat, J.2
Levi, M.3
Markovsky, B.4
Aurbach, D.5
-
62
-
-
77956212606
-
2 cathode materials (M = [MnNi] and [MnNiCo]): Electrochemical, spectroscopic, and calorimetric studies
-
2 cathode materials (M = [MnNi] and [MnNiCo]): electrochemical, spectroscopic, and calorimetric studies. J. Electrochem. Soc. 157, A1099-A1107 (2010).
-
(2010)
J. Electrochem. Soc.
, vol.157
, pp. A1099-A1107
-
-
Haik, O.1
-
63
-
-
85016849142
-
Electrochemical and physical properties of Ti substituted layered nickel manganese cobalt oxide (NMC) cathode materials
-
Kam, K. C., Mehta, A., Heron, J. T. & Doeff, M. M. Electrochemical and physical properties of Ti substituted layered nickel manganese cobalt oxide (NMC) cathode materials. J. Electrochem. Soc. 159, A1383-A1392 (2012).
-
(2012)
J. Electrochem. Soc.
, vol.159
, pp. A1383-A1392
-
-
Kam, K.C.1
Mehta, A.2
Heron, J.T.3
Doeff, M.M.4
-
64
-
-
58649105765
-
2 cathode materials
-
2 cathode materials. J. Power Sources 187, 586-590 (2009).
-
(2009)
J. Power Sources
, vol.187
, pp. 586-590
-
-
Karan, N.1
-
66
-
-
40049098002
-
2 cathode in lithium-ion cells
-
2 cathode in lithium-ion cells. J. Power Sources 179, 347-350 (2008).
-
(2008)
J. Power Sources
, vol.179
, pp. 347-350
-
-
Kim, H.-B.1
-
67
-
-
80051750883
-
2 (M = Ni, Mn, Co) Li ion cathodes with and without alumina coatings
-
2 (M = Ni, Mn, Co) Li ion cathodes with and without alumina coatings. J. Electrochem. Soc. 158, A883-A889 (2011).
-
(2011)
J. Electrochem. Soc.
, vol.158
, pp. A883-A889
-
-
West, W.1
-
68
-
-
84886086293
-
2 cathode material using ALD
-
2 cathode material using ALD. Adv. Energy Mater. 3, 1299-1307 (2013).
-
(2013)
Adv. Energy Mater
, vol.3
, pp. 1299-1307
-
-
Zhang, X.1
-
74
-
-
81355160310
-
Spinel-layered core-shell cathode materials for Li ion batteries
-
Cho, Y., Lee, S., Lee, Y., Hong, T. & Cho, J. Spinel-layered core-shell cathode materials for Li ion batteries. Adv. Energy Mater. 1, 821-828 (2011).
-
(2011)
Adv. Energy Mater
, vol.1
, pp. 821-828
-
-
Cho, Y.1
Lee, S.2
Lee, Y.3
Hong, T.4
Cho, J.5
-
75
-
-
84902291635
-
Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li ion batteries
-
Wu, F. et al. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li ion batteries. Nano Lett. 14, 3550-3555 (2014).
-
(2014)
Nano Lett.
, vol.14
, pp. 3550-3555
-
-
Wu, F.1
-
76
-
-
84867843425
-
Nanostructured high-energy cathode materials for advanced lithium batteries
-
Sun, Y.K. et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942-947 (2012).
-
(2012)
Nat. Mater
, vol.11
, pp. 942-947
-
-
Sun, Y.K.1
-
77
-
-
0001658455
-
Electrical energy storage and intercalation chemistry
-
Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126-1127 (1976).
-
(1976)
Science
, vol.192
, pp. 1126-1127
-
-
Whittingham, M.S.1
-
78
-
-
0036603992
-
A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions
-
Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148, 405-416 (2002).
-
(2002)
Solid State Ionics
, vol.148
, pp. 405-416
-
-
Aurbach, D.1
Zinigrad, E.2
Cohen, Y.3
Teller, H.4
-
79
-
-
84893029597
-
Lithium metal anodes for rechargeable batteries
-
Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513-537 (2014).
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 513-537
-
-
Xu, W.1
-
80
-
-
0033742359
-
Factors which limit the cycle life of rechargeable lithium (metal) batteries
-
Aurbach, D., Zinigrad, E., Teller, H. & Dan, P. Factors which limit the cycle life of rechargeable lithium (metal) batteries. J. Electrochem. Soc. 147, 1274-1279 (2000).
-
(2000)
J. Electrochem. Soc.
, vol.147
, pp. 1274-1279
-
-
Aurbach, D.1
Zinigrad, E.2
Teller, H.3
Dan, P.4
-
81
-
-
0031076663
-
A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride
-
Yu, X., Bates, J. B., Jellison, G. E. & Hart, F. X. A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J. Electrochem. Soc. 144, 524-532 (1997).
-
(1997)
J. Electrochem. Soc.
, vol.144
, pp. 524-532
-
-
Yu, X.1
Bates, J.B.2
Jellison, G.E.3
Hart, F.X.4
-
82
-
-
84935017261
-
Next-generation lithium metal anode engineering via atomic layer deposition
-
Kozen, A. C. et al. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884-5892 (2015).
-
(2015)
ACS Nano
, vol.9
, pp. 5884-5892
-
-
Kozen, A.C.1
-
83
-
-
84924234931
-
A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries
-
Lee, H., Lee, D. J., Kim, Y.-J., Park, J.K. & Kim, H.T. A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. J. Power Sources 284, 103-108 (2015).
-
(2015)
J. Power Sources
, vol.284
, pp. 103-108
-
-
Lee, H.1
Lee, D.J.2
Kim, Y.-J.3
Park, J.K.4
Kim, H.T.5
-
84
-
-
84905817375
-
Interconnected hollow carbon nanospheres for stable lithium metal anodes
-
Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618-623 (2014).
-
(2014)
Nat. Nanotechnol.
, vol.9
, pp. 618-623
-
-
Zheng, G.1
-
85
-
-
84928662467
-
Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive
-
Kim, J.S., Kim, D. W., Jung, H. T. & Choi, J. W. Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive. Chem. Mater. 27, 2780-2787 (2015).
-
(2015)
Chem. Mater
, vol.27
, pp. 2780-2787
-
-
Kim, J.S.1
Kim, D.W.2
Jung, H.T.3
Choi, J.W.4
-
86
-
-
84863712594
-
Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators
-
Ryou, M. H. et al. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv. Energy Mater. 2, 645-650 (2012).
-
(2012)
Adv. Energy Mater
, vol.2
, pp. 645-650
-
-
Ryou, M.H.1
-
87
-
-
84910042270
-
Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
-
Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961-969 (2014).
-
(2014)
Nat. Mater
, vol.13
, pp. 961-969
-
-
Lu, Y.1
Tu, Z.2
Archer, L.A.3
-
88
-
-
9444231785
-
Design of electrolyte solutions for Li and Li-ion batteries: A review
-
Aurbach, D. et al. Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochim. Acta 50, 247-254 (2004).
-
(2004)
Electrochim. Acta
, vol.50
, pp. 247-254
-
-
Aurbach, D.1
-
89
-
-
0346334088
-
Effect of vinylene carbonate as additive to electrolyte for lithium metal anode
-
Ota, H., Shima, K., Ue, M. & Yamaki, J.-i. Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochim. Acta 49, 565-572 (2004).
-
(2004)
Electrochim. Acta
, vol.49
, pp. 565-572
-
-
Ota, H.1
Shima, K.2
Ue, M.3
Yamaki, J.-I.4
-
90
-
-
34547195193
-
Effects of triacetoxyvinylsilane as SEI layer additive on electrochemical performance of lithium metal secondary battery
-
Lee, Y. M. et al. Effects of triacetoxyvinylsilane as SEI layer additive on electrochemical performance of lithium metal secondary battery. Electrochem. Solid State Lett. 10, A216-A219 (2007).
-
(2007)
Electrochem. Solid State Lett.
, vol.10
, pp. A216-A219
-
-
Lee, Y.M.1
-
91
-
-
84875415014
-
Dendrite-free lithium deposition via self-healing electrostatic shield mechanism
-
Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450-4456 (2013).
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 4450-4456
-
-
Ding, F.1
-
92
-
-
85027922821
-
Mechanical surface modification of lithium metal: Towards improved Li metal anode performance by directed Li plating
-
Ryou, M.-H., Lee, Y. M., Lee, Y., Winter, M. & Bieker, P. Mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating. Adv. Funct. Mater. 25, 834-841 (2015).
-
(2015)
Adv. Funct. Mater
, vol.25
, pp. 834-841
-
-
Ryou, M.-H.1
Lee, Y.M.2
Lee, Y.3
Winter, M.4
Bieker, P.5
-
93
-
-
84901233680
-
Effect of lithium powder size on the performance of lithium-powder/lithium trivanadate secondary batteries shown via impedance analysis
-
Lee, J. H. et al. Effect of lithium powder size on the performance of lithium-powder/lithium trivanadate secondary batteries shown via impedance analysis. Electrochim. Acta 131, 202-206 (2014).
-
(2014)
Electrochim. Acta
, vol.131
, pp. 202-206
-
-
Lee, J.H.1
-
95
-
-
0018456767
-
Lithium-dissolved sulfur battery with an organic electrolyte
-
Rauh, R. D., Abraham, K. M., Pearson, G. F., Surprenant, J. K. & Brummer, S. B. Lithium-dissolved sulfur battery with an organic electrolyte. J. Electrochem. Soc. 126, 523-527 (1979).
-
(1979)
J. Electrochem. Soc.
, vol.126
, pp. 523-527
-
-
Rauh, R.D.1
Abraham, K.M.2
Pearson, G.F.3
Surprenant, J.K.4
Brummer, S.B.5
-
96
-
-
67650595207
-
On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries
-
Aurbach, D. et al. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries. J. Electrochem. Soc. 156, A694-A702 (2009).
-
(2009)
J. Electrochem. Soc.
, vol.156
, pp. A694-A702
-
-
Aurbach, D.1
-
97
-
-
77956219268
-
Morphological and structural studies of composite sulfur electrodes upon cycling by HRTEM, AFM and raman spectroscopy
-
Elazari, R. et al. Morphological and structural studies of composite sulfur electrodes upon cycling by HRTEM, AFM and Raman spectroscopy. J. Electrochem. Soc. 157, A1131-A1138 (2010).
-
(2010)
J. Electrochem. Soc.
, vol.157
, pp. A1131-A1138
-
-
Elazari, R.1
-
98
-
-
78049377906
-
Advances in Li-S batteries
-
Ji, X. & Nazar, L. F. Advances in Li-S batteries. J. Mater. Chem. 20, 9821-9826 (2010).
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 9821-9826
-
-
Ji, X.1
Nazar, L.F.2
-
99
-
-
84889672090
-
Lithium-sulfur batteries: Electrochemistry, materials, and prospects
-
Yin, Y.-X., Xin, S., Guo, Y.G. & Wan, L.J. Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. Engl. 52, 13186-13200 (2013).
-
(2013)
Angew. Chem. Int. Ed. Engl.
, vol.52
, pp. 13186-13200
-
-
Yin, Y.-X.1
Xin, S.2
Guo, Y.G.3
Wan, L.J.4
-
100
-
-
67349275043
-
A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries
-
Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500-506 (2009).
-
(2009)
Nat. Mater
, vol.8
, pp. 500-506
-
-
Ji, X.1
Lee, K.T.2
Nazar, L.F.3
-
101
-
-
83455228419
-
Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries
-
Elazari, R., Salitra, G., Garsuch, A., Panchenko, A. & Aurbach, D. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv. Mater. 23, 5641-5644 (2011).
-
(2011)
Adv. Mater
, vol.23
, pp. 5641-5644
-
-
Elazari, R.1
Salitra, G.2
Garsuch, A.3
Panchenko, A.4
Aurbach, D.5
-
102
-
-
84866721087
-
Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery
-
Evers, S., Yim, T. & Nazar, L. F. Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery. J. Phys. Chem. C 116, 19653-19658 (2012).
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 19653-19658
-
-
Evers, S.1
Yim, T.2
Nazar, L.F.3
-
103
-
-
84897615862
-
Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries
-
Song, J. et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 24, 1243-1250 (2014).
-
(2014)
Adv. Funct. Mater
, vol.24
, pp. 1243-1250
-
-
Song, J.1
-
104
-
-
84869469638
-
Smaller sulfur molecules promise better lithium-sulfur batteries
-
Xin, S. et al. Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 134, 18510-18513 (2012).
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 18510-18513
-
-
Xin, S.1
-
105
-
-
85027940104
-
A lithium-sulfur battery with a high areal energy density
-
Kim, J.-S., Hwang, T. H., Kim, B. G., Min, J. & Choi, J. W. A lithium-sulfur battery with a high areal energy density. Adv. Funct. Mater. 24, 5359-5367 (2014).
-
(2014)
Adv. Funct. Mater
, vol.24
, pp. 5359-5367
-
-
Kim, J.-S.1
Hwang, T.H.2
Kim, B.G.3
Min, J.4
Choi, J.W.5
-
106
-
-
84879118567
-
The use of elemental sulfur as an alternative feedstock for polymeric materials
-
Chung, W. J. et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 5, 518-524 (2013).
-
(2013)
Nat. Chem.
, vol.5
, pp. 518-524
-
-
Chung, W.J.1
-
107
-
-
85017093352
-
Electrochemical performance of all-solid-state Li/S batteries with sulfur-based composite electrodes prepared by mechanical milling at high temperature
-
Nagao, M., Hayashi, A. & Tatsumisago, M. Electrochemical performance of all-solid-state Li/S batteries with sulfur-based composite electrodes prepared by mechanical milling at high temperature. Energy Technol. 1, 186-192 (2013).
-
(2013)
Energy Technol.
, vol.1
, pp. 186-192
-
-
Nagao, M.1
Hayashi, A.2
Tatsumisago, M.3
-
108
-
-
10044268709
-
Electrochemical properties of sulfur as cathode materials in a solid-state lithium battery with inorganic solid electrolytes
-
Machida, N., Kobayashi, K., Nishikawa, Y. & Shigematsu, T. Electrochemical properties of sulfur as cathode materials in a solid-state lithium battery with inorganic solid electrolytes. Solid State Ionics 175, 247-250 (2004).
-
(2004)
Solid State Ionics
, vol.175
, pp. 247-250
-
-
Machida, N.1
Kobayashi, K.2
Nishikawa, Y.3
Shigematsu, T.4
-
109
-
-
84893375041
-
All-solid-state lithium battery with sulfur/carbon composites as positive electrode materials
-
Kinoshita, S., Okuda, K., Machida, N., Naito, M. & Sigematsu, T. All-solid-state lithium battery with sulfur/carbon composites as positive electrode materials. Solid State Ionics 256, 97-102 (2014).
-
(2014)
Solid State Ionics
, vol.256
, pp. 97-102
-
-
Kinoshita, S.1
Okuda, K.2
Machida, N.3
Naito, M.4
Sigematsu, T.5
-
110
-
-
45449093173
-
All solid-state battery with sulfur electrode and thio-LISICON electrolyte
-
Kobayashi, T. et al. All solid-state battery with sulfur electrode and thio-LISICON electrolyte. J. Power Sources 182, 621-625 (2008).
-
(2008)
J. Power Sources
, vol.182
, pp. 621-625
-
-
Kobayashi, T.1
-
112
-
-
0033717270
-
Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes
-
Marmorstein, D. et al. Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J. Power Sources 89, 219-226 (2000).
-
(2000)
J. Power Sources
, vol.89
, pp. 219-226
-
-
Marmorstein, D.1
-
113
-
-
33644517547
-
Discharge process of Li/PVdF/S cells at room temperature
-
Ryu, H.S., Ahn, H.J., Kim, K.W., Ahn, J.H. & Lee, J.Y. Discharge process of Li/PVdF/S cells at room temperature. J. Power Sources 153, 360-364 (2006).
-
(2006)
J. Power Sources
, vol.153
, pp. 360-364
-
-
Ryu, H.S.1
Ahn, H.J.2
Kim, K.W.3
Ahn, J.H.4
Lee, J.Y.5
-
114
-
-
33845308810
-
Microporous poly(vinylidene fluoride-co hexafluoropropylene) polymer electrolytes for lithium/sulfur cells
-
Choi, J. W. et al. Microporous poly(vinylidene fluoride-co hexafluoropropylene) polymer electrolytes for lithium/sulfur cells. J. Ind. Eng. Chem. 12, 939-949 (2006).
-
(2006)
J. Ind. Eng. Chem.
, vol.12
, pp. 939-949
-
-
Choi, J.W.1
-
115
-
-
84860499597
-
Lithium-sulfur cell with combining carbon nanofibers-sulfur cathode and gel polymer electrolyte
-
Rao, M., Geng, X., Li, X., Hu, S. & Li, W. Lithium-sulfur cell with combining carbon nanofibers-sulfur cathode and gel polymer electrolyte. J. Power Sources 212, 179-185 (2012).
-
(2012)
J. Power Sources
, vol.212
, pp. 179-185
-
-
Rao, M.1
Geng, X.2
Li, X.3
Hu, S.4
Li, W.5
-
116
-
-
84923374491
-
Electrochemical reduction mechanism of sulfur particles electrically isolated from carbon cathodes of lithium-sulfur cells
-
Koh, J. Y. et al. Electrochemical reduction mechanism of sulfur particles electrically isolated from carbon cathodes of lithium-sulfur cells. J. Electrochem. Soc. 161, A2117-A2120 (2014).
-
(2014)
J. Electrochem. Soc.
, vol.161
, pp. A2117-A2120
-
-
Koh, J.Y.1
-
117
-
-
84942857661
-
The effect of a solid electrolyte interphase on the mechanism of operation of lithium-sulfur batteries
-
Markevich, E. et al. The effect of a solid electrolyte interphase on the mechanism of operation of lithium-sulfur batteries. J. Mater. Chem. A 3, 19873-19883 (2015).
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 19873-19883
-
-
Markevich, E.1
-
118
-
-
84940210512
-
Fluoroethylene carbonate as an important component in organic carbonate electrolyte solutions for lithium sulfur batteries
-
Markevich, E. et al. Fluoroethylene carbonate as an important component in organic carbonate electrolyte solutions for lithium sulfur batteries. Electrochem. Commun. 60, 42-46 (2015).
-
(2015)
Electrochem. Commun.
, vol.60
, pp. 42-46
-
-
Markevich, E.1
-
119
-
-
84915804037
-
Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries
-
Yuan, Z. et al. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries. Adv. Funct. Mater. 24, 6105-6112 (2014).
-
(2014)
Adv. Funct. Mater
, vol.24
, pp. 6105-6112
-
-
Yuan, Z.1
-
120
-
-
0029769438
-
A polymer electrolyte-based rechargeable lithium/oxygen battery
-
Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1-5 (1996).
-
(1996)
J. Electrochem. Soc.
, vol.143
, pp. 1-5
-
-
Abraham, K.M.1
Jiang, Z.2
-
121
-
-
84903979389
-
Recent advances in zinc-air batteries
-
Li, Y. & Dai, H. Recent advances in zinc-air batteries. Chem. Soc. Rev. 43, 5257-5275 (2014).
-
(2014)
Chem. Soc. Rev.
, vol.43
, pp. 5257-5275
-
-
Li, Y.1
Dai, H.2
-
123
-
-
84873969908
-
Making Li-air batteries rechargeable: Material challenges
-
Shao, Y. et al. Making Li-air batteries rechargeable: material challenges. Adv. Funct. Mater. 23, 987-1004 (2013).
-
(2013)
Adv. Funct. Mater
, vol.23
, pp. 987-1004
-
-
Shao, Y.1
-
124
-
-
62349097136
-
Study on lithium/air secondary batteries - stability of NASICON-type lithium ion conducting glass-ceramics with water
-
Hasegawa, S. et al. Study on lithium/air secondary batteries - stability of NASICON-type lithium ion conducting glass-ceramics with water. J. Power Sources 189, 371-377 (2009).
-
(2009)
J. Power Sources
, vol.189
, pp. 371-377
-
-
Hasegawa, S.1
-
125
-
-
84901632200
-
Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes
-
Visco, S. et al. Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes. J. Solid State Electrochem. 18, 1443-1456 (2014).
-
(2014)
J. Solid State Electrochem.
, vol.18
, pp. 1443-1456
-
-
Visco, S.1
-
126
-
-
54949116263
-
Li/polymer electrolyte/water stable lithium-conducting glass ceramics composite for lithium-air secondary batteries with an aqueous electrolyte
-
Zhang, T. et al. Li/polymer electrolyte/water stable lithium-conducting glass ceramics composite for lithium-air secondary batteries with an aqueous electrolyte. J. Electrochem. Soc. 155, A965-A969 (2008).
-
(2008)
J. Electrochem. Soc.
, vol.155
, pp. A965-A969
-
-
Zhang, T.1
-
127
-
-
77954741415
-
-
US Patent
-
Visco, S. J., Katz, B. D., Nimon, Y. S. & De Jonghe, L. C. Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture. US Patent 7282295 (2007).
-
(2007)
Protected Active Metal Electrode and Battery Cell Structures with Non-aqueous Interlayer Architecture
-
-
Visco, S.J.1
Katz, B.D.2
Nimon, Y.S.3
De Jonghe, L.C.4
-
128
-
-
84906685771
-
Improved reversibility in lithium-oxygen battery: Understanding elementary reactions and surface charge engineering of metal alloy catalyst
-
Kim, B. G. et al. Improved reversibility in lithium-oxygen battery: understanding elementary reactions and surface charge engineering of metal alloy catalyst. Sci. Rep. 4, 4225 (2014).
-
(2014)
Sci. Rep.
, vol.4
, pp. 4225
-
-
Kim, B.G.1
-
129
-
-
80052496571
-
The lithium-oxygen battery with ether-based electrolytes
-
Freunberger, S. A. et al. The lithium-oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed. Engl. 50, 8609-8613 (2011).
-
(2011)
Angew. Chem. Int. Ed. Engl.
, vol.50
, pp. 8609-8613
-
-
Freunberger, S.A.1
-
134
-
-
84885447243
-
2 battery
-
2 battery. Nano Lett. 13, 4702-4707 (2013).
-
(2013)
Nano Lett.
, vol.13
, pp. 4702-4707
-
-
Li, F.1
-
135
-
-
84955572127
-
A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries
-
Lu, J. et al. A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat. Commun. 4, 2383 (2013).
-
(2013)
Nat. Commun.
, vol.4
, pp. 2383
-
-
Lu, J.1
-
137
-
-
84871970329
-
The role of catalysts and peroxide oxidation in lithium-oxygen batteries
-
Black, R., Lee, J.H., Adams, B., Mims, C. A. & Nazar, L. F. The role of catalysts and peroxide oxidation in lithium-oxygen batteries. Angew. Chem. Int. Ed. Engl. 52, 392-396 (2013).
-
(2013)
Angew. Chem. Int. Ed. Engl.
, vol.52
, pp. 392-396
-
-
Black, R.1
Lee, J.H.2
Adams, B.3
Mims, C.A.4
Nazar, L.F.5
-
138
-
-
84923817799
-
2 battery cathodes with long-cycling stability
-
2 battery cathodes with long-cycling stability. Sci. Rep. 5, 8335 (2015).
-
(2015)
Sci. Rep.
, vol.5
, pp. 8335
-
-
Shang, C.1
-
140
-
-
84961289081
-
The lithium/air battery: Still an emerging system or a practical reality?
-
Grande, L. et al. The lithium/air battery: still an emerging system or a practical reality? Adv. Mater. 27, 784-800 (2015).
-
(2015)
Adv. Mater
, vol.27
, pp. 784-800
-
-
Grande, L.1
-
141
-
-
84878842247
-
2 battery and its effect on charge
-
2 battery and its effect on charge. Energy Environ. Sci. 6, 1772-1778 (2013).
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 1772-1778
-
-
Adams, B.D.1
-
143
-
-
84897990720
-
Superior rechargeability and efficiency of lithium-oxygen batteries: Hierarchical air electrode architecture combined with a soluble catalyst
-
Lim, H.D. et al. Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew. Chem. Int. Ed. Engl. 53, 3926-3931 (2014).
-
(2014)
Angew. Chem. Int. Ed. Engl.
, vol.53
, pp. 3926-3931
-
-
Lim, H.D.1
-
144
-
-
79957673636
-
2 battery with alkyl carbonate electrolytes
-
2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133, 8040-8047 (2011).
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 8040-8047
-
-
Freunberger, S.A.1
-
146
-
-
84872179185
-
On the challenge of electrolyte solutions for Li-air batteries: Monitoring oxygen reduction and related reactions in polyether solutions by spectroscopy and EQCM
-
Sharon, D. et al. On the challenge of electrolyte solutions for Li-air batteries: monitoring oxygen reduction and related reactions in polyether solutions by spectroscopy and EQCM. J. Phys. Chem. Lett. 4, 127-131 (2013).
-
(2013)
J. Phys. Chem. Lett.
, vol.4
, pp. 127-131
-
-
Sharon, D.1
-
147
-
-
84884572082
-
Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen
-
Sharon, D. et al. Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen. J. Phys. Chem. Lett. 4, 3115-3119 (2013).
-
(2013)
J. Phys. Chem. Lett.
, vol.4
, pp. 3115-3119
-
-
Sharon, D.1
-
148
-
-
84929089988
-
Lithium-oxygen electrochemistry in non-aqueous solutions
-
Sharon, D. et al. Lithium-oxygen electrochemistry in non-aqueous solutions. Isr. J. Chem. 55, 508-520 (2015).
-
(2015)
Isr. J. Chem.
, vol.55
, pp. 508-520
-
-
Sharon, D.1
-
149
-
-
84927153772
-
Understanding the behavior of Li-oxygen cells containing LiI
-
Kwak, W. J. et al. Understanding the behavior of Li-oxygen cells containing LiI. J. Mater. Chem. A 3, 8855-8864 (2015).
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 8855-8864
-
-
Kwak, W.J.1
-
153
-
-
84928955059
-
2C/carbon nanotube composite cathode for lithium-oxygen batteries with high energy efficiency and long cycle life
-
2C/carbon nanotube composite cathode for lithium-oxygen batteries with high energy efficiency and long cycle life. ACS Nano 9, 4129-4137 (2015).
-
(2015)
ACS Nano
, vol.9
, pp. 4129-4137
-
-
Kwak, W.J.1
-
154
-
-
84937023296
-
2 hollow spheres as the carbon-free cathode
-
2 hollow spheres as the carbon-free cathode. Adv. Energy Mater. 5, 1500294 (2015).
-
(2015)
Adv. Energy Mater
, vol.5
, pp. 1500294
-
-
Li, F.1
-
157
-
-
84929271425
-
A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions
-
Zhang, J., Zhao, Z., Xia, Z. & Dai, L. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 10, 444-452 (2015).
-
(2015)
Nat. Nanotechnol.
, vol.10
, pp. 444-452
-
-
Zhang, J.1
Zhao, Z.2
Xia, Z.3
Dai, L.4
-
158
-
-
84897601111
-
Wiring zinc in three dimensions re writes battery performance-dendrite-free cycling
-
Parker, J. F., Chervin, C. N., Nelson, E. S., Rolison, D. R. & Long, J. W. Wiring zinc in three dimensions re writes battery performance-dendrite-free cycling. Energy Environ. Sci. 7, 1117-1124 (2014).
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 1117-1124
-
-
Parker, J.F.1
Chervin, C.N.2
Nelson, E.S.3
Rolison, D.R.4
Long, J.W.5
-
159
-
-
0032028406
-
Development of a 100 W rechargeable bipolar zinc/oxygen battery
-
Müller, S., Haas, O., Schlatter, C. & Comninellis, C. Development of a 100 W rechargeable bipolar zinc/oxygen battery. J. Appl. Electrochem. 28, 305-310 (1998).
-
(1998)
J. Appl. Electrochem.
, vol.28
, pp. 305-310
-
-
Müller, S.1
Haas, O.2
Schlatter, C.3
Comninellis, C.4
-
160
-
-
0016128762
-
Corrosion of pure and amalgamated zinc in concentrated alkali hydroxide solutions
-
Vorkapić, L. Ž., Dražić, D. M. & Despić, A. R. Corrosion of pure and amalgamated zinc in concentrated alkali hydroxide solutions. J. Electrochem. Soc. 121, 1385-1392 (1974).
-
(1974)
J. Electrochem. Soc.
, vol.121
, pp. 1385-1392
-
-
Vorkapić, L.Ž.1
Dražić, D.M.2
Despić, A.R.3
-
161
-
-
33748959868
-
Novel alloys to improve the electrochemical behavior of zinc anodes for zinc/air battery
-
Lee, C. W., Sathiyanarayanan, K., Eom, S. W. & Yun, M. S. Novel alloys to improve the electrochemical behavior of zinc anodes for zinc/air battery. J. Power Sources 160, 1436-1441 (2006).
-
(2006)
J. Power Sources
, vol.160
, pp. 1436-1441
-
-
Lee, C.W.1
Sathiyanarayanan, K.2
Eom, S.W.3
Yun, M.S.4
-
162
-
-
0037433648
-
Electrochemical and surface studies of zinc in alkaline solutions containing organic corrosion inhibitors
-
Ein-Eli, Y., Auinat, M. & Starosvetsky, D. Electrochemical and surface studies of zinc in alkaline solutions containing organic corrosion inhibitors. J. Power Sources 114, 330-337 (2003).
-
(2003)
J. Power Sources
, vol.114
, pp. 330-337
-
-
Ein-Eli, Y.1
Auinat, M.2
Starosvetsky, D.3
-
163
-
-
51449115744
-
Surface treatment of zinc anodes to improve discharge capacity and suppress hydrogen gas evolution
-
Cho, Y.-D. & Fey, G. T.K. Surface treatment of zinc anodes to improve discharge capacity and suppress hydrogen gas evolution. J. Power Sources 184, 610-616 (2008).
-
(2008)
J. Power Sources
, vol.184
, pp. 610-616
-
-
Cho, Y.-D.1
Fey, G.T.K.2
-
164
-
-
84878597285
-
Advanced zinc-air batteries based on high-performance hybrid electrocatalysts
-
Li, Y. et al. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 4, 1805 (2013).
-
(2013)
Nat. Commun.
, vol.4
, pp. 1805
-
-
Li, Y.1
-
165
-
-
33750943161
-
2 concentration in a zinc/air battery by absorption in a rotating packed bed
-
2 concentration in a zinc/air battery by absorption in a rotating packed bed. J. Power Sources 162, 1431-1436 (2006).
-
(2006)
J. Power Sources
, vol.162
, pp. 1431-1436
-
-
Cheng, H.-H.1
Tan, C.S.2
-
166
-
-
84916624817
-
Research development on sodium-ion batteries
-
Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636-11682 (2014).
-
(2014)
Chem. Rev.
, vol.114
, pp. 11636-11682
-
-
Yabuuchi, N.1
Kubota, K.2
Dahbi, M.3
Komaba, S.4
-
167
-
-
84910649638
-
High-capacity anode materials for sodium-ion batteries
-
Kim, Y., Ha, K. H., Oh, S. M. & Lee, K. T. High-capacity anode materials for sodium-ion batteries. Chem. Eur. J. 20, 11980-11992 (2014).
-
(2014)
Chem. Eur. J.
, vol.20
, pp. 11980-11992
-
-
Kim, Y.1
Ha, K.H.2
Oh, S.M.3
Lee, K.T.4
-
169
-
-
84862696324
-
2 made from earth-abundant elements for rechargeable Na batteries
-
2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512-517 (2012).
-
(2012)
Nat. Mater
, vol.11
, pp. 512-517
-
-
Yabuuchi, N.1
-
170
-
-
80052193621
-
Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials
-
Ong, S. P. et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680-3688 (2011).
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 3680-3688
-
-
Ong, S.P.1
-
171
-
-
84936862900
-
2 cathode for high-rate sodium-ion batteries
-
2 cathode for high-rate sodium-ion batteries. Energy Environ. Sci. 8, 2019-2026 (2015).
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 2019-2026
-
-
Yu, C.Y.1
-
172
-
-
84955595451
-
Comparison between Na-ion and Li-ion cells: Understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior
-
de la Llave, E. et al. Comparison between Na-ion and Li-ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior. ACS Appl. Mater. Interfaces 8, 1867-1875 (2015).
-
(2015)
ACS Appl. Mater. Interfaces
, vol.8
, pp. 1867-1875
-
-
De La-Llave, E.1
-
176
-
-
84919622355
-
2: A layered anode material for sodium-ion batteries
-
2: a layered anode material for sodium-ion batteries. Energy Environ. Sci. 8, 195-202 (2015).
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 195-202
-
-
Wu, D.1
-
177
-
-
79960898109
-
Challenges for Na ion negative electrodes
-
Chevrier, V. L. & Ceder, G. Challenges for Na ion negative electrodes. J. Electrochem. Soc. 158, A1011-A1014 (2011).
-
(2011)
J. Electrochem. Soc.
, vol.158
, pp. A1011-A1014
-
-
Chevrier, V.L.1
Ceder, G.2
-
178
-
-
84873959627
-
Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory
-
Baggetto, L. et al. Characterization of sodium ion electrochemical reaction with tin anodes: experiment and theory. J. Power Sources 234, 48-59 (2013).
-
(2013)
J. Power Sources
, vol.234
, pp. 48-59
-
-
Baggetto, L.1
-
179
-
-
84869168616
-
Reversible insertion of sodium in tin
-
Ellis, L. D., Hatchard, T. D. & Obrovac, M. N. Reversible insertion of sodium in tin. J. Electrochem. Soc. 159, A1801-A1805 (2012).
-
(2012)
J. Electrochem. Soc.
, vol.159
, pp. A1801-A1805
-
-
Ellis, L.D.1
Hatchard, T.D.2
Obrovac, M.N.3
-
180
-
-
84878877019
-
An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries
-
Kim, Y. et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 25, 3045-3049 (2013).
-
(2013)
Adv. Mater
, vol.25
, pp. 3045-3049
-
-
Kim, Y.1
-
181
-
-
84876484953
-
High capacity and rate capability of amorphous phosphorus for sodium ion batteries
-
Qian, J., Wu, X., Cao, Y., Ai, X. & Yang, H. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem. Int. Ed. Engl. 52, 4633-4636 (2013).
-
(2013)
Angew. Chem. Int. Ed. Engl.
, vol.52
, pp. 4633-4636
-
-
Qian, J.1
Wu, X.2
Cao, Y.3
Ai, X.4
Yang, H.5
-
182
-
-
84887841052
-
Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage
-
Li, W.-J., Chou, S.L., Wang, J.Z., Liu, H.K. & Dou, S.X. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett. 13, 5480-5484 (2013).
-
(2013)
Nano Lett.
, vol.13
, pp. 5480-5484
-
-
Li, W.-J.1
Chou, S.L.2
Wang, J.Z.3
Liu, H.K.4
Dou, S.X.5
-
183
-
-
84880018398
-
Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism
-
Darwiche, A. et al. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J. Am. Chem. Soc. 135, 10179-10179 (2013).
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 10179
-
-
Darwiche, A.1
-
184
-
-
84879990082
-
Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: Experiment and theory
-
Baggetto, L. et al. Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory. J. Mater. Chem. A 1, 7985-7994 (2013).
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 7985-7994
-
-
Baggetto, L.1
-
185
-
-
84896385034
-
Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: Nano versus bulk
-
He, M., Kraychyk, K., Walter, M. & Kovalenko, M. V. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk. Nano Lett. 14, 1255-1262 (2014).
-
(2014)
Nano Lett.
, vol.14
, pp. 1255-1262
-
-
He, M.1
Kraychyk, K.2
Walter, M.3
Kovalenko, M.V.4
-
186
-
-
84883261226
-
Germanium as negative electrode material for sodium-ion batteries
-
Baggetto, L., Keum, J. K., Browning, J. F. & Veith, G. M. Germanium as negative electrode material for sodium-ion batteries. Electrochem. Commun. 34, 41-44 (2013).
-
(2013)
Electrochem. Commun.
, vol.34
, pp. 41-44
-
-
Baggetto, L.1
Keum, J.K.2
Browning, J.F.3
Veith, G.M.4
-
187
-
-
84884549870
-
Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material
-
Abel, P. R. et al. Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material. J. Phys. Chem. C 117, 18885-18890 (2013).
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 18885-18890
-
-
Abel, P.R.1
-
188
-
-
84887289878
-
The electrochemical reactions of pure indium with Li and Na: Anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance
-
Webb, S. A., Baggetto, L., Bridges, C. A. & Veith, G. M. The electrochemical reactions of pure indium with Li and Na: anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance. J. Power Sources 248, 1105-1117 (2014).
-
(2014)
J. Power Sources
, vol.248
, pp. 1105-1117
-
-
Webb, S.A.1
Baggetto, L.2
Bridges, C.A.3
Veith, G.M.4
-
189
-
-
84879932055
-
AlSb thin films as negative electrodes for Li-ion and Na-ion batteries
-
Baggetto, L., Marszewski, M., Gorka, J., Jaroniec, M. & Veith, G. M. AlSb thin films as negative electrodes for Li-ion and Na-ion batteries. J. Power Sources 243, 699-705 (2013).
-
(2013)
J. Power Sources
, vol.243
, pp. 699-705
-
-
Baggetto, L.1
Marszewski, M.2
Gorka, J.3
Jaroniec, M.4
Veith, G.M.5
-
192
-
-
84873866132
-
Intercalation of sodium ions into hollow iron oxide nanoparticles
-
Koo, B. et al. Intercalation of sodium ions into hollow iron oxide nanoparticles. Chem. Mater. 25, 245-252 (2013).
-
(2013)
Chem. Mater
, vol.25
, pp. 245-252
-
-
Koo, B.1
-
193
-
-
0036061897
-
4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries
-
4 spinel: first report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater. 14, 2847-2848 (2002).
-
(2002)
Chem. Mater
, vol.14
, pp. 2847-2848
-
-
Alcántara, R.1
Jaraba, M.2
Lavela, P.3
Tirado, J.L.4
-
194
-
-
84881160266
-
Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries
-
Su, D., Wang, C., Ahn, H. & Wang, G. Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries. Phys. Chem. Chem. Phys. 15, 12543-12550 (2013).
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, pp. 12543-12550
-
-
Su, D.1
Wang, C.2
Ahn, H.3
Wang, G.4
-
195
-
-
84890147440
-
High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries
-
Yu, D. Y. W. et al. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 4, 2922 (2013).
-
(2013)
Nat. Commun.
, vol.4
, pp. 2922
-
-
Yu, D.Y.W.1
-
196
-
-
84893860567
-
2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage
-
2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. Engl. 53, 2152-2156 (2014).
-
(2014)
Angew. Chem. Int. Ed. Engl.
, vol.53
, pp. 2152-2156
-
-
Zhu, C.1
Mu, X.2
Van Aken, P.A.3
Yu, Y.4
Maier, J.5
-
198
-
-
84903145177
-
Tin phosphide as a promising anode material for Na-ion batteries
-
Kim, Y. et al. Tin phosphide as a promising anode material for Na-ion batteries. Adv. Mater. 26, 4139-4144 (2014).
-
(2014)
Adv. Mater
, vol.26
, pp. 4139-4144
-
-
Kim, Y.1
-
199
-
-
84882991556
-
Charge carriers in rechargeable batteries: Na ions versus Li ions
-
Hong, S. Y. et al. Charge carriers in rechargeable batteries: Na ions versus Li ions. Energy Environ. Sci. 6, 2067-2081 (2013).
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 2067-2081
-
-
Hong, S.Y.1
-
200
-
-
84884225038
-
A low cost, all-organic Na-ion battery based on polymeric cathode and anode
-
Deng, W. et al. A low cost, all-organic Na-ion battery based on polymeric cathode and anode. Sci. Rep. 3, 2671 (2013).
-
(2013)
Sci. Rep.
, vol.3
, pp. 2671
-
-
Deng, W.1
-
201
-
-
84863691641
-
Sodium terephthalate as an organic anode material for sodium ion batteries
-
Park, Y. et al. Sodium terephthalate as an organic anode material for sodium ion batteries. Adv. Mater. 24, 3562-3567 (2012).
-
(2012)
Adv. Mater
, vol.24
, pp. 3562-3567
-
-
Park, Y.1
-
202
-
-
84928109569
-
Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries
-
Hwang, J.Y. et al. Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nat. Commun. 6, 6865 (2015).
-
(2015)
Nat. Commun.
, vol.6
, pp. 6865
-
-
Hwang, J.Y.1
-
203
-
-
37149024780
-
Progress in rechargeable magnesium battery technology
-
Aurbach, D. et al. Progress in rechargeable magnesium battery technology. Adv. Mater. 19, 4260-4267 (2007).
-
(2007)
Adv. Mater
, vol.19
, pp. 4260-4267
-
-
Aurbach, D.1
-
204
-
-
84882655041
-
Mg rechargeable batteries: An on going challenge
-
Yoo, H. D. et al. Mg rechargeable batteries: an on going challenge. Energy Environ. Sci. 6, 2265-2279 (2013).
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 2265-2279
-
-
Yoo, H.D.1
-
205
-
-
0025399048
-
Nonaqueous electrochemistry of magnesium: Applications to energy storage
-
Gregory, T. D., Hoffman, R. J. & Winterton, R. C. Nonaqueous electrochemistry of magnesium: applications to energy storage. J. Electrochem. Soc. 137, 775-780 (1990).
-
(1990)
J. Electrochem. Soc.
, vol.137
, pp. 775-780
-
-
Gregory, T.D.1
Hoffman, R.J.2
Winterton, R.C.3
-
206
-
-
0034641978
-
Prototype systems for rechargeable magnesium batteries
-
Aurbach, D. et al. Prototype systems for rechargeable magnesium batteries. Nature 407, 724-727 (2000).
-
(2000)
Nature
, vol.407
, pp. 724-727
-
-
Aurbach, D.1
-
207
-
-
79955028669
-
Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations
-
Pour, N., Gofer, Y., Major, D. T. & Aurbach, D. Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations. J. Am. Chem. Soc. 133, 6270-6278 (2011).
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 6270-6278
-
-
Pour, N.1
Gofer, Y.2
Major, D.T.3
Aurbach, D.4
-
208
-
-
84888996842
-
Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries
-
Doe, R. E. et al. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Commun. 50, 243-245 (2014).
-
(2014)
Chem. Commun.
, vol.50
, pp. 243-245
-
-
Doe, R.E.1
-
209
-
-
84875467162
-
2/THF electrolyte
-
2/THF electrolyte. J. Electrochem. Soc. 160, A351-A355 (2013).
-
(2013)
J. Electrochem. Soc.
, vol.160
, pp. A351-A355
-
-
Lv, D.1
-
210
-
-
84865609316
-
2 as a cathode material for rechargeable Mg batteries
-
2 as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 23, 110-113 (2012).
-
(2012)
Electrochem. Commun.
, vol.23
, pp. 110-113
-
-
Zhang, R.1
-
212
-
-
84935869969
-
The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries
-
Nam, K. W. et al. The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett. 15, 4071-4079 (2015).
-
(2015)
Nano Lett.
, vol.15
, pp. 4071-4079
-
-
Nam, K.W.1
-
213
-
-
79952591160
-
2 cathode and ultrasmall Mg nanoparticle anode
-
2 cathode and ultrasmall Mg nanoparticle anode. Adv. Mater. 23, 640-643 (2011).
-
(2011)
Adv. Mater
, vol.23
, pp. 640-643
-
-
Liang, Y.1
-
214
-
-
84884919576
-
2 nanowire cathodes
-
2 nanowire cathodes. ACS Nano 7, 8051-8058 (2013).
-
(2013)
ACS Nano
, vol.7
, pp. 8051-8058
-
-
Liu, B.1
-
215
-
-
84904160656
-
High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements
-
Orikasa, Y. et al. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Sci. Rep. 4, 5622 (2014).
-
(2014)
Sci. Rep.
, vol.4
, pp. 5622
-
-
Orikasa, Y.1
-
216
-
-
84885605516
-
Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide
-
Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502-1505 (2013).
-
(2013)
Science
, vol.341
, pp. 1502-1505
-
-
Lukatskaya, M.R.1
-
217
-
-
84920854732
-
Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements
-
Levi, M. D. et al. Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Adv. Energy Mater. 5, 1400815 (2015).
-
(2015)
Adv. Energy Mater
, vol.5
, pp. 1400815
-
-
Levi, M.D.1
-
218
-
-
84887847292
-
Highly reversible open framework nanoscale electrodes for divalent ion batteries
-
Wang, R. Y., Wessells, C. D., Huggins, R. A. & Cui, Y. Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Lett. 13, 5748-5752 (2013).
-
(2013)
Nano Lett.
, vol.13
, pp. 5748-5752
-
-
Wang, R.Y.1
Wessells, C.D.2
Huggins, R.A.3
Cui, Y.4
-
219
-
-
84885902207
-
2+ intercalation into a bimetallic CuFe prussian blue analog in aqueous electrolytes
-
2+ intercalation into a bimetallic CuFe Prussian blue analog in aqueous electrolytes. J. Mater. Chem. A 1, 13055-13059 (2013).
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 13055-13059
-
-
Mizuno, Y.1
-
220
-
-
0013177487
-
The electrolysis of grignard solutions
-
Gaddum, L. W. & French, H. E. The electrolysis of Grignard solutions. J. Am. Chem. Soc. 49, 1295-1299 (1927).
-
(1927)
J. Am. Chem. Soc.
, vol.49
, pp. 1295-1299
-
-
Gaddum, L.W.1
French, H.E.2
-
221
-
-
80052416719
-
Structure and compatibility of a magnesium electrolyte with a sulphur cathode
-
Kim, H. S. et al. Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2, 427 (2011).
-
(2011)
Nat. Commun.
, vol.2
, pp. 427
-
-
Kim, H.S.1
-
222
-
-
84867318146
-
Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries
-
Guo, Y.-s. et al. Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries. Energy Environ. Sci. 5, 9100-9106 (2012).
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 9100-9106
-
-
Guo, Y.-S.1
-
223
-
-
84944339709
-
- (TFSI) based electrolyte solutions for Mg batteries
-
- (TFSI) based electrolyte solutions for Mg batteries. J. Electrochem. Soc. 162, A7118-A7128 (2015).
-
(2015)
J. Electrochem. Soc.
, vol.162
, pp. A7118-A7128
-
-
Shterenberg, I.1
-
224
-
-
84866503369
-
Magnesium borohydride: From hydrogen storage to magnesium battery
-
Mohtadi, R., Matsui, M., Arthur, T. S. & Hwang, S.J. Magnesium borohydride: from hydrogen storage to magnesium battery. Angew. Chem. Int. Ed. Engl. 51, 9780-9783 (2012).
-
(2012)
Angew. Chem. Int. Ed. Engl.
, vol.51
, pp. 9780-9783
-
-
Mohtadi, R.1
Matsui, M.2
Arthur, T.S.3
Hwang, S.J.4
-
225
-
-
84896385647
-
Boron clusters as highly stable magnesium-battery electrolytes
-
Carter, T. J. et al. Boron clusters as highly stable magnesium-battery electrolytes. Angew. Chem. Int. Ed. Engl. 53, 3173-3177 (2014).
-
(2014)
Angew. Chem. Int. Ed. Engl.
, vol.53
, pp. 3173-3177
-
-
Carter, T.J.1
-
226
-
-
85027929436
-
An efficient halogen-free electrolyte for use in rechargeable magnesium batteries
-
Tutusaus, O. et al. An efficient halogen-free electrolyte for use in rechargeable magnesium batteries. Angew. Chem. Int. Ed. Engl. 54, 7900-7904(2015).
-
(2015)
Angew. Chem. Int. Ed. Engl.
, vol.54
, pp. 7900-7904
-
-
Tutusaus, O.1
|