메뉴 건너뛰기




Volumn 1, Issue , 2016, Pages

Promise and reality of post-lithium-ion batteries with high energy densities

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85011821718     PISSN: None     EISSN: 20588437     Source Type: Journal    
DOI: 10.1038/natrevmats.2016.13     Document Type: Review
Times cited : (3816)

References (226)
  • 1
    • 0035890440 scopus 로고    scopus 로고
    • Issues and challenges facing rechargeable lithium batteries
    • Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359-367 (2001).
    • (2001) Nature , vol.414 , pp. 359-367
    • Tarascon, J.M.1    Armand, M.2
  • 4
    • 38949102073 scopus 로고    scopus 로고
    • Building better batteries
    • Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652-657 (2008).
    • (2008) Nature , vol.451 , pp. 652-657
    • Armand, M.1    Tarascon, J.M.2
  • 6
    • 77956958084 scopus 로고    scopus 로고
    • Beyond intercalation-based Li ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions
    • Cabana, J., Monconduit, L., Larcher, D. & Palacín, M. R. Beyond intercalation-based Li ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170-E192 (2010).
    • (2010) Adv. Mater , vol.22 , pp. E170-E192
    • Cabana, J.1    Monconduit, L.2    Larcher, D.3    Palacín, M.R.4
  • 7
    • 81555207951 scopus 로고    scopus 로고
    • Electrical energy storage for the grid: A battery of choices
    • Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928-935 (2011).
    • (2011) Science , vol.334 , pp. 928-935
    • Dunn, B.1    Kamath, H.2    Tarascon, J.-M.3
  • 8
    • 76249131385 scopus 로고    scopus 로고
    • Challenges for rechargeable Li batteries
    • Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587-603 (2010).
    • (2010) Chem. Mater , vol.22 , pp. 587-603
    • Goodenough, J.B.1    Kim, Y.2
  • 9
    • 84863114260 scopus 로고    scopus 로고
    • Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries
    • Thackeray, M. M., Wolverton, C. & Isaacs, E. D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5, 7854-7863 (2012).
    • (2012) Energy Environ. Sci. , vol.5 , pp. 7854-7863
    • Thackeray, M.M.1    Wolverton, C.2    Isaacs, E.D.3
  • 10
    • 81555222327 scopus 로고    scopus 로고
    • Semi-solid lithium rechargeable flow battery
    • Duduta, M. et al. Semi-solid lithium rechargeable flow battery. Adv. Energy Mater. 1, 511-516 (2011).
    • (2011) Adv. Energy Mater , vol.1 , pp. 511-516
    • Duduta, M.1
  • 11
    • 33847327926 scopus 로고    scopus 로고
    • Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries
    • Howard, W. F. & Spotnitz, R. M. Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries. J. Power Sources 165, 887-891 (2007).
    • (2007) J. Power Sources , vol.165 , pp. 887-891
    • Howard, W.F.1    Spotnitz, R.M.2
  • 12
    • 0020113612 scopus 로고
    • A reversible graphite-lithium negative electrode for electrochemical generators
    • Yazami, R. & Touzain, P. A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources 9, 365-371 (1983).
    • (1983) J. Power Sources , vol.9 , pp. 365-371
    • Yazami, R.1    Touzain, P.2
  • 13
    • 0032499862 scopus 로고    scopus 로고
    • Insertion electrode materials for rechargeable lithium batteries
    • Winter, M., Besenhard, J. O., Spahr, M. E. & Novák, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725-763 (1998).
    • (1998) Adv. Mater , vol.10 , pp. 725-763
    • Winter, M.1    Besenhard, J.O.2    Spahr, M.E.3    Novák, P.4
  • 14
    • 0033185278 scopus 로고    scopus 로고
    • Lithium alloy negative electrodes
    • Huggins, R. A. Lithium alloy negative electrodes. J. Power Sources 81-82, 13-19 (1999).
    • (1999) J. Power Sources , vol.81-82 , pp. 13-19
    • Huggins, R.A.1
  • 16
    • 84867672114 scopus 로고    scopus 로고
    • Designing nanostructured Si anodes for high energy lithium ion batteries
    • Wu, H. & Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414-429 (2012).
    • (2012) Nano Today , vol.7 , pp. 414-429
    • Wu, H.1    Cui, Y.2
  • 17
    • 84884907143 scopus 로고    scopus 로고
    • 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries
    • McDowell, M. T., Lee, S. W., Nix, W. D. & Cui, Y. 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25, 4966-4985 (2013).
    • (2013) Adv. Mater , vol.25 , pp. 4966-4985
    • McDowell, M.T.1    Lee, S.W.2    Nix, W.D.3    Cui, Y.4
  • 19
    • 0017269529 scopus 로고
    • Thermodynamic properties of the lithium-silicon system
    • Sharma, R. A. & Seefurth, R. N. Thermodynamic properties of the lithium-silicon system. J. Electrochem. Soc. 123, 1763-1768 (1976).
    • (1976) J. Electrochem. Soc. , vol.123 , pp. 1763-1768
    • Sharma, R.A.1    Seefurth, R.N.2
  • 20
    • 84975349897 scopus 로고
    • Investigation of lithium utilization from a lithium-silicon electrode
    • Seefurth, R. N. & Sharma, R. A. Investigation of lithium utilization from a lithium-silicon electrode. J. Electrochem. Soc. 124, 1207-1214 (1977).
    • (1977) J. Electrochem. Soc. , vol.124 , pp. 1207-1214
    • Seefurth, R.N.1    Sharma, R.A.2
  • 21
    • 0029250585 scopus 로고
    • Lithium insertion in carbons containing nanodispersed silicon
    • Wilson, A. M. & Dahn, J. R. Lithium insertion in carbons containing nanodispersed silicon. J. Electrochem. Soc. 142, 326-332 (1995).
    • (1995) J. Electrochem. Soc. , vol.142 , pp. 326-332
    • Wilson, A.M.1    Dahn, J.R.2
  • 22
    • 77953141927 scopus 로고    scopus 로고
    • Reversible storage of lithium in silver-coated three-dimensional macroporous silicon
    • Yu, Y. et al. Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. Adv. Mater. 22, 2247-2250 (2010).
    • (2010) Adv. Mater , vol.22 , pp. 2247-2250
    • Yu, Y.1
  • 23
    • 84856957712 scopus 로고    scopus 로고
    • Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes
    • Hwang, T. H., Lee, Y. M., Kong, B.-S., Seo, J.S. & Choi, J. W. Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett. 12, 802-807 (2012).
    • (2012) Nano Lett. , vol.12 , pp. 802-807
    • Hwang, T.H.1    Lee, Y.M.2    Kong, B.-S.3    Seo, J.S.4    Choi, J.W.5
  • 24
    • 84862281347 scopus 로고    scopus 로고
    • A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes
    • Liu, N. et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 12, 3315-3321 (2012).
    • (2012) Nano Lett. , vol.12 , pp. 3315-3321
    • Liu, N.1
  • 25
    • 84877257015 scopus 로고    scopus 로고
    • Spray drying method for large-scale and high-performance silicon negative electrodes in Li ion batteries
    • Jung, D. S., Hwang, T. H., Park, S. B. & Choi, J. W. Spray drying method for large-scale and high-performance silicon negative electrodes in Li ion batteries. Nano Lett. 13, 2092-2097 (2013).
    • (2013) Nano Lett. , vol.13 , pp. 2092-2097
    • Jung, D.S.1    Hwang, T.H.2    Park, S.B.3    Choi, J.W.4
  • 26
    • 84933060055 scopus 로고    scopus 로고
    • Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density
    • Son, I. H. et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat. Commun. 6, 7393 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 7393
    • Son, I.H.1
  • 27
    • 84865414506 scopus 로고    scopus 로고
    • A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries
    • Koo, B. et al. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem. Int. Ed. Engl. 51, 8762-8767 (2012).
    • (2012) Angew. Chem. Int. Ed. Engl. , vol.51 , pp. 8762-8767
    • Koo, B.1
  • 28
    • 84919772741 scopus 로고    scopus 로고
    • Systematic molecular-level design of binders incorporating Meldrum's acid for silicon anodes in lithium rechargeable batteries
    • Kwon, T.-w. et al. Systematic molecular-level design of binders incorporating meldrum's acid for silicon anodes in lithium rechargeable batteries. Adv. Mater. 26, 7979-7985 (2014).
    • (2014) Adv. Mater , vol.26 , pp. 7979-7985
    • Kwon, T.-W.1
  • 29
    • 84890095656 scopus 로고    scopus 로고
    • Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries
    • Wang, C. et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042-1048 (2013).
    • (2013) Nat. Chem. , vol.5 , pp. 1042-1048
    • Wang, C.1
  • 30
    • 84928209223 scopus 로고    scopus 로고
    • High-areal-capacity silicon electrodes with low-cost silicon particles based on spatial control of self-healing binder
    • Chen, Z. et al. High-areal-capacity silicon electrodes with low-cost silicon particles based on spatial control of self-healing binder. Adv. Energy Mater. 5, 1401826 (2015).
    • (2015) Adv. Energy Mater , vol.5 , pp. 1401826
    • Chen, Z.1
  • 31
    • 33845952094 scopus 로고    scopus 로고
    • Sodium carboxymethyl cellulose: A potential binder for Si negative electrodes for Li-ion batteries
    • Li, J., Lewis, R. B. & Dahn, J. R. Sodium carboxymethyl cellulose: a potential binder for Si negative electrodes for Li-ion batteries. Electrochem. Solid State Lett. 10, A17-A20 (2007).
    • (2007) Electrochem. Solid State Lett. , vol.10 , pp. A17-A20
    • Li, J.1    Lewis, R.B.2    Dahn, J.R.3
  • 32
    • 80053579364 scopus 로고    scopus 로고
    • A major constituent of brown algae for use in high-capacity Li-ion batteries
    • Kovalenko, I. et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75-79 (2011).
    • (2011) Science , vol.334 , pp. 75-79
    • Kovalenko, I.1
  • 33
    • 84870607196 scopus 로고    scopus 로고
    • Crop-derived polysaccharides as binders for high-capacity silicon/graphite-based electrodes in lithium-ion batteries
    • Murase, M. et al. Crop-derived polysaccharides as binders for high-capacity silicon/graphite-based electrodes in lithium-ion batteries. Chem Sus Chem 5, 2307-2311 (2012).
    • (2012) Chem Sus Chem , vol.5 , pp. 2307-2311
    • Murase, M.1
  • 34
    • 84894216054 scopus 로고    scopus 로고
    • Hyperbranched β cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries
    • Jeong, Y. K. et al. Hyperbranched β cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. Nano Lett. 14, 864-870 (2014).
    • (2014) Nano Lett. , vol.14 , pp. 864-870
    • Jeong, Y.K.1
  • 35
    • 84926482951 scopus 로고    scopus 로고
    • Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes
    • Jeong, Y. K. et al. Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes. Energy Environ. Sci. 8, 1224-1230 (2015).
    • (2015) Energy Environ. Sci. , vol.8 , pp. 1224-1230
    • Jeong, Y.K.1
  • 36
    • 80054810677 scopus 로고    scopus 로고
    • Polymers with tailored electronic structure for high capacity lithium battery electrodes
    • Liu, G. et al. Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv. Mater. 23, 4679-4683 (2011).
    • (2011) Adv. Mater , vol.23 , pp. 4679-4683
    • Liu, G.1
  • 37
    • 84901467517 scopus 로고    scopus 로고
    • Stable Li-ion battery anodes by in situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles
    • Wu, H. et al. Stable Li-ion battery anodes by in situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 4, 1943 (2013).
    • (2013) Nat. Commun. , vol.4 , pp. 1943
    • Wu, H.1
  • 38
    • 84946017499 scopus 로고    scopus 로고
    • Review - development of advanced rechargeable batteries: A continuous challenge in the choice of suitable electrolyte solutions
    • Erickson, E. M. et al. Review - development of advanced rechargeable batteries: a continuous challenge in the choice of suitable electrolyte solutions. J. Electrochem. Soc. 162, A2424-A2438 (2015).
    • (2015) J. Electrochem. Soc. , vol.162 , pp. A2424-A2438
    • Erickson, E.M.1
  • 39
    • 84859578088 scopus 로고    scopus 로고
    • Exceptional electrochemical performance of Si nanowires in 1,3-dioxolane solutions: A surface chemical investigation
    • Etacheri, V. et al. Exceptional electrochemical performance of Si nanowires in 1,3-dioxolane solutions: a surface chemical investigation. Langmuir 28, 6175-6184 (2012).
    • (2012) Langmuir , vol.28 , pp. 6175-6184
    • Etacheri, V.1
  • 40
    • 84903736128 scopus 로고    scopus 로고
    • Amorphous columnar silicon anodes for advanced high voltage lithium ion full cells: Dominant factors governing cycling performance
    • Markevich, E. et al. Amorphous columnar silicon anodes for advanced high voltage lithium ion full cells: dominant factors governing cycling performance. J. Electrochem. Soc. 160, A1824-A1833 (2013).
    • (2013) J. Electrochem. Soc. , vol.160 , pp. A1824-A1833
    • Markevich, E.1
  • 41
    • 84908004603 scopus 로고    scopus 로고
    • High performance of thick amorphous columnar monolithic film silicon anodes in ionic liquid electrolytes at elevated temperature
    • Markevich, E. et al. High performance of thick amorphous columnar monolithic film silicon anodes in ionic liquid electrolytes at elevated temperature. RSC Adv. 4, 48572-48575 (2014).
    • (2014) RSC Adv. , vol.4 , pp. 48572-48575
    • Markevich, E.1
  • 43
    • 84951255986 scopus 로고
    • Preparation and properties of silicon monoxide
    • DeWet Erasmus, H. & Persson, J. A. Preparation and properties of silicon monoxide. J. Electrochem. Soc. 95, 316-318 (1949).
    • (1949) J. Electrochem. Soc. , vol.95 , pp. 316-318
    • DeWet Erasmus, H.1    Persson, J.A.2
  • 44
    • 84938150015 scopus 로고    scopus 로고
    • x nanocomposite as a high-capacity lithium storage material
    • x nanocomposite as a high-capacity lithium storage material. ACS Nano 9, 7690-7696 (2015).
    • (2015) ACS Nano , vol.9 , pp. 7690-7696
    • Park, E.1
  • 45
    • 40049104080 scopus 로고    scopus 로고
    • A new SiO/C anode composition for lithium-ion battery
    • Doh, C.H. et al. A new SiO/C anode composition for lithium-ion battery. J. Power Sources 179, 367-370 (2008).
    • (2008) J. Power Sources , vol.179 , pp. 367-370
    • Doh, C.H.1
  • 46
    • 84923378266 scopus 로고    scopus 로고
    • Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents
    • Zhao, J. et al. Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents. Nat. Commun. 5, 5088 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 5088
    • Zhao, J.1
  • 47
    • 80052063686 scopus 로고    scopus 로고
    • Prelithiated silicon nanowires as an anode for lithium ion batteries
    • Liu, N., Hu, L., McDowell, M. T., Jackson, A. & Cui, Y. Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 5, 6487-6493 (2011).
    • (2011) ACS Nano , vol.5 , pp. 6487-6493
    • Liu, N.1    Hu, L.2    McDowell, M.T.3    Jackson, A.4    Cui, Y.5
  • 48
    • 84957568957 scopus 로고    scopus 로고
    • Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells
    • Kim, H. J. et al. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett. 16, 282-288 (2015).
    • (2015) Nano Lett. , vol.16 , pp. 282-288
    • Kim, H.J.1
  • 50
    • 80053911440 scopus 로고    scopus 로고
    • Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries
    • Komaba, S. et al. Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries. J. Phys. Chem. C 115, 13487-13495 (2011).
    • (2011) J. Phys. Chem. C , vol.115 , pp. 13487-13495
    • Komaba, S.1
  • 53
    • 84885785334 scopus 로고    scopus 로고
    • A review of blended cathode materials for use in Li ion batteries
    • Chikkannanavar, S. B., Bernardi, D. M. & Liu, L. A review of blended cathode materials for use in Li ion batteries. J. Power Sources 248, 91-100 (2014).
    • (2014) J. Power Sources , vol.248 , pp. 91-100
    • Chikkannanavar, S.B.1    Bernardi, D.M.2    Liu, L.3
  • 54
    • 84891845606 scopus 로고    scopus 로고
    • 2 cathode material in lithium ion batteries
    • 2 cathode material in lithium ion batteries. Adv. Energy Mater. 4, 1300787 (2014).
    • (2014) Adv. Energy Mater , vol.4 , pp. 1300787
    • Jung, S.K.1
  • 55
    • 1542363244 scopus 로고    scopus 로고
    • Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries
    • Chen, C. H. et al. Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries. J. Power Sources 128, 278-285 (2004).
    • (2004) J. Power Sources , vol.128 , pp. 278-285
    • Chen, C.H.1
  • 56
    • 84954076749 scopus 로고    scopus 로고
    • Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives
    • Manthiram, A., Knight, J. C., Myung, S.T., Oh, S.M. & Sun, Y.K. Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv. Energy Mater. 6, 1501010 (2015).
    • (2015) Adv. Energy Mater , vol.6 , pp. 1501010
    • Manthiram, A.1    Knight, J.C.2    Myung, S.T.3    Oh, S.M.4    Sun, Y.K.5
  • 57
    • 84926357570 scopus 로고    scopus 로고
    • Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries
    • Liu, W. et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. Engl. 54, 4440-4457 (2015).
    • (2015) Angew. Chem. Int. Ed. Engl. , vol.54 , pp. 4440-4457
    • Liu, W.1
  • 58
    • 84902671218 scopus 로고    scopus 로고
    • Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
    • Lin, F. et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 3529
    • Lin, F.1
  • 62
    • 77956212606 scopus 로고    scopus 로고
    • 2 cathode materials (M = [MnNi] and [MnNiCo]): Electrochemical, spectroscopic, and calorimetric studies
    • 2 cathode materials (M = [MnNi] and [MnNiCo]): electrochemical, spectroscopic, and calorimetric studies. J. Electrochem. Soc. 157, A1099-A1107 (2010).
    • (2010) J. Electrochem. Soc. , vol.157 , pp. A1099-A1107
    • Haik, O.1
  • 63
    • 85016849142 scopus 로고    scopus 로고
    • Electrochemical and physical properties of Ti substituted layered nickel manganese cobalt oxide (NMC) cathode materials
    • Kam, K. C., Mehta, A., Heron, J. T. & Doeff, M. M. Electrochemical and physical properties of Ti substituted layered nickel manganese cobalt oxide (NMC) cathode materials. J. Electrochem. Soc. 159, A1383-A1392 (2012).
    • (2012) J. Electrochem. Soc. , vol.159 , pp. A1383-A1392
    • Kam, K.C.1    Mehta, A.2    Heron, J.T.3    Doeff, M.M.4
  • 64
    • 58649105765 scopus 로고    scopus 로고
    • 2 cathode materials
    • 2 cathode materials. J. Power Sources 187, 586-590 (2009).
    • (2009) J. Power Sources , vol.187 , pp. 586-590
    • Karan, N.1
  • 66
    • 40049098002 scopus 로고    scopus 로고
    • 2 cathode in lithium-ion cells
    • 2 cathode in lithium-ion cells. J. Power Sources 179, 347-350 (2008).
    • (2008) J. Power Sources , vol.179 , pp. 347-350
    • Kim, H.-B.1
  • 67
    • 80051750883 scopus 로고    scopus 로고
    • 2 (M = Ni, Mn, Co) Li ion cathodes with and without alumina coatings
    • 2 (M = Ni, Mn, Co) Li ion cathodes with and without alumina coatings. J. Electrochem. Soc. 158, A883-A889 (2011).
    • (2011) J. Electrochem. Soc. , vol.158 , pp. A883-A889
    • West, W.1
  • 68
    • 84886086293 scopus 로고    scopus 로고
    • 2 cathode material using ALD
    • 2 cathode material using ALD. Adv. Energy Mater. 3, 1299-1307 (2013).
    • (2013) Adv. Energy Mater , vol.3 , pp. 1299-1307
    • Zhang, X.1
  • 74
    • 81355160310 scopus 로고    scopus 로고
    • Spinel-layered core-shell cathode materials for Li ion batteries
    • Cho, Y., Lee, S., Lee, Y., Hong, T. & Cho, J. Spinel-layered core-shell cathode materials for Li ion batteries. Adv. Energy Mater. 1, 821-828 (2011).
    • (2011) Adv. Energy Mater , vol.1 , pp. 821-828
    • Cho, Y.1    Lee, S.2    Lee, Y.3    Hong, T.4    Cho, J.5
  • 75
    • 84902291635 scopus 로고    scopus 로고
    • Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li ion batteries
    • Wu, F. et al. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li ion batteries. Nano Lett. 14, 3550-3555 (2014).
    • (2014) Nano Lett. , vol.14 , pp. 3550-3555
    • Wu, F.1
  • 76
    • 84867843425 scopus 로고    scopus 로고
    • Nanostructured high-energy cathode materials for advanced lithium batteries
    • Sun, Y.K. et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942-947 (2012).
    • (2012) Nat. Mater , vol.11 , pp. 942-947
    • Sun, Y.K.1
  • 77
    • 0001658455 scopus 로고
    • Electrical energy storage and intercalation chemistry
    • Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126-1127 (1976).
    • (1976) Science , vol.192 , pp. 1126-1127
    • Whittingham, M.S.1
  • 78
    • 0036603992 scopus 로고    scopus 로고
    • A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions
    • Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148, 405-416 (2002).
    • (2002) Solid State Ionics , vol.148 , pp. 405-416
    • Aurbach, D.1    Zinigrad, E.2    Cohen, Y.3    Teller, H.4
  • 79
    • 84893029597 scopus 로고    scopus 로고
    • Lithium metal anodes for rechargeable batteries
    • Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513-537 (2014).
    • (2014) Energy Environ. Sci. , vol.7 , pp. 513-537
    • Xu, W.1
  • 80
    • 0033742359 scopus 로고    scopus 로고
    • Factors which limit the cycle life of rechargeable lithium (metal) batteries
    • Aurbach, D., Zinigrad, E., Teller, H. & Dan, P. Factors which limit the cycle life of rechargeable lithium (metal) batteries. J. Electrochem. Soc. 147, 1274-1279 (2000).
    • (2000) J. Electrochem. Soc. , vol.147 , pp. 1274-1279
    • Aurbach, D.1    Zinigrad, E.2    Teller, H.3    Dan, P.4
  • 81
    • 0031076663 scopus 로고    scopus 로고
    • A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride
    • Yu, X., Bates, J. B., Jellison, G. E. & Hart, F. X. A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J. Electrochem. Soc. 144, 524-532 (1997).
    • (1997) J. Electrochem. Soc. , vol.144 , pp. 524-532
    • Yu, X.1    Bates, J.B.2    Jellison, G.E.3    Hart, F.X.4
  • 82
    • 84935017261 scopus 로고    scopus 로고
    • Next-generation lithium metal anode engineering via atomic layer deposition
    • Kozen, A. C. et al. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884-5892 (2015).
    • (2015) ACS Nano , vol.9 , pp. 5884-5892
    • Kozen, A.C.1
  • 83
    • 84924234931 scopus 로고    scopus 로고
    • A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries
    • Lee, H., Lee, D. J., Kim, Y.-J., Park, J.K. & Kim, H.T. A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. J. Power Sources 284, 103-108 (2015).
    • (2015) J. Power Sources , vol.284 , pp. 103-108
    • Lee, H.1    Lee, D.J.2    Kim, Y.-J.3    Park, J.K.4    Kim, H.T.5
  • 84
    • 84905817375 scopus 로고    scopus 로고
    • Interconnected hollow carbon nanospheres for stable lithium metal anodes
    • Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618-623 (2014).
    • (2014) Nat. Nanotechnol. , vol.9 , pp. 618-623
    • Zheng, G.1
  • 85
    • 84928662467 scopus 로고    scopus 로고
    • Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive
    • Kim, J.S., Kim, D. W., Jung, H. T. & Choi, J. W. Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive. Chem. Mater. 27, 2780-2787 (2015).
    • (2015) Chem. Mater , vol.27 , pp. 2780-2787
    • Kim, J.S.1    Kim, D.W.2    Jung, H.T.3    Choi, J.W.4
  • 86
    • 84863712594 scopus 로고    scopus 로고
    • Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators
    • Ryou, M. H. et al. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv. Energy Mater. 2, 645-650 (2012).
    • (2012) Adv. Energy Mater , vol.2 , pp. 645-650
    • Ryou, M.H.1
  • 87
    • 84910042270 scopus 로고    scopus 로고
    • Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
    • Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961-969 (2014).
    • (2014) Nat. Mater , vol.13 , pp. 961-969
    • Lu, Y.1    Tu, Z.2    Archer, L.A.3
  • 88
    • 9444231785 scopus 로고    scopus 로고
    • Design of electrolyte solutions for Li and Li-ion batteries: A review
    • Aurbach, D. et al. Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochim. Acta 50, 247-254 (2004).
    • (2004) Electrochim. Acta , vol.50 , pp. 247-254
    • Aurbach, D.1
  • 89
    • 0346334088 scopus 로고    scopus 로고
    • Effect of vinylene carbonate as additive to electrolyte for lithium metal anode
    • Ota, H., Shima, K., Ue, M. & Yamaki, J.-i. Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochim. Acta 49, 565-572 (2004).
    • (2004) Electrochim. Acta , vol.49 , pp. 565-572
    • Ota, H.1    Shima, K.2    Ue, M.3    Yamaki, J.-I.4
  • 90
    • 34547195193 scopus 로고    scopus 로고
    • Effects of triacetoxyvinylsilane as SEI layer additive on electrochemical performance of lithium metal secondary battery
    • Lee, Y. M. et al. Effects of triacetoxyvinylsilane as SEI layer additive on electrochemical performance of lithium metal secondary battery. Electrochem. Solid State Lett. 10, A216-A219 (2007).
    • (2007) Electrochem. Solid State Lett. , vol.10 , pp. A216-A219
    • Lee, Y.M.1
  • 91
    • 84875415014 scopus 로고    scopus 로고
    • Dendrite-free lithium deposition via self-healing electrostatic shield mechanism
    • Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450-4456 (2013).
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 4450-4456
    • Ding, F.1
  • 92
    • 85027922821 scopus 로고    scopus 로고
    • Mechanical surface modification of lithium metal: Towards improved Li metal anode performance by directed Li plating
    • Ryou, M.-H., Lee, Y. M., Lee, Y., Winter, M. & Bieker, P. Mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating. Adv. Funct. Mater. 25, 834-841 (2015).
    • (2015) Adv. Funct. Mater , vol.25 , pp. 834-841
    • Ryou, M.-H.1    Lee, Y.M.2    Lee, Y.3    Winter, M.4    Bieker, P.5
  • 93
    • 84901233680 scopus 로고    scopus 로고
    • Effect of lithium powder size on the performance of lithium-powder/lithium trivanadate secondary batteries shown via impedance analysis
    • Lee, J. H. et al. Effect of lithium powder size on the performance of lithium-powder/lithium trivanadate secondary batteries shown via impedance analysis. Electrochim. Acta 131, 202-206 (2014).
    • (2014) Electrochim. Acta , vol.131 , pp. 202-206
    • Lee, J.H.1
  • 96
    • 67650595207 scopus 로고    scopus 로고
    • On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries
    • Aurbach, D. et al. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries. J. Electrochem. Soc. 156, A694-A702 (2009).
    • (2009) J. Electrochem. Soc. , vol.156 , pp. A694-A702
    • Aurbach, D.1
  • 97
    • 77956219268 scopus 로고    scopus 로고
    • Morphological and structural studies of composite sulfur electrodes upon cycling by HRTEM, AFM and raman spectroscopy
    • Elazari, R. et al. Morphological and structural studies of composite sulfur electrodes upon cycling by HRTEM, AFM and Raman spectroscopy. J. Electrochem. Soc. 157, A1131-A1138 (2010).
    • (2010) J. Electrochem. Soc. , vol.157 , pp. A1131-A1138
    • Elazari, R.1
  • 98
    • 78049377906 scopus 로고    scopus 로고
    • Advances in Li-S batteries
    • Ji, X. & Nazar, L. F. Advances in Li-S batteries. J. Mater. Chem. 20, 9821-9826 (2010).
    • (2010) J. Mater. Chem. , vol.20 , pp. 9821-9826
    • Ji, X.1    Nazar, L.F.2
  • 99
    • 84889672090 scopus 로고    scopus 로고
    • Lithium-sulfur batteries: Electrochemistry, materials, and prospects
    • Yin, Y.-X., Xin, S., Guo, Y.G. & Wan, L.J. Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. Engl. 52, 13186-13200 (2013).
    • (2013) Angew. Chem. Int. Ed. Engl. , vol.52 , pp. 13186-13200
    • Yin, Y.-X.1    Xin, S.2    Guo, Y.G.3    Wan, L.J.4
  • 100
    • 67349275043 scopus 로고    scopus 로고
    • A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries
    • Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500-506 (2009).
    • (2009) Nat. Mater , vol.8 , pp. 500-506
    • Ji, X.1    Lee, K.T.2    Nazar, L.F.3
  • 101
    • 83455228419 scopus 로고    scopus 로고
    • Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries
    • Elazari, R., Salitra, G., Garsuch, A., Panchenko, A. & Aurbach, D. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv. Mater. 23, 5641-5644 (2011).
    • (2011) Adv. Mater , vol.23 , pp. 5641-5644
    • Elazari, R.1    Salitra, G.2    Garsuch, A.3    Panchenko, A.4    Aurbach, D.5
  • 102
    • 84866721087 scopus 로고    scopus 로고
    • Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery
    • Evers, S., Yim, T. & Nazar, L. F. Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery. J. Phys. Chem. C 116, 19653-19658 (2012).
    • (2012) J. Phys. Chem. C , vol.116 , pp. 19653-19658
    • Evers, S.1    Yim, T.2    Nazar, L.F.3
  • 103
    • 84897615862 scopus 로고    scopus 로고
    • Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries
    • Song, J. et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 24, 1243-1250 (2014).
    • (2014) Adv. Funct. Mater , vol.24 , pp. 1243-1250
    • Song, J.1
  • 104
    • 84869469638 scopus 로고    scopus 로고
    • Smaller sulfur molecules promise better lithium-sulfur batteries
    • Xin, S. et al. Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 134, 18510-18513 (2012).
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 18510-18513
    • Xin, S.1
  • 105
    • 85027940104 scopus 로고    scopus 로고
    • A lithium-sulfur battery with a high areal energy density
    • Kim, J.-S., Hwang, T. H., Kim, B. G., Min, J. & Choi, J. W. A lithium-sulfur battery with a high areal energy density. Adv. Funct. Mater. 24, 5359-5367 (2014).
    • (2014) Adv. Funct. Mater , vol.24 , pp. 5359-5367
    • Kim, J.-S.1    Hwang, T.H.2    Kim, B.G.3    Min, J.4    Choi, J.W.5
  • 106
    • 84879118567 scopus 로고    scopus 로고
    • The use of elemental sulfur as an alternative feedstock for polymeric materials
    • Chung, W. J. et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 5, 518-524 (2013).
    • (2013) Nat. Chem. , vol.5 , pp. 518-524
    • Chung, W.J.1
  • 107
    • 85017093352 scopus 로고    scopus 로고
    • Electrochemical performance of all-solid-state Li/S batteries with sulfur-based composite electrodes prepared by mechanical milling at high temperature
    • Nagao, M., Hayashi, A. & Tatsumisago, M. Electrochemical performance of all-solid-state Li/S batteries with sulfur-based composite electrodes prepared by mechanical milling at high temperature. Energy Technol. 1, 186-192 (2013).
    • (2013) Energy Technol. , vol.1 , pp. 186-192
    • Nagao, M.1    Hayashi, A.2    Tatsumisago, M.3
  • 108
    • 10044268709 scopus 로고    scopus 로고
    • Electrochemical properties of sulfur as cathode materials in a solid-state lithium battery with inorganic solid electrolytes
    • Machida, N., Kobayashi, K., Nishikawa, Y. & Shigematsu, T. Electrochemical properties of sulfur as cathode materials in a solid-state lithium battery with inorganic solid electrolytes. Solid State Ionics 175, 247-250 (2004).
    • (2004) Solid State Ionics , vol.175 , pp. 247-250
    • Machida, N.1    Kobayashi, K.2    Nishikawa, Y.3    Shigematsu, T.4
  • 109
    • 84893375041 scopus 로고    scopus 로고
    • All-solid-state lithium battery with sulfur/carbon composites as positive electrode materials
    • Kinoshita, S., Okuda, K., Machida, N., Naito, M. & Sigematsu, T. All-solid-state lithium battery with sulfur/carbon composites as positive electrode materials. Solid State Ionics 256, 97-102 (2014).
    • (2014) Solid State Ionics , vol.256 , pp. 97-102
    • Kinoshita, S.1    Okuda, K.2    Machida, N.3    Naito, M.4    Sigematsu, T.5
  • 110
    • 45449093173 scopus 로고    scopus 로고
    • All solid-state battery with sulfur electrode and thio-LISICON electrolyte
    • Kobayashi, T. et al. All solid-state battery with sulfur electrode and thio-LISICON electrolyte. J. Power Sources 182, 621-625 (2008).
    • (2008) J. Power Sources , vol.182 , pp. 621-625
    • Kobayashi, T.1
  • 112
    • 0033717270 scopus 로고    scopus 로고
    • Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes
    • Marmorstein, D. et al. Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J. Power Sources 89, 219-226 (2000).
    • (2000) J. Power Sources , vol.89 , pp. 219-226
    • Marmorstein, D.1
  • 113
    • 33644517547 scopus 로고    scopus 로고
    • Discharge process of Li/PVdF/S cells at room temperature
    • Ryu, H.S., Ahn, H.J., Kim, K.W., Ahn, J.H. & Lee, J.Y. Discharge process of Li/PVdF/S cells at room temperature. J. Power Sources 153, 360-364 (2006).
    • (2006) J. Power Sources , vol.153 , pp. 360-364
    • Ryu, H.S.1    Ahn, H.J.2    Kim, K.W.3    Ahn, J.H.4    Lee, J.Y.5
  • 114
    • 33845308810 scopus 로고    scopus 로고
    • Microporous poly(vinylidene fluoride-co hexafluoropropylene) polymer electrolytes for lithium/sulfur cells
    • Choi, J. W. et al. Microporous poly(vinylidene fluoride-co hexafluoropropylene) polymer electrolytes for lithium/sulfur cells. J. Ind. Eng. Chem. 12, 939-949 (2006).
    • (2006) J. Ind. Eng. Chem. , vol.12 , pp. 939-949
    • Choi, J.W.1
  • 115
    • 84860499597 scopus 로고    scopus 로고
    • Lithium-sulfur cell with combining carbon nanofibers-sulfur cathode and gel polymer electrolyte
    • Rao, M., Geng, X., Li, X., Hu, S. & Li, W. Lithium-sulfur cell with combining carbon nanofibers-sulfur cathode and gel polymer electrolyte. J. Power Sources 212, 179-185 (2012).
    • (2012) J. Power Sources , vol.212 , pp. 179-185
    • Rao, M.1    Geng, X.2    Li, X.3    Hu, S.4    Li, W.5
  • 116
    • 84923374491 scopus 로고    scopus 로고
    • Electrochemical reduction mechanism of sulfur particles electrically isolated from carbon cathodes of lithium-sulfur cells
    • Koh, J. Y. et al. Electrochemical reduction mechanism of sulfur particles electrically isolated from carbon cathodes of lithium-sulfur cells. J. Electrochem. Soc. 161, A2117-A2120 (2014).
    • (2014) J. Electrochem. Soc. , vol.161 , pp. A2117-A2120
    • Koh, J.Y.1
  • 117
    • 84942857661 scopus 로고    scopus 로고
    • The effect of a solid electrolyte interphase on the mechanism of operation of lithium-sulfur batteries
    • Markevich, E. et al. The effect of a solid electrolyte interphase on the mechanism of operation of lithium-sulfur batteries. J. Mater. Chem. A 3, 19873-19883 (2015).
    • (2015) J. Mater. Chem. A , vol.3 , pp. 19873-19883
    • Markevich, E.1
  • 118
    • 84940210512 scopus 로고    scopus 로고
    • Fluoroethylene carbonate as an important component in organic carbonate electrolyte solutions for lithium sulfur batteries
    • Markevich, E. et al. Fluoroethylene carbonate as an important component in organic carbonate electrolyte solutions for lithium sulfur batteries. Electrochem. Commun. 60, 42-46 (2015).
    • (2015) Electrochem. Commun. , vol.60 , pp. 42-46
    • Markevich, E.1
  • 119
    • 84915804037 scopus 로고    scopus 로고
    • Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries
    • Yuan, Z. et al. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries. Adv. Funct. Mater. 24, 6105-6112 (2014).
    • (2014) Adv. Funct. Mater , vol.24 , pp. 6105-6112
    • Yuan, Z.1
  • 120
    • 0029769438 scopus 로고    scopus 로고
    • A polymer electrolyte-based rechargeable lithium/oxygen battery
    • Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1-5 (1996).
    • (1996) J. Electrochem. Soc. , vol.143 , pp. 1-5
    • Abraham, K.M.1    Jiang, Z.2
  • 121
    • 84903979389 scopus 로고    scopus 로고
    • Recent advances in zinc-air batteries
    • Li, Y. & Dai, H. Recent advances in zinc-air batteries. Chem. Soc. Rev. 43, 5257-5275 (2014).
    • (2014) Chem. Soc. Rev. , vol.43 , pp. 5257-5275
    • Li, Y.1    Dai, H.2
  • 123
    • 84873969908 scopus 로고    scopus 로고
    • Making Li-air batteries rechargeable: Material challenges
    • Shao, Y. et al. Making Li-air batteries rechargeable: material challenges. Adv. Funct. Mater. 23, 987-1004 (2013).
    • (2013) Adv. Funct. Mater , vol.23 , pp. 987-1004
    • Shao, Y.1
  • 124
    • 62349097136 scopus 로고    scopus 로고
    • Study on lithium/air secondary batteries - stability of NASICON-type lithium ion conducting glass-ceramics with water
    • Hasegawa, S. et al. Study on lithium/air secondary batteries - stability of NASICON-type lithium ion conducting glass-ceramics with water. J. Power Sources 189, 371-377 (2009).
    • (2009) J. Power Sources , vol.189 , pp. 371-377
    • Hasegawa, S.1
  • 125
    • 84901632200 scopus 로고    scopus 로고
    • Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes
    • Visco, S. et al. Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes. J. Solid State Electrochem. 18, 1443-1456 (2014).
    • (2014) J. Solid State Electrochem. , vol.18 , pp. 1443-1456
    • Visco, S.1
  • 126
    • 54949116263 scopus 로고    scopus 로고
    • Li/polymer electrolyte/water stable lithium-conducting glass ceramics composite for lithium-air secondary batteries with an aqueous electrolyte
    • Zhang, T. et al. Li/polymer electrolyte/water stable lithium-conducting glass ceramics composite for lithium-air secondary batteries with an aqueous electrolyte. J. Electrochem. Soc. 155, A965-A969 (2008).
    • (2008) J. Electrochem. Soc. , vol.155 , pp. A965-A969
    • Zhang, T.1
  • 128
    • 84906685771 scopus 로고    scopus 로고
    • Improved reversibility in lithium-oxygen battery: Understanding elementary reactions and surface charge engineering of metal alloy catalyst
    • Kim, B. G. et al. Improved reversibility in lithium-oxygen battery: understanding elementary reactions and surface charge engineering of metal alloy catalyst. Sci. Rep. 4, 4225 (2014).
    • (2014) Sci. Rep. , vol.4 , pp. 4225
    • Kim, B.G.1
  • 129
    • 80052496571 scopus 로고    scopus 로고
    • The lithium-oxygen battery with ether-based electrolytes
    • Freunberger, S. A. et al. The lithium-oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed. Engl. 50, 8609-8613 (2011).
    • (2011) Angew. Chem. Int. Ed. Engl. , vol.50 , pp. 8609-8613
    • Freunberger, S.A.1
  • 134
    • 84885447243 scopus 로고    scopus 로고
    • 2 battery
    • 2 battery. Nano Lett. 13, 4702-4707 (2013).
    • (2013) Nano Lett. , vol.13 , pp. 4702-4707
    • Li, F.1
  • 135
    • 84955572127 scopus 로고    scopus 로고
    • A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries
    • Lu, J. et al. A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat. Commun. 4, 2383 (2013).
    • (2013) Nat. Commun. , vol.4 , pp. 2383
    • Lu, J.1
  • 137
    • 84871970329 scopus 로고    scopus 로고
    • The role of catalysts and peroxide oxidation in lithium-oxygen batteries
    • Black, R., Lee, J.H., Adams, B., Mims, C. A. & Nazar, L. F. The role of catalysts and peroxide oxidation in lithium-oxygen batteries. Angew. Chem. Int. Ed. Engl. 52, 392-396 (2013).
    • (2013) Angew. Chem. Int. Ed. Engl. , vol.52 , pp. 392-396
    • Black, R.1    Lee, J.H.2    Adams, B.3    Mims, C.A.4    Nazar, L.F.5
  • 138
    • 84923817799 scopus 로고    scopus 로고
    • 2 battery cathodes with long-cycling stability
    • 2 battery cathodes with long-cycling stability. Sci. Rep. 5, 8335 (2015).
    • (2015) Sci. Rep. , vol.5 , pp. 8335
    • Shang, C.1
  • 140
    • 84961289081 scopus 로고    scopus 로고
    • The lithium/air battery: Still an emerging system or a practical reality?
    • Grande, L. et al. The lithium/air battery: still an emerging system or a practical reality? Adv. Mater. 27, 784-800 (2015).
    • (2015) Adv. Mater , vol.27 , pp. 784-800
    • Grande, L.1
  • 141
    • 84878842247 scopus 로고    scopus 로고
    • 2 battery and its effect on charge
    • 2 battery and its effect on charge. Energy Environ. Sci. 6, 1772-1778 (2013).
    • (2013) Energy Environ. Sci. , vol.6 , pp. 1772-1778
    • Adams, B.D.1
  • 143
    • 84897990720 scopus 로고    scopus 로고
    • Superior rechargeability and efficiency of lithium-oxygen batteries: Hierarchical air electrode architecture combined with a soluble catalyst
    • Lim, H.D. et al. Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew. Chem. Int. Ed. Engl. 53, 3926-3931 (2014).
    • (2014) Angew. Chem. Int. Ed. Engl. , vol.53 , pp. 3926-3931
    • Lim, H.D.1
  • 144
    • 79957673636 scopus 로고    scopus 로고
    • 2 battery with alkyl carbonate electrolytes
    • 2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133, 8040-8047 (2011).
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 8040-8047
    • Freunberger, S.A.1
  • 146
    • 84872179185 scopus 로고    scopus 로고
    • On the challenge of electrolyte solutions for Li-air batteries: Monitoring oxygen reduction and related reactions in polyether solutions by spectroscopy and EQCM
    • Sharon, D. et al. On the challenge of electrolyte solutions for Li-air batteries: monitoring oxygen reduction and related reactions in polyether solutions by spectroscopy and EQCM. J. Phys. Chem. Lett. 4, 127-131 (2013).
    • (2013) J. Phys. Chem. Lett. , vol.4 , pp. 127-131
    • Sharon, D.1
  • 147
    • 84884572082 scopus 로고    scopus 로고
    • Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen
    • Sharon, D. et al. Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen. J. Phys. Chem. Lett. 4, 3115-3119 (2013).
    • (2013) J. Phys. Chem. Lett. , vol.4 , pp. 3115-3119
    • Sharon, D.1
  • 148
    • 84929089988 scopus 로고    scopus 로고
    • Lithium-oxygen electrochemistry in non-aqueous solutions
    • Sharon, D. et al. Lithium-oxygen electrochemistry in non-aqueous solutions. Isr. J. Chem. 55, 508-520 (2015).
    • (2015) Isr. J. Chem. , vol.55 , pp. 508-520
    • Sharon, D.1
  • 149
    • 84927153772 scopus 로고    scopus 로고
    • Understanding the behavior of Li-oxygen cells containing LiI
    • Kwak, W. J. et al. Understanding the behavior of Li-oxygen cells containing LiI. J. Mater. Chem. A 3, 8855-8864 (2015).
    • (2015) J. Mater. Chem. A , vol.3 , pp. 8855-8864
    • Kwak, W.J.1
  • 153
    • 84928955059 scopus 로고    scopus 로고
    • 2C/carbon nanotube composite cathode for lithium-oxygen batteries with high energy efficiency and long cycle life
    • 2C/carbon nanotube composite cathode for lithium-oxygen batteries with high energy efficiency and long cycle life. ACS Nano 9, 4129-4137 (2015).
    • (2015) ACS Nano , vol.9 , pp. 4129-4137
    • Kwak, W.J.1
  • 154
    • 84937023296 scopus 로고    scopus 로고
    • 2 hollow spheres as the carbon-free cathode
    • 2 hollow spheres as the carbon-free cathode. Adv. Energy Mater. 5, 1500294 (2015).
    • (2015) Adv. Energy Mater , vol.5 , pp. 1500294
    • Li, F.1
  • 157
    • 84929271425 scopus 로고    scopus 로고
    • A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions
    • Zhang, J., Zhao, Z., Xia, Z. & Dai, L. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 10, 444-452 (2015).
    • (2015) Nat. Nanotechnol. , vol.10 , pp. 444-452
    • Zhang, J.1    Zhao, Z.2    Xia, Z.3    Dai, L.4
  • 158
    • 84897601111 scopus 로고    scopus 로고
    • Wiring zinc in three dimensions re writes battery performance-dendrite-free cycling
    • Parker, J. F., Chervin, C. N., Nelson, E. S., Rolison, D. R. & Long, J. W. Wiring zinc in three dimensions re writes battery performance-dendrite-free cycling. Energy Environ. Sci. 7, 1117-1124 (2014).
    • (2014) Energy Environ. Sci. , vol.7 , pp. 1117-1124
    • Parker, J.F.1    Chervin, C.N.2    Nelson, E.S.3    Rolison, D.R.4    Long, J.W.5
  • 159
  • 160
    • 0016128762 scopus 로고
    • Corrosion of pure and amalgamated zinc in concentrated alkali hydroxide solutions
    • Vorkapić, L. Ž., Dražić, D. M. & Despić, A. R. Corrosion of pure and amalgamated zinc in concentrated alkali hydroxide solutions. J. Electrochem. Soc. 121, 1385-1392 (1974).
    • (1974) J. Electrochem. Soc. , vol.121 , pp. 1385-1392
    • Vorkapić, L.Ž.1    Dražić, D.M.2    Despić, A.R.3
  • 161
    • 33748959868 scopus 로고    scopus 로고
    • Novel alloys to improve the electrochemical behavior of zinc anodes for zinc/air battery
    • Lee, C. W., Sathiyanarayanan, K., Eom, S. W. & Yun, M. S. Novel alloys to improve the electrochemical behavior of zinc anodes for zinc/air battery. J. Power Sources 160, 1436-1441 (2006).
    • (2006) J. Power Sources , vol.160 , pp. 1436-1441
    • Lee, C.W.1    Sathiyanarayanan, K.2    Eom, S.W.3    Yun, M.S.4
  • 162
    • 0037433648 scopus 로고    scopus 로고
    • Electrochemical and surface studies of zinc in alkaline solutions containing organic corrosion inhibitors
    • Ein-Eli, Y., Auinat, M. & Starosvetsky, D. Electrochemical and surface studies of zinc in alkaline solutions containing organic corrosion inhibitors. J. Power Sources 114, 330-337 (2003).
    • (2003) J. Power Sources , vol.114 , pp. 330-337
    • Ein-Eli, Y.1    Auinat, M.2    Starosvetsky, D.3
  • 163
    • 51449115744 scopus 로고    scopus 로고
    • Surface treatment of zinc anodes to improve discharge capacity and suppress hydrogen gas evolution
    • Cho, Y.-D. & Fey, G. T.K. Surface treatment of zinc anodes to improve discharge capacity and suppress hydrogen gas evolution. J. Power Sources 184, 610-616 (2008).
    • (2008) J. Power Sources , vol.184 , pp. 610-616
    • Cho, Y.-D.1    Fey, G.T.K.2
  • 164
    • 84878597285 scopus 로고    scopus 로고
    • Advanced zinc-air batteries based on high-performance hybrid electrocatalysts
    • Li, Y. et al. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 4, 1805 (2013).
    • (2013) Nat. Commun. , vol.4 , pp. 1805
    • Li, Y.1
  • 165
    • 33750943161 scopus 로고    scopus 로고
    • 2 concentration in a zinc/air battery by absorption in a rotating packed bed
    • 2 concentration in a zinc/air battery by absorption in a rotating packed bed. J. Power Sources 162, 1431-1436 (2006).
    • (2006) J. Power Sources , vol.162 , pp. 1431-1436
    • Cheng, H.-H.1    Tan, C.S.2
  • 166
    • 84916624817 scopus 로고    scopus 로고
    • Research development on sodium-ion batteries
    • Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636-11682 (2014).
    • (2014) Chem. Rev. , vol.114 , pp. 11636-11682
    • Yabuuchi, N.1    Kubota, K.2    Dahbi, M.3    Komaba, S.4
  • 167
    • 84910649638 scopus 로고    scopus 로고
    • High-capacity anode materials for sodium-ion batteries
    • Kim, Y., Ha, K. H., Oh, S. M. & Lee, K. T. High-capacity anode materials for sodium-ion batteries. Chem. Eur. J. 20, 11980-11992 (2014).
    • (2014) Chem. Eur. J. , vol.20 , pp. 11980-11992
    • Kim, Y.1    Ha, K.H.2    Oh, S.M.3    Lee, K.T.4
  • 169
    • 84862696324 scopus 로고    scopus 로고
    • 2 made from earth-abundant elements for rechargeable Na batteries
    • 2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512-517 (2012).
    • (2012) Nat. Mater , vol.11 , pp. 512-517
    • Yabuuchi, N.1
  • 170
    • 80052193621 scopus 로고    scopus 로고
    • Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials
    • Ong, S. P. et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680-3688 (2011).
    • (2011) Energy Environ. Sci. , vol.4 , pp. 3680-3688
    • Ong, S.P.1
  • 171
    • 84936862900 scopus 로고    scopus 로고
    • 2 cathode for high-rate sodium-ion batteries
    • 2 cathode for high-rate sodium-ion batteries. Energy Environ. Sci. 8, 2019-2026 (2015).
    • (2015) Energy Environ. Sci. , vol.8 , pp. 2019-2026
    • Yu, C.Y.1
  • 172
    • 84955595451 scopus 로고    scopus 로고
    • Comparison between Na-ion and Li-ion cells: Understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior
    • de la Llave, E. et al. Comparison between Na-ion and Li-ion cells: understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior. ACS Appl. Mater. Interfaces 8, 1867-1875 (2015).
    • (2015) ACS Appl. Mater. Interfaces , vol.8 , pp. 1867-1875
    • De La-Llave, E.1
  • 176
    • 84919622355 scopus 로고    scopus 로고
    • 2: A layered anode material for sodium-ion batteries
    • 2: a layered anode material for sodium-ion batteries. Energy Environ. Sci. 8, 195-202 (2015).
    • (2015) Energy Environ. Sci. , vol.8 , pp. 195-202
    • Wu, D.1
  • 177
    • 79960898109 scopus 로고    scopus 로고
    • Challenges for Na ion negative electrodes
    • Chevrier, V. L. & Ceder, G. Challenges for Na ion negative electrodes. J. Electrochem. Soc. 158, A1011-A1014 (2011).
    • (2011) J. Electrochem. Soc. , vol.158 , pp. A1011-A1014
    • Chevrier, V.L.1    Ceder, G.2
  • 178
    • 84873959627 scopus 로고    scopus 로고
    • Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory
    • Baggetto, L. et al. Characterization of sodium ion electrochemical reaction with tin anodes: experiment and theory. J. Power Sources 234, 48-59 (2013).
    • (2013) J. Power Sources , vol.234 , pp. 48-59
    • Baggetto, L.1
  • 180
    • 84878877019 scopus 로고    scopus 로고
    • An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries
    • Kim, Y. et al. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 25, 3045-3049 (2013).
    • (2013) Adv. Mater , vol.25 , pp. 3045-3049
    • Kim, Y.1
  • 181
    • 84876484953 scopus 로고    scopus 로고
    • High capacity and rate capability of amorphous phosphorus for sodium ion batteries
    • Qian, J., Wu, X., Cao, Y., Ai, X. & Yang, H. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem. Int. Ed. Engl. 52, 4633-4636 (2013).
    • (2013) Angew. Chem. Int. Ed. Engl. , vol.52 , pp. 4633-4636
    • Qian, J.1    Wu, X.2    Cao, Y.3    Ai, X.4    Yang, H.5
  • 182
    • 84887841052 scopus 로고    scopus 로고
    • Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage
    • Li, W.-J., Chou, S.L., Wang, J.Z., Liu, H.K. & Dou, S.X. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett. 13, 5480-5484 (2013).
    • (2013) Nano Lett. , vol.13 , pp. 5480-5484
    • Li, W.-J.1    Chou, S.L.2    Wang, J.Z.3    Liu, H.K.4    Dou, S.X.5
  • 183
    • 84880018398 scopus 로고    scopus 로고
    • Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism
    • Darwiche, A. et al. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J. Am. Chem. Soc. 135, 10179-10179 (2013).
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 10179
    • Darwiche, A.1
  • 184
    • 84879990082 scopus 로고    scopus 로고
    • Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: Experiment and theory
    • Baggetto, L. et al. Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory. J. Mater. Chem. A 1, 7985-7994 (2013).
    • (2013) J. Mater. Chem. A , vol.1 , pp. 7985-7994
    • Baggetto, L.1
  • 185
    • 84896385034 scopus 로고    scopus 로고
    • Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: Nano versus bulk
    • He, M., Kraychyk, K., Walter, M. & Kovalenko, M. V. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk. Nano Lett. 14, 1255-1262 (2014).
    • (2014) Nano Lett. , vol.14 , pp. 1255-1262
    • He, M.1    Kraychyk, K.2    Walter, M.3    Kovalenko, M.V.4
  • 186
    • 84883261226 scopus 로고    scopus 로고
    • Germanium as negative electrode material for sodium-ion batteries
    • Baggetto, L., Keum, J. K., Browning, J. F. & Veith, G. M. Germanium as negative electrode material for sodium-ion batteries. Electrochem. Commun. 34, 41-44 (2013).
    • (2013) Electrochem. Commun. , vol.34 , pp. 41-44
    • Baggetto, L.1    Keum, J.K.2    Browning, J.F.3    Veith, G.M.4
  • 187
    • 84884549870 scopus 로고    scopus 로고
    • Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material
    • Abel, P. R. et al. Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material. J. Phys. Chem. C 117, 18885-18890 (2013).
    • (2013) J. Phys. Chem. C , vol.117 , pp. 18885-18890
    • Abel, P.R.1
  • 188
    • 84887289878 scopus 로고    scopus 로고
    • The electrochemical reactions of pure indium with Li and Na: Anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance
    • Webb, S. A., Baggetto, L., Bridges, C. A. & Veith, G. M. The electrochemical reactions of pure indium with Li and Na: anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance. J. Power Sources 248, 1105-1117 (2014).
    • (2014) J. Power Sources , vol.248 , pp. 1105-1117
    • Webb, S.A.1    Baggetto, L.2    Bridges, C.A.3    Veith, G.M.4
  • 189
    • 84879932055 scopus 로고    scopus 로고
    • AlSb thin films as negative electrodes for Li-ion and Na-ion batteries
    • Baggetto, L., Marszewski, M., Gorka, J., Jaroniec, M. & Veith, G. M. AlSb thin films as negative electrodes for Li-ion and Na-ion batteries. J. Power Sources 243, 699-705 (2013).
    • (2013) J. Power Sources , vol.243 , pp. 699-705
    • Baggetto, L.1    Marszewski, M.2    Gorka, J.3    Jaroniec, M.4    Veith, G.M.5
  • 192
    • 84873866132 scopus 로고    scopus 로고
    • Intercalation of sodium ions into hollow iron oxide nanoparticles
    • Koo, B. et al. Intercalation of sodium ions into hollow iron oxide nanoparticles. Chem. Mater. 25, 245-252 (2013).
    • (2013) Chem. Mater , vol.25 , pp. 245-252
    • Koo, B.1
  • 193
    • 0036061897 scopus 로고    scopus 로고
    • 4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries
    • 4 spinel: first report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater. 14, 2847-2848 (2002).
    • (2002) Chem. Mater , vol.14 , pp. 2847-2848
    • Alcántara, R.1    Jaraba, M.2    Lavela, P.3    Tirado, J.L.4
  • 194
    • 84881160266 scopus 로고    scopus 로고
    • Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries
    • Su, D., Wang, C., Ahn, H. & Wang, G. Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries. Phys. Chem. Chem. Phys. 15, 12543-12550 (2013).
    • (2013) Phys. Chem. Chem. Phys. , vol.15 , pp. 12543-12550
    • Su, D.1    Wang, C.2    Ahn, H.3    Wang, G.4
  • 195
    • 84890147440 scopus 로고    scopus 로고
    • High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries
    • Yu, D. Y. W. et al. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 4, 2922 (2013).
    • (2013) Nat. Commun. , vol.4 , pp. 2922
    • Yu, D.Y.W.1
  • 196
    • 84893860567 scopus 로고    scopus 로고
    • 2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage
    • 2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. Engl. 53, 2152-2156 (2014).
    • (2014) Angew. Chem. Int. Ed. Engl. , vol.53 , pp. 2152-2156
    • Zhu, C.1    Mu, X.2    Van Aken, P.A.3    Yu, Y.4    Maier, J.5
  • 198
    • 84903145177 scopus 로고    scopus 로고
    • Tin phosphide as a promising anode material for Na-ion batteries
    • Kim, Y. et al. Tin phosphide as a promising anode material for Na-ion batteries. Adv. Mater. 26, 4139-4144 (2014).
    • (2014) Adv. Mater , vol.26 , pp. 4139-4144
    • Kim, Y.1
  • 199
    • 84882991556 scopus 로고    scopus 로고
    • Charge carriers in rechargeable batteries: Na ions versus Li ions
    • Hong, S. Y. et al. Charge carriers in rechargeable batteries: Na ions versus Li ions. Energy Environ. Sci. 6, 2067-2081 (2013).
    • (2013) Energy Environ. Sci. , vol.6 , pp. 2067-2081
    • Hong, S.Y.1
  • 200
    • 84884225038 scopus 로고    scopus 로고
    • A low cost, all-organic Na-ion battery based on polymeric cathode and anode
    • Deng, W. et al. A low cost, all-organic Na-ion battery based on polymeric cathode and anode. Sci. Rep. 3, 2671 (2013).
    • (2013) Sci. Rep. , vol.3 , pp. 2671
    • Deng, W.1
  • 201
    • 84863691641 scopus 로고    scopus 로고
    • Sodium terephthalate as an organic anode material for sodium ion batteries
    • Park, Y. et al. Sodium terephthalate as an organic anode material for sodium ion batteries. Adv. Mater. 24, 3562-3567 (2012).
    • (2012) Adv. Mater , vol.24 , pp. 3562-3567
    • Park, Y.1
  • 202
    • 84928109569 scopus 로고    scopus 로고
    • Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries
    • Hwang, J.Y. et al. Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nat. Commun. 6, 6865 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 6865
    • Hwang, J.Y.1
  • 203
    • 37149024780 scopus 로고    scopus 로고
    • Progress in rechargeable magnesium battery technology
    • Aurbach, D. et al. Progress in rechargeable magnesium battery technology. Adv. Mater. 19, 4260-4267 (2007).
    • (2007) Adv. Mater , vol.19 , pp. 4260-4267
    • Aurbach, D.1
  • 204
    • 84882655041 scopus 로고    scopus 로고
    • Mg rechargeable batteries: An on going challenge
    • Yoo, H. D. et al. Mg rechargeable batteries: an on going challenge. Energy Environ. Sci. 6, 2265-2279 (2013).
    • (2013) Energy Environ. Sci. , vol.6 , pp. 2265-2279
    • Yoo, H.D.1
  • 205
    • 0025399048 scopus 로고
    • Nonaqueous electrochemistry of magnesium: Applications to energy storage
    • Gregory, T. D., Hoffman, R. J. & Winterton, R. C. Nonaqueous electrochemistry of magnesium: applications to energy storage. J. Electrochem. Soc. 137, 775-780 (1990).
    • (1990) J. Electrochem. Soc. , vol.137 , pp. 775-780
    • Gregory, T.D.1    Hoffman, R.J.2    Winterton, R.C.3
  • 206
    • 0034641978 scopus 로고    scopus 로고
    • Prototype systems for rechargeable magnesium batteries
    • Aurbach, D. et al. Prototype systems for rechargeable magnesium batteries. Nature 407, 724-727 (2000).
    • (2000) Nature , vol.407 , pp. 724-727
    • Aurbach, D.1
  • 207
    • 79955028669 scopus 로고    scopus 로고
    • Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations
    • Pour, N., Gofer, Y., Major, D. T. & Aurbach, D. Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations. J. Am. Chem. Soc. 133, 6270-6278 (2011).
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 6270-6278
    • Pour, N.1    Gofer, Y.2    Major, D.T.3    Aurbach, D.4
  • 208
    • 84888996842 scopus 로고    scopus 로고
    • Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries
    • Doe, R. E. et al. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Commun. 50, 243-245 (2014).
    • (2014) Chem. Commun. , vol.50 , pp. 243-245
    • Doe, R.E.1
  • 209
    • 84875467162 scopus 로고    scopus 로고
    • 2/THF electrolyte
    • 2/THF electrolyte. J. Electrochem. Soc. 160, A351-A355 (2013).
    • (2013) J. Electrochem. Soc. , vol.160 , pp. A351-A355
    • Lv, D.1
  • 210
    • 84865609316 scopus 로고    scopus 로고
    • 2 as a cathode material for rechargeable Mg batteries
    • 2 as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 23, 110-113 (2012).
    • (2012) Electrochem. Commun. , vol.23 , pp. 110-113
    • Zhang, R.1
  • 212
    • 84935869969 scopus 로고    scopus 로고
    • The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries
    • Nam, K. W. et al. The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett. 15, 4071-4079 (2015).
    • (2015) Nano Lett. , vol.15 , pp. 4071-4079
    • Nam, K.W.1
  • 213
    • 79952591160 scopus 로고    scopus 로고
    • 2 cathode and ultrasmall Mg nanoparticle anode
    • 2 cathode and ultrasmall Mg nanoparticle anode. Adv. Mater. 23, 640-643 (2011).
    • (2011) Adv. Mater , vol.23 , pp. 640-643
    • Liang, Y.1
  • 214
    • 84884919576 scopus 로고    scopus 로고
    • 2 nanowire cathodes
    • 2 nanowire cathodes. ACS Nano 7, 8051-8058 (2013).
    • (2013) ACS Nano , vol.7 , pp. 8051-8058
    • Liu, B.1
  • 215
    • 84904160656 scopus 로고    scopus 로고
    • High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements
    • Orikasa, Y. et al. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Sci. Rep. 4, 5622 (2014).
    • (2014) Sci. Rep. , vol.4 , pp. 5622
    • Orikasa, Y.1
  • 216
    • 84885605516 scopus 로고    scopus 로고
    • Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide
    • Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502-1505 (2013).
    • (2013) Science , vol.341 , pp. 1502-1505
    • Lukatskaya, M.R.1
  • 217
    • 84920854732 scopus 로고    scopus 로고
    • Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements
    • Levi, M. D. et al. Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Adv. Energy Mater. 5, 1400815 (2015).
    • (2015) Adv. Energy Mater , vol.5 , pp. 1400815
    • Levi, M.D.1
  • 218
    • 84887847292 scopus 로고    scopus 로고
    • Highly reversible open framework nanoscale electrodes for divalent ion batteries
    • Wang, R. Y., Wessells, C. D., Huggins, R. A. & Cui, Y. Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Lett. 13, 5748-5752 (2013).
    • (2013) Nano Lett. , vol.13 , pp. 5748-5752
    • Wang, R.Y.1    Wessells, C.D.2    Huggins, R.A.3    Cui, Y.4
  • 219
    • 84885902207 scopus 로고    scopus 로고
    • 2+ intercalation into a bimetallic CuFe prussian blue analog in aqueous electrolytes
    • 2+ intercalation into a bimetallic CuFe Prussian blue analog in aqueous electrolytes. J. Mater. Chem. A 1, 13055-13059 (2013).
    • (2013) J. Mater. Chem. A , vol.1 , pp. 13055-13059
    • Mizuno, Y.1
  • 220
    • 0013177487 scopus 로고
    • The electrolysis of grignard solutions
    • Gaddum, L. W. & French, H. E. The electrolysis of Grignard solutions. J. Am. Chem. Soc. 49, 1295-1299 (1927).
    • (1927) J. Am. Chem. Soc. , vol.49 , pp. 1295-1299
    • Gaddum, L.W.1    French, H.E.2
  • 221
    • 80052416719 scopus 로고    scopus 로고
    • Structure and compatibility of a magnesium electrolyte with a sulphur cathode
    • Kim, H. S. et al. Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2, 427 (2011).
    • (2011) Nat. Commun. , vol.2 , pp. 427
    • Kim, H.S.1
  • 222
    • 84867318146 scopus 로고    scopus 로고
    • Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries
    • Guo, Y.-s. et al. Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries. Energy Environ. Sci. 5, 9100-9106 (2012).
    • (2012) Energy Environ. Sci. , vol.5 , pp. 9100-9106
    • Guo, Y.-S.1
  • 223
    • 84944339709 scopus 로고    scopus 로고
    • - (TFSI) based electrolyte solutions for Mg batteries
    • - (TFSI) based electrolyte solutions for Mg batteries. J. Electrochem. Soc. 162, A7118-A7128 (2015).
    • (2015) J. Electrochem. Soc. , vol.162 , pp. A7118-A7128
    • Shterenberg, I.1
  • 224
  • 225
    • 84896385647 scopus 로고    scopus 로고
    • Boron clusters as highly stable magnesium-battery electrolytes
    • Carter, T. J. et al. Boron clusters as highly stable magnesium-battery electrolytes. Angew. Chem. Int. Ed. Engl. 53, 3173-3177 (2014).
    • (2014) Angew. Chem. Int. Ed. Engl. , vol.53 , pp. 3173-3177
    • Carter, T.J.1
  • 226
    • 85027929436 scopus 로고    scopus 로고
    • An efficient halogen-free electrolyte for use in rechargeable magnesium batteries
    • Tutusaus, O. et al. An efficient halogen-free electrolyte for use in rechargeable magnesium batteries. Angew. Chem. Int. Ed. Engl. 54, 7900-7904(2015).
    • (2015) Angew. Chem. Int. Ed. Engl. , vol.54 , pp. 7900-7904
    • Tutusaus, O.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.