메뉴 건너뛰기




Volumn 3, Issue 5, 2015, Pages 385-418

Li-ion batteries: Basics, progress, and challenges

Author keywords

Anode; Cathode; Electrolyte; Li ion batteries; Rechargeable; Separator

Indexed keywords

ANODES; CATHODES; ELECTRIC BATTERIES; ELECTRODES; ELECTROLYTES; IONS; LAPTOP COMPUTERS; LITHIUM; SECONDARY BATTERIES; SEPARATORS;

EID: 84979026439     PISSN: None     EISSN: 20500505     Source Type: Journal    
DOI: 10.1002/ese3.95     Document Type: Review
Times cited : (867)

References (172)
  • 2
    • 85050782311 scopus 로고    scopus 로고
    • The Great Battery Race
    • Levine, S.. 2010. The Great Battery Race. Foreign Policy 182:88-95.
    • (2010) Foreign Policy , vol.182 , pp. 88-95
    • Levine, S.1
  • 3
    • 84861844519 scopus 로고    scopus 로고
    • The Birth of the Lithium-Ion Battery
    • Yoshino, A. 2012. The Birth of the Lithium-Ion Battery. Angew. Chem. Int. Edit. 51:5798-5800
    • (2012) Angew. Chem. Int. Edit , vol.51 , pp. 5798-5800
    • Yoshino, A.1
  • 4
    • 85022087605 scopus 로고    scopus 로고
    • New York Times, 162, B5-B5
    • New York Times 2013, 162, B5-B5
    • (2013)
  • 6
    • 0035890440 scopus 로고    scopus 로고
    • Issues and challenges facing rechargeable lithium batteries
    • Tarascon, J. M., and M. Armand. 2001. Issues and challenges facing rechargeable lithium batteries. Nature 414:359-367.
    • (2001) Nature , vol.414 , pp. 359-367
    • Tarascon, J.M.1    Armand, M.2
  • 7
    • 0001658455 scopus 로고
    • Electrical Energy Storage and Intercalation Chemistry
    • Whittingham, M. S. 1976. Electrical Energy Storage and Intercalation Chemistry. Science 192:1126-1127.
    • (1976) Science , vol.192 , pp. 1126-1127
    • Whittingham, M.S.1
  • 12
    • 0020113612 scopus 로고
    • A reversible graphite-lithium negative electrode for electrochemical generators
    • Yazami, R., and P. Touzain. 1983. A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources 9:365-371.
    • (1983) J. Power Sources , vol.9 , pp. 365-371
    • Yazami, R.1    Touzain, P.2
  • 15
  • 17
    • 0033323528 scopus 로고    scopus 로고
    • A high capacity nano-Si composite anode material for lithium rechargeable batteries
    • Li, H., X. J. Huang, L. Q. Chen, Z. G. Wu, and Y. Liang. 1999. A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochem. Solid State Lett. 2:547-549.
    • (1999) Electrochem. Solid State Lett , vol.2 , pp. 547-549
    • Li, H.1    Huang, X.J.2    Chen, L.Q.3    Wu, Z.G.4    Liang, Y.5
  • 18
    • 0030645383 scopus 로고    scopus 로고
    • Pyrolysed pitch-polysilane blends for use as anode materials in lithium ion batteries
    • Xing, W. B., A. M. Wilson, G. Zank, and J. R. Dahn. 1997. Pyrolysed pitch-polysilane blends for use as anode materials in lithium ion batteries. Solid State Ionics 93:239-244.
    • (1997) Solid State Ionics , vol.93 , pp. 239-244
    • Xing, W.B.1    Wilson, A.M.2    Zank, G.3    Dahn, J.R.4
  • 19
    • 0031190735 scopus 로고    scopus 로고
    • Pyrolyzed polysiloxanes for use as anode materials in lithium-ion batteries
    • Xing, W. B., A. M. Wilson, K. Eguchi, G. Zank, and J. R. Dahn. 1997. Pyrolyzed polysiloxanes for use as anode materials in lithium-ion batteries. J. Electrochem. Soc. 144:2410-2416.
    • (1997) J. Electrochem. Soc , vol.144 , pp. 2410-2416
    • Xing, W.B.1    Wilson, A.M.2    Eguchi, K.3    Zank, G.4    Dahn, J.R.5
  • 20
    • 0031248873 scopus 로고    scopus 로고
    • Pyrolysed silicon-containing polymers as high capacity anodes for lithium-ion batteries
    • Wilson, A. M., G. Zank, K. Eguchi, W. Xing, and J. R. Dahn. 1997. Pyrolysed silicon-containing polymers as high capacity anodes for lithium-ion batteries. J. Power Sources 68:195-200.
    • (1997) J. Power Sources , vol.68 , pp. 195-200
    • Wilson, A.M.1    Zank, G.2    Eguchi, K.3    Xing, W.4    Dahn, J.R.5
  • 21
    • 0029375801 scopus 로고
    • An epoxy-silane approach to prepare anode materials for rechargeable lithium ion batteries
    • Xue, J. S., K. Myrtle, and J. R. Dahn. 1995. An epoxy-silane approach to prepare anode materials for rechargeable lithium ion batteries. J. Electrochem. Soc. 142:2927-2935.
    • (1995) J. Electrochem. Soc , vol.142 , pp. 2927-2935
    • Xue, J.S.1    Myrtle, K.2    Dahn, J.R.3
  • 22
    • 77956495303 scopus 로고    scopus 로고
    • Direct fabrication of double-rough chestnut-like multifunctional Sn@C composites on copper foil: Lotus effect and lithium ion storage properties
    • Deng, D., and J. Y. Lee. 2010. Direct fabrication of double-rough chestnut-like multifunctional Sn@C composites on copper foil: lotus effect and lithium ion storage properties. J. Mater. Chem. 20:8045-8049.
    • (2010) J. Mater. Chem , vol.20 , pp. 8045-8049
    • Deng, D.1    Lee, J.Y.2
  • 23
    • 60749091565 scopus 로고    scopus 로고
    • Reversible Storage of Lithium in a Rambutan-Like Tin-Carbon Electrode
    • Deng, D., and J. Y. Lee. 2009. Reversible Storage of Lithium in a Rambutan-Like Tin-Carbon Electrode. Angew. Chem. Int. Ed. 48:1660-1663.
    • (2009) Angew. Chem. Int. Ed , vol.48 , pp. 1660-1663
    • Deng, D.1    Lee, J.Y.2
  • 24
    • 55849134875 scopus 로고    scopus 로고
    • 2/Carbon Composite Hollow Spheres and Their Lithium Storage Properties
    • 2/Carbon Composite Hollow Spheres and Their Lithium Storage Properties. Chem. Mater. 20:6562-6566.
    • (2008) Chem. Mater , vol.20 , pp. 6562-6566
    • Lou, X.W.1    Deng, D.2    Lee, J.Y.3    Archer, L.A.4
  • 26
    • 84896889684 scopus 로고    scopus 로고
    • Hollow Cocoon-Like Hematite Mesoparticles of Nanoparticle Aggregates: Structural Evolution and Superior Performances in Lithium Ion Batteries
    • Zhu, J., K. S. Ng, and D. Deng. 2014. Hollow Cocoon-Like Hematite Mesoparticles of Nanoparticle Aggregates: Structural Evolution and Superior Performances in Lithium Ion Batteries. ACS Appl. Mat. Interfac. 6:2996-3001.
    • (2014) ACS Appl. Mat. Interfac , vol.6 , pp. 2996-3001
    • Zhu, J.1    Ng, K.S.2    Deng, D.3
  • 27
    • 84892914682 scopus 로고    scopus 로고
    • Meso-oblate Spheroids of Thermal-Stabile Linker-Free Aggregates with Size-Tunable Subunits for Reversible Lithium Storage
    • Deng, D., and J. Y. Lee. 2014. Meso-oblate Spheroids of Thermal-Stabile Linker-Free Aggregates with Size-Tunable Subunits for Reversible Lithium Storage. ACS Appl. Mat. Interfac. 6:1173-1179.
    • (2014) ACS Appl. Mat. Interfac , vol.6 , pp. 1173-1179
    • Deng, D.1    Lee, J.Y.2
  • 28
    • 62249143548 scopus 로고    scopus 로고
    • Battery materials for ultrafast charging and discharging
    • Kang, B., and G. Ceder. 2009. Battery materials for ultrafast charging and discharging. Nature 458:190-193.
    • (2009) Nature , vol.458 , pp. 190-193
    • Kang, B.1    Ceder, G.2
  • 29
    • 17644387736 scopus 로고    scopus 로고
    • Nanostructured materials for advanced energy conversion and storage devices
    • Arico, A. S., P. Bruce, B. Scrosati, J. M. Tarascon, and W. Van Schalkwijk. 2005. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4:366-377.
    • (2005) Nat. Mater , vol.4 , pp. 366-377
    • Arico, A.S.1    Bruce, P.2    Scrosati, B.3    Tarascon, J.M.4    Van Schalkwijk, W.5
  • 30
    • 0032499862 scopus 로고    scopus 로고
    • Insertion electrode materials for rechargeable lithium batteries
    • Winter, M., J. O. Besenhard, M. E. Spahr, and P. Novak. 1998. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10:725-763.
    • (1998) Adv. Mater , vol.10 , pp. 725-763
    • Winter, M.1    Besenhard, J.O.2    Spahr, M.E.3    Novak, P.4
  • 31
    • 0034727086 scopus 로고    scopus 로고
    • Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries
    • Poizot, P., S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon. 2000. Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407:496-499.
    • (2000) Nature , vol.407 , pp. 496-499
    • Poizot, P.1    Laruelle, S.2    Grugeon, S.3    Dupont, L.4    Tarascon, J.M.5
  • 32
    • 7544234502 scopus 로고    scopus 로고
    • What are batteries, fuel cells, and supercapacitors
    • Winter, M., and R. J. Brodd. 2004. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104:4245-4269.
    • (2004) Chem. Rev , vol.104 , pp. 4245-4269
    • Winter, M.1    Brodd, R.J.2
  • 33
    • 33646577838 scopus 로고    scopus 로고
    • Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes
    • Nam, K. T., D. W. Kim, P. J. Yoo, C. Y. Chiang, N. Meethong, P. T. Hammond, et al. 2006. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885-888.
    • (2006) Science , vol.312 , pp. 885-888
    • Nam, K.T.1    Kim, D.W.2    Yoo, P.J.3    Chiang, C.Y.4    Meethong, N.5    Hammond, P.T.6
  • 35
    • 84863716533 scopus 로고    scopus 로고
    • Recent progress in cathode materials research for advanced lithium ion batteries
    • Xu, B., D. N. Qian, Z. Y. Wang, and Y. S. L. Meng. 2012. Recent progress in cathode materials research for advanced lithium ion batteries. Mat. Sci. Eng. R 73:51-65.
    • (2012) Mat. Sci. Eng. R , vol.73 , pp. 51-65
    • Xu, B.1    Qian, D.N.2    Wang, Z.Y.3    Meng, Y.S.L.4
  • 36
    • 84861183867 scopus 로고    scopus 로고
    • History, Evolution, and Future Status of Energy Storage
    • Whittingham, M. S. 2012. History, Evolution, and Future Status of Energy Storage. Proc. IEEE 100:1518-1534.
    • (2012) Proc. IEEE , vol.100 , pp. 1518-1534
    • Whittingham, M.S.1
  • 37
    • 84871580382 scopus 로고    scopus 로고
    • A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions
    • Wen, J. W., Y. Yu, and C. H. Chen. 2012. A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions. Mater Exp. 2:197-212.
    • (2012) Mater Exp , vol.2 , pp. 197-212
    • Wen, J.W.1    Yu, Y.2    Chen, C.H.3
  • 38
    • 84864300030 scopus 로고    scopus 로고
    • 4)(3) as Polyanion-type Cathode Materials for Lithium-ion Batteries
    • 4)(3) as Polyanion-type Cathode Materials for Lithium-ion Batteries. J. Inorg. Mater 27:561-567.
    • (2012) J. Inorg. Mater , vol.27 , pp. 561-567
    • Qu, C.Q.1    Wei, Y.J.2    Jiang, T.3
  • 39
    • 84866142571 scopus 로고    scopus 로고
    • A review of the present situation and future developments of micro-batteries for wireless autonomous sensor systems
    • Oudenhoven, J. F. M., R. J. M. Vullers, and R. Schaijk. 2012. A review of the present situation and future developments of micro-batteries for wireless autonomous sensor systems. Int. J. Energ. Res. 36:1139-1150.
    • (2012) Int. J. Energ. Res , vol.36 , pp. 1139-1150
    • Oudenhoven, J.F.M.1    Vullers, R.J.M.2    Schaijk, R.3
  • 40
    • 84865515434 scopus 로고    scopus 로고
    • One-dimensional hybrid nanostructures: Synthesis via layer-by-layer assembly and applications
    • Du, N., H. Zhang, and D. R. Yang. 2012. One-dimensional hybrid nanostructures: synthesis via layer-by-layer assembly and applications. Nanoscale 4:5517-5526
    • (2012) Nanoscale , vol.4 , pp. 5517-5526
    • Du, N.1    Zhang, H.2    Yang, D.R.3
  • 41
    • 84857482753 scopus 로고    scopus 로고
    • A review of application of carbon nanotubes for lithium ion battery anode material
    • de las Casas, C., and W. Z. Li. 2012. A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 208:74-85.
    • (2012) J. Power Sources , vol.208 , pp. 74-85
    • De Las Casas, C.1    Li, W.Z.2
  • 42
    • 84866288719 scopus 로고    scopus 로고
    • Tin-Based Alloy Anode Materials for Lithium Ion Batteries
    • Chu, D. B., J. Li, X. M. Yuan, Z. L. Li, X. Wei, and Y. Wan. 2012. Tin-Based Alloy Anode Materials for Lithium Ion Batteries. Prog. Chem. 24:1466-1476.
    • (2012) Prog. Chem , vol.24 , pp. 1466-1476
    • Chu, D.B.1    Li, J.2    Yuan, X.M.3    Li, Z.L.4    Wei, X.5    Wan, Y.6
  • 43
    • 78751625429 scopus 로고    scopus 로고
    • Structure and performance of LiFePO4 cathode materials: A review
    • Zhang, W. J. 2011. Structure and performance of LiFePO4 cathode materials: A review. J. Power Sources 196:2962-2970.
    • (2011) J. Power Sources , vol.196 , pp. 2962-2970
    • Zhang, W.J.1
  • 44
    • 79959821670 scopus 로고    scopus 로고
    • A review of advanced and practical lithium battery materials
    • Marom, R., S. F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach. 2011. A review of advanced and practical lithium battery materials. J. Mater. Chem. 21:9938-9954.
    • (2011) J. Mater. Chem , vol.21 , pp. 9938-9954
    • Marom, R.1    Amalraj, S.F.2    Leifer, N.3    Jacob, D.4    Aurbach, D.5
  • 46
    • 70350591151 scopus 로고    scopus 로고
    • A Review of Research on Cathode Materials for Power Lithium Ion Batteries
    • Yi, T. F., C. B. Yue, Y. R. Zhu, R. S. Zhu, and X. G. Hu. 2009. A Review of Research on Cathode Materials for Power Lithium Ion Batteries. Rare Metal. Mat. Eng. 38:1687-1692.
    • (2009) Rare Metal. Mat. Eng , vol.38 , pp. 1687-1692
    • Yi, T.F.1    Yue, C.B.2    Zhu, Y.R.3    Zhu, R.S.4    Hu, X.G.5
  • 47
    • 0038237515 scopus 로고    scopus 로고
    • Electronically conductive phospho-olivines as lithium storage electrodes
    • Chung, S. Y., J. T. Bloking, and Y. M. Chiang. 2002. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1:123-128.
    • (2002) Nat. Mater , vol.1 , pp. 123-128
    • Chung, S.Y.1    Bloking, J.T.2    Chiang, Y.M.3
  • 48
    • 77958062164 scopus 로고    scopus 로고
    • Particle Size Dependence of the Ionic Diffusivity
    • Malik, R., D. Burch, M. Bazant, and G. Ceder. 2010. Particle Size Dependence of the Ionic Diffusivity. Nano Lett. 10:4123-4127.
    • (2010) Nano Lett , vol.10 , pp. 4123-4127
    • Malik, R.1    Burch, D.2    Bazant, M.3    Ceder, G.4
  • 49
    • 64549101145 scopus 로고    scopus 로고
    • Aliovalent Substitutions in Olivine Lithium Iron Phosphate and Impact on Structure and Properties
    • Meethong, N., Y. H. Kao, S. A. Speakman, and Y. M. Chiang. 2009. Aliovalent Substitutions in Olivine Lithium Iron Phosphate and Impact on Structure and Properties. Adv. Funct. Mater. 19:1060-1070.
    • (2009) Adv. Funct. Mater , vol.19 , pp. 1060-1070
    • Meethong, N.1    Kao, Y.H.2    Speakman, S.A.3    Chiang, Y.M.4
  • 52
    • 69549112875 scopus 로고    scopus 로고
    • Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries
    • Zaghib, K., J. B. Goodenough, A. Mauger, and C. Julien. 2009. Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries. J. Power Sources 194:1021-1023.
    • (2009) J. Power Sources , vol.194 , pp. 1021-1023
    • Zaghib, K.1    Goodenough, J.B.2    Mauger, A.3    Julien, C.4
  • 53
    • 84855176843 scopus 로고    scopus 로고
    • Understanding and recent development of carbon coating on LiFePO4cathode materials for lithium-ion batteries
    • Wang, J. J., and X. L. Sun. 2012. Understanding and recent development of carbon coating on LiFePO4cathode materials for lithium-ion batteries. Energ. Environ. Sci. 5:5163-5185.
    • (2012) Energ. Environ. Sci , vol.5 , pp. 5163-5185
    • Wang, J.J.1    Sun, X.L.2
  • 54
    • 67650034664 scopus 로고    scopus 로고
    • 4 Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy-Storage Devices
    • 4 Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy-Storage Devices. Adv. Mater. 21:2710-2714.
    • (2009) Adv. Mater , vol.21 , pp. 2710-2714
    • Wu, X.-L.1    Jiang, L.-Y.2    Cao, F.-F.3    Guo, Y.-G.4    Wan, L.-J.5
  • 60
    • 0028491207 scopus 로고
    • Lithium-ion rechargeable batteries
    • Megahed, S., and B. Scrosati. 1994. Lithium-ion rechargeable batteries. J. Power Sources 51:79-104.
    • (1994) J. Power Sources , vol.51 , pp. 79-104
    • Megahed, S.1    Scrosati, B.2
  • 61
    • 84892914682 scopus 로고    scopus 로고
    • Meso-oblate Spheroids of Thermal-Stabile Linker-Free Aggregates with Size-Tunable Subunits for Reversible Lithium Storage
    • Deng, D., and J. Y. Lee. 2013. Meso-oblate Spheroids of Thermal-Stabile Linker-Free Aggregates with Size-Tunable Subunits for Reversible Lithium Storage. ACS Appl. Mat. Interfac. 6:1173-1179.
    • (2013) ACS Appl. Mat. Interfac , vol.6 , pp. 1173-1179
    • Deng, D.1    Lee, J.Y.2
  • 62
    • 0030974077 scopus 로고    scopus 로고
    • Tin-based amorphous oxide: A high-capacity lithium-ion-storage material
    • Idota, Y., T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka. 1997. Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science 276:1395-1397.
    • (1997) Science , vol.276 , pp. 1395-1397
    • Idota, Y.1    Kubota, T.2    Matsufuji, A.3    Maekawa, Y.4    Miyasaka, T.5
  • 64
    • 34548403342 scopus 로고    scopus 로고
    • Practical silicon-based composite anodes for lithium-ion batteries: Fundamental and technological features
    • Dimov, N., Y. Xia, and M. Yoshio. 2007. Practical silicon-based composite anodes for lithium-ion batteries: Fundamental and technological features. J. Power Sources 171:886-893.
    • (2007) J. Power Sources , vol.171 , pp. 886-893
    • Dimov, N.1    Xia, Y.2    Yoshio, M.3
  • 65
    • 0033337815 scopus 로고    scopus 로고
    • Electrochemical lithiation of tin and tin-based intermetallics and composites
    • Winter, M., and J. O. Besenhard. 1999. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 45:31-50.
    • (1999) Electrochim. Acta , vol.45 , pp. 31-50
    • Winter, M.1    Besenhard, J.O.2
  • 66
    • 15744375833 scopus 로고    scopus 로고
    • A disordered carbon as a novel anode material in lithium-ion cells
    • Bonino, F., S. Brutti, P. Reale, B. Scrosati, L. Gherghel, J. Wu, et al. 2005. A disordered carbon as a novel anode material in lithium-ion cells. Adv. Mater. 17:743-746.
    • (2005) Adv. Mater , vol.17 , pp. 743-746
    • Bonino, F.1    Brutti, S.2    Reale, P.3    Scrosati, B.4    Gherghel, L.5    Wu, J.6
  • 67
    • 0001516639 scopus 로고    scopus 로고
    • Lithium insertion in hydrogen-containing carbonaceous materials
    • Zheng, T., J. S. Xue, and J. R. Dahn. 1996. Lithium insertion in hydrogen-containing carbonaceous materials. Chem. Mater. 8:389-393.
    • (1996) Chem. Mater , vol.8 , pp. 389-393
    • Zheng, T.1    Xue, J.S.2    Dahn, J.R.3
  • 68
    • 0029719204 scopus 로고    scopus 로고
    • The interrelationship of hydrogencontaining carbon and lithium
    • Ebert, L. B. 1996. The interrelationship of hydrogencontaining carbon and lithium. Carbon 34:671-672.
    • (1996) Carbon , vol.34 , pp. 671-672
    • Ebert, L.B.1
  • 69
    • 11644298091 scopus 로고
    • Mechanisms for lithium insertion in carbonaceous materials
    • Dahn, J. R., T. Zheng, Y. H. Liu, and J. S. Xue. 1995. Mechanisms for lithium insertion in carbonaceous materials. Science 270:590-593.
    • (1995) Science , vol.270 , pp. 590-593
    • Dahn, J.R.1    Zheng, T.2    Liu, Y.H.3    Xue, J.S.4
  • 70
    • 0037008487 scopus 로고    scopus 로고
    • Carbon nanotubes-the route toward applications
    • Baughman, R. H., A. A. Zakhidov, and W. A. de Heer. 2002. Carbon nanotubes-the route toward applications. Science 297:787-792.
    • (2002) Science , vol.297 , pp. 787-792
    • Baughman, R.H.1    Zakhidov, A.A.2    De Heer, W.A.3
  • 71
    • 0032575069 scopus 로고    scopus 로고
    • Carbon nanotubule membranes for electrochemical energy storage and production
    • Che, G. L., B. B. Lakshmi, E. R. Fisher, and C. R. Martin. 1998. Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346-349.
    • (1998) Nature , vol.393 , pp. 346-349
    • Che, G.L.1    Lakshmi, B.B.2    Fisher, E.R.3    Martin, C.R.4
  • 72
    • 33644907181 scopus 로고    scopus 로고
    • 2 nanotubes with coaxially grown carbon nanotube overlayers
    • 2 nanotubes with coaxially grown carbon nanotube overlayers. Adv. Mater. 18:645-649.
    • (2006) Adv. Mater , vol.18 , pp. 645-649
    • Wang, Y.1    Zeng, H.C.2    Lee, J.Y.3
  • 73
    • 2442500554 scopus 로고    scopus 로고
    • Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries
    • Kumar, T. P., R. Ramesh, Y. Y. Lin, and G. T. K. Fey. 2004. Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries. Electrochem. Commun. 6:520-525.
    • (2004) Electrochem. Commun , vol.6 , pp. 520-525
    • Kumar, T.P.1    Ramesh, R.2    Lin, Y.Y.3    Fey, G.T.K.4
  • 74
    • 84863951047 scopus 로고    scopus 로고
    • Electronic and optoelectronic nano-devices based on carbon nanotubes
    • Scarselli, M., P. Castrucci, and M. D. Crescenzi. 2012. Electronic and optoelectronic nano-devices based on carbon nanotubes. J. Phys. 24:313202.
    • (2012) J. Phys , pp. 24
    • Scarselli, M.1    Castrucci, P.2    Crescenzi, M.D.3
  • 75
    • 84890301395 scopus 로고    scopus 로고
    • Gram-scale synthesis of hightemperature (900°C) stable anatase TiO2 nanostructures assembled by tunable building subunits for safer lithium ion batteries
    • 2 nanostructures assembled by tunable building subunits for safer lithium ion batteries. RSC Adv. 4:2557-2562.
    • (2014) RSC Adv , vol.4 , pp. 2557-2562
    • Charette, K.1    Zhu, J.2    Salley, S.O.3    Ng, K.Y.S.4    Deng, D.5
  • 76
    • 84863297592 scopus 로고    scopus 로고
    • Selective crystallization with preferred lithium-ion storage capability of inorganic materials
    • Liu, F., S. Song, D. Xue, and H. Zhang. 2012. Selective crystallization with preferred lithium-ion storage capability of inorganic materials. Nanoscale Res. Lett. 7:149.
    • (2012) Nanoscale Res. Lett , vol.7 , pp. 149
    • Liu, F.1    Song, S.2    Xue, D.3    Zhang, H.4
  • 77
    • 84893501973 scopus 로고    scopus 로고
    • Lithium Ion Battery Peformance of Silicon Nanowires with Carbon Skin
    • Bogart, T. D., D. Oka, X. Lu, M. Gu, C. Wang, and B. A. Korgel. 2013. Lithium Ion Battery Peformance of Silicon Nanowires with Carbon Skin. ACS Nano 8:915-922.
    • (2013) ACS Nano , vol.8 , pp. 915-922
    • Bogart, T.D.1    Oka, D.2    Lu, X.3    Gu, M.4    Wang, C.5    Korgel, B.A.6
  • 78
    • 84926336270 scopus 로고    scopus 로고
    • Core-Shell Ti@Si Coaxial Nanorod Arrays Formed Directly on Current Collectors for Lithium-Ion Batteries
    • Meng, X., and D. Deng. 2015. Core-Shell Ti@Si Coaxial Nanorod Arrays Formed Directly on Current Collectors for Lithium-Ion Batteries. ACS Appl. Mat. Interfac. 7:6867-6874.
    • (2015) ACS Appl. Mat. Interfac , vol.7 , pp. 6867-6874
    • Meng, X.1    Deng, D.2
  • 81
    • 33644948290 scopus 로고    scopus 로고
    • 2 hollow spheres: Synthesis and performance in reversible Li-ion storage
    • 2 hollow spheres: Synthesis and performance in reversible Li-ion storage. Chem. Mater. 18:1347-1353.
    • (2006) Chem. Mater , vol.18 , pp. 1347-1353
    • Wang, Y.1    Su, F.B.2    Lee, J.Y.3    Zhao, X.S.4
  • 82
    • 33748925360 scopus 로고    scopus 로고
    • Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity
    • Lou, X. W., Y. Wang, C. L. Yuan, J. Y. Lee, and L. A. Archer. 2006. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18:2325-2329.
    • (2006) Adv. Mater , vol.18 , pp. 2325-2329
    • Lou, X.W.1    Wang, Y.2    Yuan, C.L.3    Lee, J.Y.4    Archer, L.A.5
  • 83
    • 23744494879 scopus 로고    scopus 로고
    • 2 nanotubes prepared via infiltrationcasting of nanocrystallites and their electrochemical application
    • 2 nanotubes prepared via infiltrationcasting of nanocrystallites and their electrochemical application. Chem. Mater. 17:3899-3903.
    • (2005) Chem. Mater , vol.17 , pp. 3899-3903
    • Wang, Y.1    Lee, J.Y.2    Zeng, H.C.3
  • 85
    • 34250316853 scopus 로고    scopus 로고
    • A tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries
    • Yu, Y., C. H. Chen, and Y. Shi. 2007. A tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries. Adv. Mater. 19:993-997.
    • (2007) Adv. Mater , vol.19 , pp. 993-997
    • Yu, Y.1    Chen, C.H.2    Shi, Y.3
  • 86
    • 39749160912 scopus 로고    scopus 로고
    • 30 nanoalloys for lithium battery anode material
    • 30 nanoalloys for lithium battery anode material. Chem. Commun. 9:1109-1111.
    • (2008) Chem. Commun , vol.9 , pp. 1109-1111
    • Kwon, Y.1    Cho, J.2
  • 87
    • 33745338601 scopus 로고    scopus 로고
    • 2 filled mesoporous tin phosphate-High capacity negative electrode for lithium secondary battery. Electrochem
    • 2 filled mesoporous tin phosphate-High capacity negative electrode for lithium secondary battery. Electrochem. Solid-State Lett. 9:A373-A375.
    • (2006) Solid-State Lett , vol.9 , pp. A373-A375
    • Kim, J.Y.1    Cho, J.2
  • 88
    • 9244221591 scopus 로고    scopus 로고
    • A mesoporous/crystalline composite material containing tin phosphate for use as the anode in lithium-ion batteries
    • Kim, E., D. Son, T. G. Kim, J. Cho, B. Park, K. S. Ryu, et al. 2004. A mesoporous/crystalline composite material containing tin phosphate for use as the anode in lithium-ion batteries. Angew. Chem. Int. Ed. 43:5987-5990.
    • (2004) Angew. Chem. Int. Ed , vol.43 , pp. 5987-5990
    • Kim, E.1    Son, D.2    Kim, T.G.3    Cho, J.4    Park, B.5    Ryu, K.S.6
  • 89
    • 33846459379 scopus 로고    scopus 로고
    • Reversible lithium intercalation in teardrop-shaped ultrafine SnP0.94 particles
    • Kim, Y., H. Hwang, C. S. Yoon, M. G. Kim, and J. Cho. 2007. Reversible lithium intercalation in teardrop-shaped ultrafine SnP0.94 particles. Adv. Mater. 19:92-96.
    • (2007) Adv. Mater , vol.19 , pp. 92-96
    • Kim, Y.1    Hwang, H.2    Yoon, C.S.3    Kim, M.G.4    Cho, J.5
  • 92
    • 34547677838 scopus 로고    scopus 로고
    • Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation
    • Bronstein, L. M., X. Huang, J. Retrum, A. Schmucker, M. Pink, B. D. Stein, et al. 2007. Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation. Chem. Mater. 19:3624-3632.
    • (2007) Chem. Mater , vol.19 , pp. 3624-3632
    • Bronstein, L.M.1    Huang, X.2    Retrum, J.3    Schmucker, A.4    Pink, M.5    Stein, B.D.6
  • 93
    • 6344228220 scopus 로고    scopus 로고
    • Thermally stable hematite hollow nanowires
    • Xiong, Y., Z. Li, X. Li, B. Hu, and Y. Xie. 2004. Thermally stable hematite hollow nanowires. Inorg. Chem. 43:6540-6542.
    • (2004) Inorg. Chem , vol.43 , pp. 6540-6542
    • Xiong, Y.1    Li, Z.2    Li, X.3    Hu, B.4    Xie, Y.5
  • 95
    • 79955925633 scopus 로고    scopus 로고
    • Sn-Doped Hematite Nanostructures for Photoelectrochemical Water Splitting
    • Ling, Y., G. Wang, D. A. Wheeler, J. Z. Zhang, and Y. Li. 2011. Sn-Doped Hematite Nanostructures for Photoelectrochemical Water Splitting. Nano Lett. 11:2119-2125.
    • (2011) Nano Lett , vol.11 , pp. 2119-2125
    • Ling, Y.1    Wang, G.2    Wheeler, D.A.3    Zhang, J.Z.4    Li, Y.5
  • 96
    • 84859057761 scopus 로고    scopus 로고
    • The growth of hematite nanobelts and nanowires—tune the shape via oxygen gas pressure
    • Yuan, L., Q. Jiang, J. Wang, and G. Zhou. 2012. The growth of hematite nanobelts and nanowires—tune the shape via oxygen gas pressure. J. Mater. Res. 27:1014-1021.
    • (2012) J. Mater. Res , vol.27 , pp. 1014-1021
    • Yuan, L.1    Jiang, Q.2    Wang, J.3    Zhou, G.4
  • 97
    • 43049094436 scopus 로고    scopus 로고
    • Room temperature synthesis of rod-like FeC2O4・ 2H2O and its transition to maghemite, magnetite and hematite nanorods through controlled thermal decomposition
    • 2O and its transition to maghemite, magnetite and hematite nanorods through controlled thermal decomposition. Nanotechnology 19:065602.
    • (2008) Nanotechnology , pp. 19
    • Zhou, W.1    Tang, K.2    Zeng, S.3    Qi, Y.4
  • 99
    • 79955039650 scopus 로고    scopus 로고
    • Coordination polymer nanorods of Fe-MIL-88B and their utilization for selective preparation of hematite and magnetite nanorods
    • Cho, W., S. Park, and M. Oh. 2011. Coordination polymer nanorods of Fe-MIL-88B and their utilization for selective preparation of hematite and magnetite nanorods. Chem. Commun. 47:4138-4140.
    • (2011) Chem. Commun , vol.47 , pp. 4138-4140
    • Cho, W.1    Park, S.2    Oh, M.3
  • 100
    • 16244395203 scopus 로고    scopus 로고
    • 3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications
    • 3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications. Adv. Mater. 17:582-586.
    • (2005) Adv. Mater , vol.17 , pp. 582-586
    • Chen, J.1    Xu, L.2    Li, W.3    Gou, X.4
  • 101
    • 84863213872 scopus 로고    scopus 로고
    • Nanoparticulate Iron Oxide Tubes from Microporous Organic Nanotubes as Stable Anode Materials for Lithium Ion Batteries
    • Kang, N., J. H. Park, J. Choi, J. Jin, J. Chun, I. G. Jung, et al. 2012. Nanoparticulate Iron Oxide Tubes from Microporous Organic Nanotubes as Stable Anode Materials for Lithium Ion Batteries. Angew. Chem. Int. Ed. 51:6626-6630.
    • (2012) Angew. Chem. Int. Ed , vol.51 , pp. 6626-6630
    • Kang, N.1    Park, J.H.2    Choi, J.3    Jin, J.4    Chun, J.5    Jung, I.G.6
  • 103
    • 77957130451 scopus 로고    scopus 로고
    • Top-Down Fabrication of α-Fe2O3 Single-Crystal Nanodiscs and Microparticles with Tunable Porosity for Largely Improved Lithium Storage Properties
    • Chen, J. S., T. Zhu, X. H. Yang, H. G. Yang, and X. W. Lou. 2010. Top-Down Fabrication of α-Fe2O3 Single-Crystal Nanodiscs and Microparticles with Tunable Porosity for Largely Improved Lithium Storage Properties. J. Am. Chem. Soc. 132:13162-13164.
    • (2010) J. Am. Chem. Soc , vol.132 , pp. 13162-13164
    • Chen, J.S.1    Zhu, T.2    Yang, X.H.3    Yang, H.G.4    Lou, X.W.5
  • 104
    • 34548633414 scopus 로고    scopus 로고
    • 3 Nanorings Prepared by a Microwave-Assisted Hydrothermal Process and Their Sensing Properties
    • 3 Nanorings Prepared by a Microwave-Assisted Hydrothermal Process and Their Sensing Properties. Adv. Mater. 19:2324-2329.
    • (2007) Adv. Mater , vol.19 , pp. 2324-2329
    • Hu, X.1    Yu, J.C.2    Gong, J.3    Li, Q.4    Li, G.5
  • 105
    • 80755182364 scopus 로고    scopus 로고
    • Controlled synthesis of monodispersed hematite microcubes and their properties
    • Xiong, S., J. Xu, D. Chen, R. Wang, X. Hu, G. Shen, et al. 2011. Controlled synthesis of monodispersed hematite microcubes and their properties. CrystEngComm 13:7114-7120.
    • (2011) Crystengcomm , vol.13 , pp. 7114-7120
    • Xiong, S.1    Xu, J.2    Chen, D.3    Wang, R.4    Hu, X.5    Shen, G.6
  • 106
    • 33749168695 scopus 로고    scopus 로고
    • Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals
    • Liang, X., X. Wang, J. Zhuang, Y. Chen, D. Wang, and Y. Li. 2006. Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv. Funct. Mater. 16:1805-1813.
    • (2006) Adv. Funct. Mater , vol.16 , pp. 1805-1813
    • Liang, X.1    Wang, X.2    Zhuang, J.3    Chen, Y.4    Wang, D.5    Li, Y.6
  • 107
    • 38049031062 scopus 로고    scopus 로고
    • Amino-acid-assisted synthesis and size-dependent magnetic behaviors of hematite nanocubes
    • Cao, H., G. Wang, J. H. Warner, and A. A. Watt. 2008. Amino-acid-assisted synthesis and size-dependent magnetic behaviors of hematite nanocubes. Appl. Phys. Lett. 92:013110-013113.
    • (2008) Appl. Phys. Lett , vol.92 , pp. 013110-013113
    • Cao, H.1    Wang, G.2    Warner, J.H.3    Watt, A.A.4
  • 108
    • 34547524591 scopus 로고    scopus 로고
    • Hematite hollow spindles and microspheres: Selective synthesis, growth mechanisms, and application in lithium ion battery and water treatment
    • Zeng, S., K. Tang, T. Li, Z. Liang, D. Wang, Y. Wang, et al. 2007. Hematite hollow spindles and microspheres: selective synthesis, growth mechanisms, and application in lithium ion battery and water treatment. J. Phys. Chem. C 111:10217-10225.
    • (2007) J. Phys. Chem. C , vol.111 , pp. 10217-10225
    • Zeng, S.1    Tang, K.2    Li, T.3    Liang, Z.4    Wang, D.5    Wang, Y.6
  • 109
    • 84855603236 scopus 로고    scopus 로고
    • 3 microspheres through template-free hydrothermal route
    • 3 microspheres through template-free hydrothermal route. J. Nanopart. Res. 14:1-8.
    • (2012) J. Nanopart. Res , vol.14 , pp. 1-8
    • Jia, X.H.1    Song, H.J.2
  • 110
    • 47249100664 scopus 로고    scopus 로고
    • 3 Hollow Spheres: Preparation, Growth Mechanism, Photocatalytic Property, and Application in Water Treatment
    • 3 Hollow Spheres: Preparation, Growth Mechanism, Photocatalytic Property, and Application in Water Treatment. J. Phys. Chem. C 112:6253-6257.
    • (2008) J. Phys. Chem. C , vol.112 , pp. 6253-6257
    • Cao, S.-W.1    Zhu, Y.-J.2
  • 111
    • 80054975361 scopus 로고    scopus 로고
    • Quasiemulsion-Templated Formation of α-Fe2O3 Hollow Spheres with Enhanced Lithium Storage Properties
    • Wang, B., J. S. Chen, H. B. Wu, Z. Wang, and X. W. Lou. 2011. Quasiemulsion-Templated Formation of α-Fe2O3 Hollow Spheres with Enhanced Lithium Storage Properties. J. Am. Chem. Soc. 133:17146-17148.
    • (2011) J. Am. Chem. Soc , vol.133 , pp. 17146-17148
    • Wang, B.1    Chen, J.S.2    Wu, H.B.3    Wang, Z.4    Lou, X.W.5
  • 112
    • 84866328109 scopus 로고    scopus 로고
    • 3 Anode Material Prepared from MOF Template for High-Rate Lithium Batteries
    • 3 Anode Material Prepared from MOF Template for High-Rate Lithium Batteries. Nano Lett. 12:4988-4991.
    • (2012) Nano Lett , vol.12 , pp. 4988-4991
    • Xu, X.1    Cao, R.2    Jeong, S.3    Cho, J.4
  • 113
    • 49149101041 scopus 로고    scopus 로고
    • 3 urchin-like microstructures and their magnetic properties
    • 3 urchin-like microstructures and their magnetic properties. J. Phys. Chem. C 112:10754-10758.
    • (2008) J. Phys. Chem. C , vol.112 , pp. 10754-10758
    • Du, D.1    Cao, M.2
  • 114
    • 42649088814 scopus 로고    scopus 로고
    • Facile route for the fabrication of porous hematite nanoflowers: Its synthesis, growth mechanism, application in the lithium ion battery, and magnetic and photocatalytic properties
    • Zeng, S., K. Tang, T. Li, Z. Liang, D. Wang, Y. Wang, et al. 2008. Facile route for the fabrication of porous hematite nanoflowers: its synthesis, growth mechanism, application in the lithium ion battery, and magnetic and photocatalytic properties. J. Phys. Chem. C 112:4836-4843.
    • (2008) J. Phys. Chem. C , vol.112 , pp. 4836-4843
    • Zeng, S.1    Tang, K.2    Li, T.3    Liang, Z.4    Wang, D.5    Wang, Y.6
  • 115
    • 49449095846 scopus 로고    scopus 로고
    • Hematite hollow spheres with a mesoporous shell: Controlled synthesis and applications in gas sensor and lithium ion batteries
    • Wu, Z., K. Yu, S. Zhang, and Y. Xie. 2008. Hematite hollow spheres with a mesoporous shell: controlled synthesis and applications in gas sensor and lithium ion batteries. J. Phys. Chem. C 112:11307-11313.
    • (2008) J. Phys. Chem. C , vol.112 , pp. 11307-11313
    • Wu, Z.1    Yu, K.2    Zhang, S.3    Xie, Y.4
  • 116
    • 79955070174 scopus 로고    scopus 로고
    • Template-free solvothermal synthesis of hollow hematite spheres and their applications in gas sensors and Li-ion batteries
    • Kim, H.-J., K.-I. Choi, A. Pan, I.-D. Kim, H.-R. Kim, K.-M. Kim, et al. 2011. Template-free solvothermal synthesis of hollow hematite spheres and their applications in gas sensors and Li-ion batteries. J. Mater. Chem. 21:6549-6555.
    • (2011) J. Mater. Chem , vol.21 , pp. 6549-6555
    • Kim, H.-J.1    Choi, K.-I.2    Pan, A.3    Kim, I.-D.4    Kim, H.-R.5    Kim, K.-M.6
  • 119
    • 74949093125 scopus 로고    scopus 로고
    • Iron oxide-based nanotube arrays derived from sacrificial template-accelerated hydrolysis: Large-area design and reversible lithium storage
    • Liu, J., Y. Li, H. Fan, Z. Zhu, J. Jiang, R. Ding, et al. 2009. Iron oxide-based nanotube arrays derived from sacrificial template-accelerated hydrolysis: large-area design and reversible lithium storage. Chem. Mater. 22:212-217.
    • (2009) Chem. Mater , vol.22 , pp. 212-217
    • Liu, J.1    Li, Y.2    Fan, H.3    Zhu, Z.4    Jiang, J.5    Ding, R.6
  • 120
    • 84896889684 scopus 로고    scopus 로고
    • Hollow Cocoon-Like Hematite Mesoparticles of Nanoparticle Aggregates: Structural Evolution and Superior Performances in Lithium Ion Batteries
    • Zhu, J., K. Y. S. Ng, and D. Deng. 2014. Hollow Cocoon-Like Hematite Mesoparticles of Nanoparticle Aggregates: Structural Evolution and Superior Performances in Lithium Ion Batteries. ACS Appl. Mat. Interfac. 6:2996-3001.
    • (2014) ACS Appl. Mat. Interfac , vol.6 , pp. 2996-3001
    • Zhu, J.1    Ng, K.Y.S.2    Deng, D.3
  • 121
    • 84901917431 scopus 로고    scopus 로고
    • Micro Single Crystals of Hematite with Nearly 100% Exposed {104} Facets: Preferred Etching and Lithium Storage
    • Zhu, J., K. Y. S. Ng, and D. Deng. 2014. Micro Single Crystals of Hematite with Nearly 100% Exposed {104} Facets: Preferred Etching and Lithium Storage. Cryst. Growth Des. 14:2811-2817.
    • (2014) Cryst. Growth Des , vol.14 , pp. 2811-2817
    • Zhu, J.1    Ng, K.Y.S.2    Deng, D.3
  • 125
    • 84863116192 scopus 로고    scopus 로고
    • 4 beads and their applications in lithium ion batteries
    • 4 beads and their applications in lithium ion batteries. J. Mater. Chem. 22:5006-5012.
    • (2012) J. Mater. Chem , vol.22 , pp. 5006-5012
    • Chen, Y.1    Xia, H.2    Lu, L.3    Xue, J.4
  • 127
    • 79960726856 scopus 로고    scopus 로고
    • An in situ method of creating metal oxide-carbon composites and their application as anode materials for lithium-ion batteries
    • Yang, Z., J. Shen, and L. A. Archer. 2011. An in situ method of creating metal oxide-carbon composites and their application as anode materials for lithium-ion batteries. J. Mater. Chem. 21:11092-11097.
    • (2011) J. Mater. Chem , vol.21 , pp. 11092-11097
    • Yang, Z.1    Shen, J.2    Archer, L.A.3
  • 128
    • 84876717394 scopus 로고    scopus 로고
    • 4@ C core-shell nanorings and their enhanced electrochemical performance for lithium-ion batteries
    • 4@ C core-shell nanorings and their enhanced electrochemical performance for lithium-ion batteries. Nanoscale 5:3627-3631.
    • (2013) Nanoscale , vol.5 , pp. 3627-3631
    • Wang, L.1    Liang, J.2    Zhu, Y.3    Mei, T.4    Zhang, X.5    Yang, Q.6
  • 129
    • 84907154775 scopus 로고    scopus 로고
    • 4 based additive-free electrodes for highly reversible lithium storage
    • 4 based additive-free electrodes for highly reversible lithium storage. J. Mater. Chem. A 2:16008-16014.
    • (2014) J. Mater. Chem. A , vol.2 , pp. 16008-16014
    • Zhu, J.1    Ng, K.Y.S.2    Deng, D.3
  • 130
    • 77956229708 scopus 로고    scopus 로고
    • Investigation of solvation in lithium ion battery electrolytes by NMR spectroscopy
    • Yang, L., A. Xiao, and B. L. Lucht. 2010. Investigation of solvation in lithium ion battery electrolytes by NMR spectroscopy. J. Mol. Liq. 154:131-133.
    • (2010) J. Mol. Liq , vol.154 , pp. 131-133
    • Yang, L.1    Xiao, A.2    Lucht, B.L.3
  • 131
    • 7644227934 scopus 로고    scopus 로고
    • Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
    • Xu, K. 2004. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 104:4303-4418.
    • (2004) Chem. Rev , vol.104 , pp. 4303-4418
    • Xu, K.1
  • 132
    • 0032581661 scopus 로고    scopus 로고
    • Nanocomposite polymer electrolytes for lithium batteries
    • Croce, F., G. B. Appetecchi, L. Persi, and B. Scrosati. 1998. Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456-458.
    • (1998) Nature , vol.394 , pp. 456-458
    • Croce, F.1    Appetecchi, G.B.2    Persi, L.3    Scrosati, B.4
  • 133
    • 0033730761 scopus 로고    scopus 로고
    • Trends in polymer electrolytes for secondary lithium batteries
    • Dias, F. B., L. Plomp, and J. B. J. Veldhuis. 2000. Trends in polymer electrolytes for secondary lithium batteries. J. Power Sources 88:169-191.
    • (2000) J. Power Sources , vol.88 , pp. 169-191
    • Dias, F.B.1    Plomp, L.2    Veldhuis, J.B.J.3
  • 134
    • 0032048128 scopus 로고    scopus 로고
    • Polymer Electrolytes for Lithium-Ion Batteries
    • Meyer, W. H. 1998. Polymer Electrolytes for Lithium-Ion Batteries. Adv. Mater. 10:439-448.
    • (1998) Adv. Mater , vol.10 , pp. 439-448
    • Meyer, W.H.1
  • 135
    • 77950297906 scopus 로고    scopus 로고
    • Ceramic and polymeric solid electrolytes for lithium-ion batteries
    • Fergus, J. W. 2010. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 195:4554-4569.
    • (2010) J. Power Sources , vol.195 , pp. 4554-4569
    • Fergus, J.W.1
  • 136
    • 33845661878 scopus 로고    scopus 로고
    • A review on the separators of liquid electrolyte Li-ion batteries
    • Zhang, S. S. 2007. A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 164:351-364.
    • (2007) J. Power Sources , vol.164 , pp. 351-364
    • Zhang, S.S.1
  • 137
    • 65549123737 scopus 로고    scopus 로고
    • A novel composite containing nanosized silicon and tin as anode material for lithium ion batteries
    • Wang, X., Z. Wen, Y. Liu, and X. Wu. 2009. A novel composite containing nanosized silicon and tin as anode material for lithium ion batteries. Electrochim. Acta 54:4662-4667.
    • (2009) Electrochim. Acta , vol.54 , pp. 4662-4667
    • Wang, X.1    Wen, Z.2    Liu, Y.3    Wu, X.4
  • 138
    • 66249125043 scopus 로고    scopus 로고
    • Fabricating GeneticallyEngineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes
    • Lee, Y. J., H. Yi, W.-J. Kim, K. Kang, D. S. Yun, M. S. Strano, et al. 2009. Fabricating GeneticallyEngineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes. Science 324:1051-1055.
    • (2009) Science , vol.324 , pp. 1051-1055
    • Lee, Y.J.1    Yi, H.2    Kim, W.-J.3    Kang, K.4    Yun, D.S.5    Strano, M.S.6
  • 139
    • 48149098641 scopus 로고    scopus 로고
    • From Biomass to a Renewable LiXC6O6 Organic Electrode for Sustainable Li-Ion Batteries
    • Chen, H., M. Armand, G. Demailly, F. Dolhem, P. Poizot, and J.-M. Tarascon. 2008. From Biomass to a Renewable LiXC6O6 Organic Electrode for Sustainable Li-Ion Batteries. Chemsuschem 1:348-355.
    • (2008) Chemsuschem , vol.1 , pp. 348-355
    • Chen, H.1    Armand, M.2    Demailly, G.3    Dolhem, F.4    Poizot, P.5    Tarascon, J.-M.6
  • 140
    • 77955555624 scopus 로고    scopus 로고
    • Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles-Critical issues
    • Zackrisson, M., L. Avellan, and J. Orlenius. 2010. Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles-Critical issues. J. Clean. Prod. 18:1519-1529.
    • (2010) J. Clean. Prod , vol.18 , pp. 1519-1529
    • Zackrisson, M.1    Avellan, L.2    Orlenius, J.3
  • 141
    • 84859499509 scopus 로고    scopus 로고
    • Linker-free 3D assembly of nanocrystals with tunable unit size for reversible lithium ion storage
    • Deng, D., and J. Y. Lee. 2011. Linker-free 3D assembly of nanocrystals with tunable unit size for reversible lithium ion storage. Nanotechnology 22:355401.
    • (2011) Nanotechnology , pp. 22
    • Deng, D.1    Lee, J.Y.2
  • 142
  • 144
    • 34848875178 scopus 로고    scopus 로고
    • A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries
    • Ellis, B. L., W. R. M. Makahnouk, Y. Makimura, K. Toghill, and L. F. Nazar. 2007. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat. Mater. 6:749-753.
    • (2007) Nat. Mater , vol.6 , pp. 749-753
    • Ellis, B.L.1    Makahnouk, W.R.M.2    Makimura, Y.3    Toghill, K.4    Nazar, L.F.5
  • 145
    • 84866438723 scopus 로고    scopus 로고
    • Superionic glass-ceramic electrolytes for roomtemperature rechargeable sodium batteries
    • Hayashi, A., K. Noi, A. Sakuda, and M. Tatsumisago. 2012. Superionic glass-ceramic electrolytes for roomtemperature rechargeable sodium batteries. Nat. Commun. 3:856.
    • (2012) Nat. Commun , vol.3 , pp. 856
    • Hayashi, A.1    Noi, K.2    Sakuda, A.3    Tatsumisago, M.4
  • 148
    • 0033751756 scopus 로고    scopus 로고
    • High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries
    • Stevens, D. A., and J. R. Dahn. 2000. High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries. J. Electrochem. Soc. 147:1271-1273.
    • (2000) J. Electrochem. Soc , vol.147 , pp. 1271-1273
    • Stevens, D.A.1    Dahn, J.R.2
  • 149
    • 73249125630 scopus 로고    scopus 로고
    • Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives
    • Lu, X. C., G. G. Xia, J. P. Lemmon, and Z. G. Yang. 2010. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives. J. Power Sources 195:2431-2442.
    • (2010) J. Power Sources , vol.195 , pp. 2431-2442
    • Lu, X.C.1    Xia, G.G.2    Lemmon, J.P.3    Yang, Z.G.4
  • 150
    • 84882594139 scopus 로고    scopus 로고
    • Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
    • Pan, H. L., Y. S. Hu, and L. Q. Chen. 2013. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energ. Environ. Sci. 6:2338-2360.
    • (2013) Energ. Environ. Sci , vol.6 , pp. 2338-2360
    • Pan, H.L.1    Hu, Y.S.2    Chen, L.Q.3
  • 152
    • 84867297718 scopus 로고    scopus 로고
    • Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries
    • Kim, S. W., D. H. Seo, X. H. Ma, G. Ceder, and K. Kang. 2012. Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries. Adv. Energ. Mater. 2:710-721.
    • (2012) Adv. Energ. Mater , vol.2 , pp. 710-721
    • Kim, S.W.1    Seo, D.H.2    Ma, X.H.3    Ceder, G.4    Kang, K.5
  • 153
    • 84885161279 scopus 로고    scopus 로고
    • Preparation and characterization of carbon-coated NaVPO4F as cathode material for rechargeable sodium-ion batteries
    • Lu, Y., S. Zhang, Y. Li, L. G. Xue, G. J. Xu, and X. W. Zhang. 2014. Preparation and characterization of carbon-coated NaVPO4F as cathode material for rechargeable sodium-ion batteries. J. Power Sources 247:770-777.
    • (2014) J. Power Sources , vol.247 , pp. 770-777
    • Lu, Y.1    Zhang, S.2    Li, Y.3    Xue, L.G.4    Xu, G.J.5    Zhang, X.W.6
  • 157
    • 84862175135 scopus 로고    scopus 로고
    • Prussian blue: A new framework of electrode materials for sodium batteries
    • Lu, Y. H., L. Wang, J. G. Cheng, and J. B. Goodenough. 2012. Prussian blue: a new framework of electrode materials for sodium batteries. Chem. Commun. 48:6544-6546.
    • (2012) Chem. Commun , vol.48 , pp. 6544-6546
    • Lu, Y.H.1    Wang, L.2    Cheng, J.G.3    Goodenough, J.B.4
  • 158
    • 0024068597 scopus 로고
    • Electrochemical intercalation of sodium in graphite
    • Ge, P., and M. Fouletier. 1988. Electrochemical intercalation of sodium in graphite. Solid State Ionics 28-30(Pt 2):1172-1175.
    • (1988) Solid State Ionics , vol.28-30 , pp. 1172-1175
    • Ge, P.1    Fouletier, M.2
  • 159
    • 80052216133 scopus 로고    scopus 로고
    • Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies
    • Wenzel, S., T. Hara, J. Janek, and P. Adelhelm. 2011. Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energ. Environ. Sci. 4:3342-3345.
    • (2011) Energ. Environ. Sci , vol.4 , pp. 3342-3345
    • Wenzel, S.1    Hara, T.2    Janek, J.3    Adelhelm, P.4
  • 160
    • 84863832016 scopus 로고    scopus 로고
    • Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications
    • Cao, Y. L., L. F. Xiao, M. L. Sushko, W. Wang, B. Schwenzer, J. Xiao, et al. 2012. Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications. Nano Lett. 12:3783-3787.
    • (2012) Nano Lett , vol.12 , pp. 3783-3787
    • Cao, Y.L.1    Xiao, L.F.2    Sushko, M.L.3    Wang, W.4    Schwenzer, B.5    Xiao, J.6
  • 161
    • 84881581207 scopus 로고    scopus 로고
    • Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams
    • Shao, Y. Y., J. Xiao, W. Wang, M. Engelhard, X. L. Chen, Z. M. Nie, et al. 2013. Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams. Nano Lett. 13:3909-3914.
    • (2013) Nano Lett , vol.13 , pp. 3909-3914
    • Shao, Y.Y.1    Xiao, J.2    Wang, W.3    Engelhard, M.4    Chen, X.L.5    Nie, Z.M.6
  • 162
    • 84876484953 scopus 로고    scopus 로고
    • High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries
    • Qian, J. F., X. Y. Wu, Y. L. Cao, X. P. Ai, and H. X. Yang. 2013. High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries. Angew. Chem. Int. Edit. 52:4633-4636.
    • (2013) Angew. Chem. Int. Edit , vol.52 , pp. 4633-4636
    • Qian, J.F.1    Wu, X.Y.2    Cao, Y.L.3    Ai, X.P.4    Yang, H.X.5
  • 163
    • 84878877019 scopus 로고    scopus 로고
    • An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries
    • Kim, Y., Y. Park, A. Choi, N. S. Choi, J. Kim, J. Lee, et al. 2013. An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries. Adv. Mater. 25:3045-3049.
    • (2013) Adv. Mater , vol.25 , pp. 3045-3049
    • Kim, Y.1    Park, Y.2    Choi, A.3    Choi, N.S.4    Kim, J.5    Lee, J.6
  • 166
    • 84880166567 scopus 로고    scopus 로고
    • Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Reservoir
    • Zhu, H. L., Z. Jia, Y. C. Chen, N. Weadock, J. Y. Wan, O. Vaaland, et al. 2013. Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Reservoir. Nano Lett. 13:3093-3100.
    • (2013) Nano Lett , vol.13 , pp. 3093-3100
    • Zhu, H.L.1    Jia, Z.2    Chen, Y.C.3    Weadock, N.4    Wan, J.Y.5    Vaaland, O.6
  • 167
    • 84876516715 scopus 로고    scopus 로고
    • Tin-coated viral nanoforests as sodium-ion battery anodes
    • Liu, Y. H., Y. H. Xu, Y. J. Zhu, J. N. Culver, C. A. Lundgren, K. Xu, et al. 2013. Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano 7:3627-3634.
    • (2013) ACS Nano , vol.7 , pp. 3627-3634
    • Liu, Y.H.1    Xu, Y.H.2    Zhu, Y.J.3    Culver, J.N.4    Lundgren, C.A.5    Xu, K.6
  • 168
    • 84869868027 scopus 로고    scopus 로고
    • Tin and graphite based nanocomposites: Potential anode for sodium ion batteries
    • Datta, M. K., R. Epur, P. Saha, K. Kadakia, S. K. Park, and P. N. Kuma. 2013. Tin and graphite based nanocomposites: Potential anode for sodium ion batteries. J. Power Sources 225:316-322.
    • (2013) J. Power Sources , vol.225 , pp. 316-322
    • Datta, M.K.1    Epur, R.2    Saha, P.3    Kadakia, K.4    Park, S.K.5    Kuma, P.N.6
  • 169
    • 84876527043 scopus 로고    scopus 로고
    • 2@ graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance
    • 2@ graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem. Commun. 49:3131-3133.
    • (2013) Chem. Commun , vol.49 , pp. 3131-3133
    • Su, D.W.1    Ahn, H.J.2    Wang, G.X.3
  • 170
    • 84874069759 scopus 로고    scopus 로고
    • Electrochemical Performance of Porous Carbon/ Tin Composite Anodes for Sodium-Ion and Lithium-Ion Batteries
    • Xu, Y. H., Y. J. Zhu, Y. H. Liu, and C. S. Wang. 2013. Electrochemical Performance of Porous Carbon/ Tin Composite Anodes for Sodium-Ion and Lithium-Ion Batteries. Adv. Energ. Mater. 3:128-133.
    • (2013) Adv. Energ. Mater , vol.3 , pp. 128-133
    • Xu, Y.H.1    Zhu, Y.J.2    Liu, Y.H.3    Wang, C.S.4
  • 172
    • 84920275523 scopus 로고    scopus 로고
    • Deflated Carbon Nanospheres Encapsulating Tin Decorated on Layered 3-D Carbon Structures for Low-Cost Sodium Ion Batteries
    • Chen, W., and D. Deng. 2015. Deflated Carbon Nanospheres Encapsulating Tin Decorated on Layered 3-D Carbon Structures for Low-Cost Sodium Ion Batteries. ACS Sustain. Chem. Eng. 3:63-70
    • (2015) ACS Sustain. Chem. Eng , vol.3 , pp. 63-70
    • Chen, W.1    Deng, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.