-
2
-
-
85050782311
-
The Great Battery Race
-
Levine, S.. 2010. The Great Battery Race. Foreign Policy 182:88-95.
-
(2010)
Foreign Policy
, vol.182
, pp. 88-95
-
-
Levine, S.1
-
3
-
-
84861844519
-
The Birth of the Lithium-Ion Battery
-
Yoshino, A. 2012. The Birth of the Lithium-Ion Battery. Angew. Chem. Int. Edit. 51:5798-5800
-
(2012)
Angew. Chem. Int. Edit
, vol.51
, pp. 5798-5800
-
-
Yoshino, A.1
-
4
-
-
85022087605
-
-
New York Times, 162, B5-B5
-
New York Times 2013, 162, B5-B5
-
(2013)
-
-
-
6
-
-
0035890440
-
Issues and challenges facing rechargeable lithium batteries
-
Tarascon, J. M., and M. Armand. 2001. Issues and challenges facing rechargeable lithium batteries. Nature 414:359-367.
-
(2001)
Nature
, vol.414
, pp. 359-367
-
-
Tarascon, J.M.1
Armand, M.2
-
7
-
-
0001658455
-
Electrical Energy Storage and Intercalation Chemistry
-
Whittingham, M. S. 1976. Electrical Energy Storage and Intercalation Chemistry. Science 192:1126-1127.
-
(1976)
Science
, vol.192
, pp. 1126-1127
-
-
Whittingham, M.S.1
-
11
-
-
0020735988
-
Lithium insertion into manganese spinels
-
Thackeray, M. M., W. I. F. David, P. G. Bruce, and J. B. Goodenough. 1983. Lithium insertion into manganese spinels. Mater. Res. Bull. 18:461-472.
-
(1983)
Mater. Res. Bull
, vol.18
, pp. 461-472
-
-
Thackeray, M.M.1
David, W.I.F.2
Bruce, P.G.3
Goodenough, J.B.4
-
12
-
-
0020113612
-
A reversible graphite-lithium negative electrode for electrochemical generators
-
Yazami, R., and P. Touzain. 1983. A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources 9:365-371.
-
(1983)
J. Power Sources
, vol.9
, pp. 365-371
-
-
Yazami, R.1
Touzain, P.2
-
13
-
-
0000516216
-
Synthesis and properties of lithium-graphite intercalation compounds
-
Basu, S., C. Zeller, P. J. Flanders, C. D. Fuerst, W. D. Johnson, and J. E. Fischer. 1979. Synthesis and properties of lithium-graphite intercalation compounds. Mat. Sci. Eng. 38:275-283.
-
(1979)
Mat. Sci. Eng
, vol.38
, pp. 275-283
-
-
Basu, S.1
Zeller, C.2
Flanders, P.J.3
Fuerst, C.D.4
Johnson, W.D.5
Fischer, J.E.6
-
14
-
-
85022080559
-
-
USP4,668,595
-
Yoshino, A., K. Sanechika, and T. Nakajima. 1987. USP4,668,595.
-
(1987)
-
-
Yoshino, A.1
Sanechika, K.2
Nakajima, T.3
-
15
-
-
37849002504
-
High-performance lithium battery anodes using silicon nanowires. Nat
-
Chan, C. K., H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, et al. 2008. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3:31-35.
-
(2008)
Nanotechnol
, vol.3
, pp. 31-35
-
-
Chan, C.K.1
Peng, H.2
Liu, G.3
McIlwrath, K.4
Zhang, X.F.5
Huggins, R.A.6
-
16
-
-
0034320019
-
Thin-film lithium and lithium-ion batteries
-
Bates, J. B., N. J. Dudney, B. Neudecker, A. Ueda, and C. D. Evans. 2000. Thin-film lithium and lithium-ion batteries. Solid State Ionics 135:33-45.
-
(2000)
Solid State Ionics
, vol.135
, pp. 33-45
-
-
Bates, J.B.1
Dudney, N.J.2
Neudecker, B.3
Ueda, A.4
Evans, C.D.5
-
17
-
-
0033323528
-
A high capacity nano-Si composite anode material for lithium rechargeable batteries
-
Li, H., X. J. Huang, L. Q. Chen, Z. G. Wu, and Y. Liang. 1999. A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochem. Solid State Lett. 2:547-549.
-
(1999)
Electrochem. Solid State Lett
, vol.2
, pp. 547-549
-
-
Li, H.1
Huang, X.J.2
Chen, L.Q.3
Wu, Z.G.4
Liang, Y.5
-
18
-
-
0030645383
-
Pyrolysed pitch-polysilane blends for use as anode materials in lithium ion batteries
-
Xing, W. B., A. M. Wilson, G. Zank, and J. R. Dahn. 1997. Pyrolysed pitch-polysilane blends for use as anode materials in lithium ion batteries. Solid State Ionics 93:239-244.
-
(1997)
Solid State Ionics
, vol.93
, pp. 239-244
-
-
Xing, W.B.1
Wilson, A.M.2
Zank, G.3
Dahn, J.R.4
-
19
-
-
0031190735
-
Pyrolyzed polysiloxanes for use as anode materials in lithium-ion batteries
-
Xing, W. B., A. M. Wilson, K. Eguchi, G. Zank, and J. R. Dahn. 1997. Pyrolyzed polysiloxanes for use as anode materials in lithium-ion batteries. J. Electrochem. Soc. 144:2410-2416.
-
(1997)
J. Electrochem. Soc
, vol.144
, pp. 2410-2416
-
-
Xing, W.B.1
Wilson, A.M.2
Eguchi, K.3
Zank, G.4
Dahn, J.R.5
-
20
-
-
0031248873
-
Pyrolysed silicon-containing polymers as high capacity anodes for lithium-ion batteries
-
Wilson, A. M., G. Zank, K. Eguchi, W. Xing, and J. R. Dahn. 1997. Pyrolysed silicon-containing polymers as high capacity anodes for lithium-ion batteries. J. Power Sources 68:195-200.
-
(1997)
J. Power Sources
, vol.68
, pp. 195-200
-
-
Wilson, A.M.1
Zank, G.2
Eguchi, K.3
Xing, W.4
Dahn, J.R.5
-
21
-
-
0029375801
-
An epoxy-silane approach to prepare anode materials for rechargeable lithium ion batteries
-
Xue, J. S., K. Myrtle, and J. R. Dahn. 1995. An epoxy-silane approach to prepare anode materials for rechargeable lithium ion batteries. J. Electrochem. Soc. 142:2927-2935.
-
(1995)
J. Electrochem. Soc
, vol.142
, pp. 2927-2935
-
-
Xue, J.S.1
Myrtle, K.2
Dahn, J.R.3
-
22
-
-
77956495303
-
Direct fabrication of double-rough chestnut-like multifunctional Sn@C composites on copper foil: Lotus effect and lithium ion storage properties
-
Deng, D., and J. Y. Lee. 2010. Direct fabrication of double-rough chestnut-like multifunctional Sn@C composites on copper foil: lotus effect and lithium ion storage properties. J. Mater. Chem. 20:8045-8049.
-
(2010)
J. Mater. Chem
, vol.20
, pp. 8045-8049
-
-
Deng, D.1
Lee, J.Y.2
-
23
-
-
60749091565
-
Reversible Storage of Lithium in a Rambutan-Like Tin-Carbon Electrode
-
Deng, D., and J. Y. Lee. 2009. Reversible Storage of Lithium in a Rambutan-Like Tin-Carbon Electrode. Angew. Chem. Int. Ed. 48:1660-1663.
-
(2009)
Angew. Chem. Int. Ed
, vol.48
, pp. 1660-1663
-
-
Deng, D.1
Lee, J.Y.2
-
24
-
-
55849134875
-
2/Carbon Composite Hollow Spheres and Their Lithium Storage Properties
-
2/Carbon Composite Hollow Spheres and Their Lithium Storage Properties. Chem. Mater. 20:6562-6566.
-
(2008)
Chem. Mater
, vol.20
, pp. 6562-6566
-
-
Lou, X.W.1
Deng, D.2
Lee, J.Y.3
Archer, L.A.4
-
26
-
-
84896889684
-
Hollow Cocoon-Like Hematite Mesoparticles of Nanoparticle Aggregates: Structural Evolution and Superior Performances in Lithium Ion Batteries
-
Zhu, J., K. S. Ng, and D. Deng. 2014. Hollow Cocoon-Like Hematite Mesoparticles of Nanoparticle Aggregates: Structural Evolution and Superior Performances in Lithium Ion Batteries. ACS Appl. Mat. Interfac. 6:2996-3001.
-
(2014)
ACS Appl. Mat. Interfac
, vol.6
, pp. 2996-3001
-
-
Zhu, J.1
Ng, K.S.2
Deng, D.3
-
27
-
-
84892914682
-
Meso-oblate Spheroids of Thermal-Stabile Linker-Free Aggregates with Size-Tunable Subunits for Reversible Lithium Storage
-
Deng, D., and J. Y. Lee. 2014. Meso-oblate Spheroids of Thermal-Stabile Linker-Free Aggregates with Size-Tunable Subunits for Reversible Lithium Storage. ACS Appl. Mat. Interfac. 6:1173-1179.
-
(2014)
ACS Appl. Mat. Interfac
, vol.6
, pp. 1173-1179
-
-
Deng, D.1
Lee, J.Y.2
-
28
-
-
62249143548
-
Battery materials for ultrafast charging and discharging
-
Kang, B., and G. Ceder. 2009. Battery materials for ultrafast charging and discharging. Nature 458:190-193.
-
(2009)
Nature
, vol.458
, pp. 190-193
-
-
Kang, B.1
Ceder, G.2
-
29
-
-
17644387736
-
Nanostructured materials for advanced energy conversion and storage devices
-
Arico, A. S., P. Bruce, B. Scrosati, J. M. Tarascon, and W. Van Schalkwijk. 2005. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4:366-377.
-
(2005)
Nat. Mater
, vol.4
, pp. 366-377
-
-
Arico, A.S.1
Bruce, P.2
Scrosati, B.3
Tarascon, J.M.4
Van Schalkwijk, W.5
-
30
-
-
0032499862
-
Insertion electrode materials for rechargeable lithium batteries
-
Winter, M., J. O. Besenhard, M. E. Spahr, and P. Novak. 1998. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10:725-763.
-
(1998)
Adv. Mater
, vol.10
, pp. 725-763
-
-
Winter, M.1
Besenhard, J.O.2
Spahr, M.E.3
Novak, P.4
-
31
-
-
0034727086
-
Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries
-
Poizot, P., S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon. 2000. Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407:496-499.
-
(2000)
Nature
, vol.407
, pp. 496-499
-
-
Poizot, P.1
Laruelle, S.2
Grugeon, S.3
Dupont, L.4
Tarascon, J.M.5
-
32
-
-
7544234502
-
What are batteries, fuel cells, and supercapacitors
-
Winter, M., and R. J. Brodd. 2004. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104:4245-4269.
-
(2004)
Chem. Rev
, vol.104
, pp. 4245-4269
-
-
Winter, M.1
Brodd, R.J.2
-
33
-
-
33646577838
-
Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes
-
Nam, K. T., D. W. Kim, P. J. Yoo, C. Y. Chiang, N. Meethong, P. T. Hammond, et al. 2006. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885-888.
-
(2006)
Science
, vol.312
, pp. 885-888
-
-
Nam, K.T.1
Kim, D.W.2
Yoo, P.J.3
Chiang, C.Y.4
Meethong, N.5
Hammond, P.T.6
-
35
-
-
84863716533
-
Recent progress in cathode materials research for advanced lithium ion batteries
-
Xu, B., D. N. Qian, Z. Y. Wang, and Y. S. L. Meng. 2012. Recent progress in cathode materials research for advanced lithium ion batteries. Mat. Sci. Eng. R 73:51-65.
-
(2012)
Mat. Sci. Eng. R
, vol.73
, pp. 51-65
-
-
Xu, B.1
Qian, D.N.2
Wang, Z.Y.3
Meng, Y.S.L.4
-
36
-
-
84861183867
-
History, Evolution, and Future Status of Energy Storage
-
Whittingham, M. S. 2012. History, Evolution, and Future Status of Energy Storage. Proc. IEEE 100:1518-1534.
-
(2012)
Proc. IEEE
, vol.100
, pp. 1518-1534
-
-
Whittingham, M.S.1
-
37
-
-
84871580382
-
A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions
-
Wen, J. W., Y. Yu, and C. H. Chen. 2012. A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions. Mater Exp. 2:197-212.
-
(2012)
Mater Exp
, vol.2
, pp. 197-212
-
-
Wen, J.W.1
Yu, Y.2
Chen, C.H.3
-
38
-
-
84864300030
-
4)(3) as Polyanion-type Cathode Materials for Lithium-ion Batteries
-
4)(3) as Polyanion-type Cathode Materials for Lithium-ion Batteries. J. Inorg. Mater 27:561-567.
-
(2012)
J. Inorg. Mater
, vol.27
, pp. 561-567
-
-
Qu, C.Q.1
Wei, Y.J.2
Jiang, T.3
-
39
-
-
84866142571
-
A review of the present situation and future developments of micro-batteries for wireless autonomous sensor systems
-
Oudenhoven, J. F. M., R. J. M. Vullers, and R. Schaijk. 2012. A review of the present situation and future developments of micro-batteries for wireless autonomous sensor systems. Int. J. Energ. Res. 36:1139-1150.
-
(2012)
Int. J. Energ. Res
, vol.36
, pp. 1139-1150
-
-
Oudenhoven, J.F.M.1
Vullers, R.J.M.2
Schaijk, R.3
-
40
-
-
84865515434
-
One-dimensional hybrid nanostructures: Synthesis via layer-by-layer assembly and applications
-
Du, N., H. Zhang, and D. R. Yang. 2012. One-dimensional hybrid nanostructures: synthesis via layer-by-layer assembly and applications. Nanoscale 4:5517-5526
-
(2012)
Nanoscale
, vol.4
, pp. 5517-5526
-
-
Du, N.1
Zhang, H.2
Yang, D.R.3
-
41
-
-
84857482753
-
A review of application of carbon nanotubes for lithium ion battery anode material
-
de las Casas, C., and W. Z. Li. 2012. A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 208:74-85.
-
(2012)
J. Power Sources
, vol.208
, pp. 74-85
-
-
De Las Casas, C.1
Li, W.Z.2
-
42
-
-
84866288719
-
Tin-Based Alloy Anode Materials for Lithium Ion Batteries
-
Chu, D. B., J. Li, X. M. Yuan, Z. L. Li, X. Wei, and Y. Wan. 2012. Tin-Based Alloy Anode Materials for Lithium Ion Batteries. Prog. Chem. 24:1466-1476.
-
(2012)
Prog. Chem
, vol.24
, pp. 1466-1476
-
-
Chu, D.B.1
Li, J.2
Yuan, X.M.3
Li, Z.L.4
Wei, X.5
Wan, Y.6
-
43
-
-
78751625429
-
Structure and performance of LiFePO4 cathode materials: A review
-
Zhang, W. J. 2011. Structure and performance of LiFePO4 cathode materials: A review. J. Power Sources 196:2962-2970.
-
(2011)
J. Power Sources
, vol.196
, pp. 2962-2970
-
-
Zhang, W.J.1
-
44
-
-
79959821670
-
A review of advanced and practical lithium battery materials
-
Marom, R., S. F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach. 2011. A review of advanced and practical lithium battery materials. J. Mater. Chem. 21:9938-9954.
-
(2011)
J. Mater. Chem
, vol.21
, pp. 9938-9954
-
-
Marom, R.1
Amalraj, S.F.2
Leifer, N.3
Jacob, D.4
Aurbach, D.5
-
46
-
-
70350591151
-
A Review of Research on Cathode Materials for Power Lithium Ion Batteries
-
Yi, T. F., C. B. Yue, Y. R. Zhu, R. S. Zhu, and X. G. Hu. 2009. A Review of Research on Cathode Materials for Power Lithium Ion Batteries. Rare Metal. Mat. Eng. 38:1687-1692.
-
(2009)
Rare Metal. Mat. Eng
, vol.38
, pp. 1687-1692
-
-
Yi, T.F.1
Yue, C.B.2
Zhu, Y.R.3
Zhu, R.S.4
Hu, X.G.5
-
47
-
-
0038237515
-
Electronically conductive phospho-olivines as lithium storage electrodes
-
Chung, S. Y., J. T. Bloking, and Y. M. Chiang. 2002. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1:123-128.
-
(2002)
Nat. Mater
, vol.1
, pp. 123-128
-
-
Chung, S.Y.1
Bloking, J.T.2
Chiang, Y.M.3
-
48
-
-
77958062164
-
Particle Size Dependence of the Ionic Diffusivity
-
Malik, R., D. Burch, M. Bazant, and G. Ceder. 2010. Particle Size Dependence of the Ionic Diffusivity. Nano Lett. 10:4123-4127.
-
(2010)
Nano Lett
, vol.10
, pp. 4123-4127
-
-
Malik, R.1
Burch, D.2
Bazant, M.3
Ceder, G.4
-
49
-
-
64549101145
-
Aliovalent Substitutions in Olivine Lithium Iron Phosphate and Impact on Structure and Properties
-
Meethong, N., Y. H. Kao, S. A. Speakman, and Y. M. Chiang. 2009. Aliovalent Substitutions in Olivine Lithium Iron Phosphate and Impact on Structure and Properties. Adv. Funct. Mater. 19:1060-1070.
-
(2009)
Adv. Funct. Mater
, vol.19
, pp. 1060-1070
-
-
Meethong, N.1
Kao, Y.H.2
Speakman, S.A.3
Chiang, Y.M.4
-
52
-
-
69549112875
-
Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries
-
Zaghib, K., J. B. Goodenough, A. Mauger, and C. Julien. 2009. Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries. J. Power Sources 194:1021-1023.
-
(2009)
J. Power Sources
, vol.194
, pp. 1021-1023
-
-
Zaghib, K.1
Goodenough, J.B.2
Mauger, A.3
Julien, C.4
-
53
-
-
84855176843
-
Understanding and recent development of carbon coating on LiFePO4cathode materials for lithium-ion batteries
-
Wang, J. J., and X. L. Sun. 2012. Understanding and recent development of carbon coating on LiFePO4cathode materials for lithium-ion batteries. Energ. Environ. Sci. 5:5163-5185.
-
(2012)
Energ. Environ. Sci
, vol.5
, pp. 5163-5185
-
-
Wang, J.J.1
Sun, X.L.2
-
54
-
-
67650034664
-
4 Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy-Storage Devices
-
4 Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy-Storage Devices. Adv. Mater. 21:2710-2714.
-
(2009)
Adv. Mater
, vol.21
, pp. 2710-2714
-
-
Wu, X.-L.1
Jiang, L.-Y.2
Cao, F.-F.3
Guo, Y.-G.4
Wan, L.-J.5
-
59
-
-
63049101623
-
High-energy cathode material for long-life and safe lithium batteries
-
Sun, Y.-K., S.-T. Myung, B.-C. Park, J. Prakash, I. Belharouak, and K. Amine. 2009. High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 8:320-324.
-
(2009)
Nat. Mater
, vol.8
, pp. 320-324
-
-
Sun, Y.-K.1
Myung, S.-T.2
Park, B.-C.3
Prakash, J.4
Belharouak, I.5
Amine, K.6
-
60
-
-
0028491207
-
Lithium-ion rechargeable batteries
-
Megahed, S., and B. Scrosati. 1994. Lithium-ion rechargeable batteries. J. Power Sources 51:79-104.
-
(1994)
J. Power Sources
, vol.51
, pp. 79-104
-
-
Megahed, S.1
Scrosati, B.2
-
61
-
-
84892914682
-
Meso-oblate Spheroids of Thermal-Stabile Linker-Free Aggregates with Size-Tunable Subunits for Reversible Lithium Storage
-
Deng, D., and J. Y. Lee. 2013. Meso-oblate Spheroids of Thermal-Stabile Linker-Free Aggregates with Size-Tunable Subunits for Reversible Lithium Storage. ACS Appl. Mat. Interfac. 6:1173-1179.
-
(2013)
ACS Appl. Mat. Interfac
, vol.6
, pp. 1173-1179
-
-
Deng, D.1
Lee, J.Y.2
-
62
-
-
0030974077
-
Tin-based amorphous oxide: A high-capacity lithium-ion-storage material
-
Idota, Y., T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka. 1997. Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science 276:1395-1397.
-
(1997)
Science
, vol.276
, pp. 1395-1397
-
-
Idota, Y.1
Kubota, T.2
Matsufuji, A.3
Maekawa, Y.4
Miyasaka, T.5
-
64
-
-
34548403342
-
Practical silicon-based composite anodes for lithium-ion batteries: Fundamental and technological features
-
Dimov, N., Y. Xia, and M. Yoshio. 2007. Practical silicon-based composite anodes for lithium-ion batteries: Fundamental and technological features. J. Power Sources 171:886-893.
-
(2007)
J. Power Sources
, vol.171
, pp. 886-893
-
-
Dimov, N.1
Xia, Y.2
Yoshio, M.3
-
65
-
-
0033337815
-
Electrochemical lithiation of tin and tin-based intermetallics and composites
-
Winter, M., and J. O. Besenhard. 1999. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 45:31-50.
-
(1999)
Electrochim. Acta
, vol.45
, pp. 31-50
-
-
Winter, M.1
Besenhard, J.O.2
-
66
-
-
15744375833
-
A disordered carbon as a novel anode material in lithium-ion cells
-
Bonino, F., S. Brutti, P. Reale, B. Scrosati, L. Gherghel, J. Wu, et al. 2005. A disordered carbon as a novel anode material in lithium-ion cells. Adv. Mater. 17:743-746.
-
(2005)
Adv. Mater
, vol.17
, pp. 743-746
-
-
Bonino, F.1
Brutti, S.2
Reale, P.3
Scrosati, B.4
Gherghel, L.5
Wu, J.6
-
67
-
-
0001516639
-
Lithium insertion in hydrogen-containing carbonaceous materials
-
Zheng, T., J. S. Xue, and J. R. Dahn. 1996. Lithium insertion in hydrogen-containing carbonaceous materials. Chem. Mater. 8:389-393.
-
(1996)
Chem. Mater
, vol.8
, pp. 389-393
-
-
Zheng, T.1
Xue, J.S.2
Dahn, J.R.3
-
68
-
-
0029719204
-
The interrelationship of hydrogencontaining carbon and lithium
-
Ebert, L. B. 1996. The interrelationship of hydrogencontaining carbon and lithium. Carbon 34:671-672.
-
(1996)
Carbon
, vol.34
, pp. 671-672
-
-
Ebert, L.B.1
-
69
-
-
11644298091
-
Mechanisms for lithium insertion in carbonaceous materials
-
Dahn, J. R., T. Zheng, Y. H. Liu, and J. S. Xue. 1995. Mechanisms for lithium insertion in carbonaceous materials. Science 270:590-593.
-
(1995)
Science
, vol.270
, pp. 590-593
-
-
Dahn, J.R.1
Zheng, T.2
Liu, Y.H.3
Xue, J.S.4
-
70
-
-
0037008487
-
Carbon nanotubes-the route toward applications
-
Baughman, R. H., A. A. Zakhidov, and W. A. de Heer. 2002. Carbon nanotubes-the route toward applications. Science 297:787-792.
-
(2002)
Science
, vol.297
, pp. 787-792
-
-
Baughman, R.H.1
Zakhidov, A.A.2
De Heer, W.A.3
-
71
-
-
0032575069
-
Carbon nanotubule membranes for electrochemical energy storage and production
-
Che, G. L., B. B. Lakshmi, E. R. Fisher, and C. R. Martin. 1998. Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346-349.
-
(1998)
Nature
, vol.393
, pp. 346-349
-
-
Che, G.L.1
Lakshmi, B.B.2
Fisher, E.R.3
Martin, C.R.4
-
72
-
-
33644907181
-
2 nanotubes with coaxially grown carbon nanotube overlayers
-
2 nanotubes with coaxially grown carbon nanotube overlayers. Adv. Mater. 18:645-649.
-
(2006)
Adv. Mater
, vol.18
, pp. 645-649
-
-
Wang, Y.1
Zeng, H.C.2
Lee, J.Y.3
-
73
-
-
2442500554
-
Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries
-
Kumar, T. P., R. Ramesh, Y. Y. Lin, and G. T. K. Fey. 2004. Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries. Electrochem. Commun. 6:520-525.
-
(2004)
Electrochem. Commun
, vol.6
, pp. 520-525
-
-
Kumar, T.P.1
Ramesh, R.2
Lin, Y.Y.3
Fey, G.T.K.4
-
74
-
-
84863951047
-
Electronic and optoelectronic nano-devices based on carbon nanotubes
-
Scarselli, M., P. Castrucci, and M. D. Crescenzi. 2012. Electronic and optoelectronic nano-devices based on carbon nanotubes. J. Phys. 24:313202.
-
(2012)
J. Phys
, pp. 24
-
-
Scarselli, M.1
Castrucci, P.2
Crescenzi, M.D.3
-
75
-
-
84890301395
-
Gram-scale synthesis of hightemperature (900°C) stable anatase TiO2 nanostructures assembled by tunable building subunits for safer lithium ion batteries
-
2 nanostructures assembled by tunable building subunits for safer lithium ion batteries. RSC Adv. 4:2557-2562.
-
(2014)
RSC Adv
, vol.4
, pp. 2557-2562
-
-
Charette, K.1
Zhu, J.2
Salley, S.O.3
Ng, K.Y.S.4
Deng, D.5
-
76
-
-
84863297592
-
Selective crystallization with preferred lithium-ion storage capability of inorganic materials
-
Liu, F., S. Song, D. Xue, and H. Zhang. 2012. Selective crystallization with preferred lithium-ion storage capability of inorganic materials. Nanoscale Res. Lett. 7:149.
-
(2012)
Nanoscale Res. Lett
, vol.7
, pp. 149
-
-
Liu, F.1
Song, S.2
Xue, D.3
Zhang, H.4
-
77
-
-
84893501973
-
Lithium Ion Battery Peformance of Silicon Nanowires with Carbon Skin
-
Bogart, T. D., D. Oka, X. Lu, M. Gu, C. Wang, and B. A. Korgel. 2013. Lithium Ion Battery Peformance of Silicon Nanowires with Carbon Skin. ACS Nano 8:915-922.
-
(2013)
ACS Nano
, vol.8
, pp. 915-922
-
-
Bogart, T.D.1
Oka, D.2
Lu, X.3
Gu, M.4
Wang, C.5
Korgel, B.A.6
-
78
-
-
84926336270
-
Core-Shell Ti@Si Coaxial Nanorod Arrays Formed Directly on Current Collectors for Lithium-Ion Batteries
-
Meng, X., and D. Deng. 2015. Core-Shell Ti@Si Coaxial Nanorod Arrays Formed Directly on Current Collectors for Lithium-Ion Batteries. ACS Appl. Mat. Interfac. 7:6867-6874.
-
(2015)
ACS Appl. Mat. Interfac
, vol.7
, pp. 6867-6874
-
-
Meng, X.1
Deng, D.2
-
79
-
-
34547547045
-
Alloy Design for Lithium-Ion Battery Anodes
-
Obrovac, M. N., L. Christensen, D. B. Le, and J. R. Dahn. 2007. Alloy Design for Lithium-Ion Battery Anodes. J. Electrochem. Soc. 154:A849-A855.
-
(2007)
J. Electrochem. Soc
, vol.154
, pp. A849-A855
-
-
Obrovac, M.N.1
Christensen, L.2
Le, D.B.3
Dahn, J.R.4
-
81
-
-
33644948290
-
2 hollow spheres: Synthesis and performance in reversible Li-ion storage
-
2 hollow spheres: Synthesis and performance in reversible Li-ion storage. Chem. Mater. 18:1347-1353.
-
(2006)
Chem. Mater
, vol.18
, pp. 1347-1353
-
-
Wang, Y.1
Su, F.B.2
Lee, J.Y.3
Zhao, X.S.4
-
82
-
-
33748925360
-
Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity
-
Lou, X. W., Y. Wang, C. L. Yuan, J. Y. Lee, and L. A. Archer. 2006. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18:2325-2329.
-
(2006)
Adv. Mater
, vol.18
, pp. 2325-2329
-
-
Lou, X.W.1
Wang, Y.2
Yuan, C.L.3
Lee, J.Y.4
Archer, L.A.5
-
83
-
-
23744494879
-
2 nanotubes prepared via infiltrationcasting of nanocrystallites and their electrochemical application
-
2 nanotubes prepared via infiltrationcasting of nanocrystallites and their electrochemical application. Chem. Mater. 17:3899-3903.
-
(2005)
Chem. Mater
, vol.17
, pp. 3899-3903
-
-
Wang, Y.1
Lee, J.Y.2
Zeng, H.C.3
-
85
-
-
34250316853
-
A tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries
-
Yu, Y., C. H. Chen, and Y. Shi. 2007. A tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries. Adv. Mater. 19:993-997.
-
(2007)
Adv. Mater
, vol.19
, pp. 993-997
-
-
Yu, Y.1
Chen, C.H.2
Shi, Y.3
-
86
-
-
39749160912
-
30 nanoalloys for lithium battery anode material
-
30 nanoalloys for lithium battery anode material. Chem. Commun. 9:1109-1111.
-
(2008)
Chem. Commun
, vol.9
, pp. 1109-1111
-
-
Kwon, Y.1
Cho, J.2
-
87
-
-
33745338601
-
2 filled mesoporous tin phosphate-High capacity negative electrode for lithium secondary battery. Electrochem
-
2 filled mesoporous tin phosphate-High capacity negative electrode for lithium secondary battery. Electrochem. Solid-State Lett. 9:A373-A375.
-
(2006)
Solid-State Lett
, vol.9
, pp. A373-A375
-
-
Kim, J.Y.1
Cho, J.2
-
88
-
-
9244221591
-
A mesoporous/crystalline composite material containing tin phosphate for use as the anode in lithium-ion batteries
-
Kim, E., D. Son, T. G. Kim, J. Cho, B. Park, K. S. Ryu, et al. 2004. A mesoporous/crystalline composite material containing tin phosphate for use as the anode in lithium-ion batteries. Angew. Chem. Int. Ed. 43:5987-5990.
-
(2004)
Angew. Chem. Int. Ed
, vol.43
, pp. 5987-5990
-
-
Kim, E.1
Son, D.2
Kim, T.G.3
Cho, J.4
Park, B.5
Ryu, K.S.6
-
89
-
-
33846459379
-
Reversible lithium intercalation in teardrop-shaped ultrafine SnP0.94 particles
-
Kim, Y., H. Hwang, C. S. Yoon, M. G. Kim, and J. Cho. 2007. Reversible lithium intercalation in teardrop-shaped ultrafine SnP0.94 particles. Adv. Mater. 19:92-96.
-
(2007)
Adv. Mater
, vol.19
, pp. 92-96
-
-
Kim, Y.1
Hwang, H.2
Yoon, C.S.3
Kim, M.G.4
Cho, J.5
-
91
-
-
84905991225
-
A Family of Mesocubes
-
Addu, S. K., J. Zhu, K. Y. S. Ng, and D. Deng. 2014. A Family of Mesocubes. Chem. Mater. 26:4472-4485.
-
(2014)
Chem. Mater
, vol.26
, pp. 4472-4485
-
-
Addu, S.K.1
Zhu, J.2
Ng, K.Y.S.3
Deng, D.4
-
92
-
-
34547677838
-
Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation
-
Bronstein, L. M., X. Huang, J. Retrum, A. Schmucker, M. Pink, B. D. Stein, et al. 2007. Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation. Chem. Mater. 19:3624-3632.
-
(2007)
Chem. Mater
, vol.19
, pp. 3624-3632
-
-
Bronstein, L.M.1
Huang, X.2
Retrum, J.3
Schmucker, A.4
Pink, M.5
Stein, B.D.6
-
93
-
-
6344228220
-
Thermally stable hematite hollow nanowires
-
Xiong, Y., Z. Li, X. Li, B. Hu, and Y. Xie. 2004. Thermally stable hematite hollow nanowires. Inorg. Chem. 43:6540-6542.
-
(2004)
Inorg. Chem
, vol.43
, pp. 6540-6542
-
-
Xiong, Y.1
Li, Z.2
Li, X.3
Hu, B.4
Xie, Y.5
-
95
-
-
79955925633
-
Sn-Doped Hematite Nanostructures for Photoelectrochemical Water Splitting
-
Ling, Y., G. Wang, D. A. Wheeler, J. Z. Zhang, and Y. Li. 2011. Sn-Doped Hematite Nanostructures for Photoelectrochemical Water Splitting. Nano Lett. 11:2119-2125.
-
(2011)
Nano Lett
, vol.11
, pp. 2119-2125
-
-
Ling, Y.1
Wang, G.2
Wheeler, D.A.3
Zhang, J.Z.4
Li, Y.5
-
96
-
-
84859057761
-
The growth of hematite nanobelts and nanowires—tune the shape via oxygen gas pressure
-
Yuan, L., Q. Jiang, J. Wang, and G. Zhou. 2012. The growth of hematite nanobelts and nanowires—tune the shape via oxygen gas pressure. J. Mater. Res. 27:1014-1021.
-
(2012)
J. Mater. Res
, vol.27
, pp. 1014-1021
-
-
Yuan, L.1
Jiang, Q.2
Wang, J.3
Zhou, G.4
-
97
-
-
43049094436
-
Room temperature synthesis of rod-like FeC2O4・ 2H2O and its transition to maghemite, magnetite and hematite nanorods through controlled thermal decomposition
-
2O and its transition to maghemite, magnetite and hematite nanorods through controlled thermal decomposition. Nanotechnology 19:065602.
-
(2008)
Nanotechnology
, pp. 19
-
-
Zhou, W.1
Tang, K.2
Zeng, S.3
Qi, Y.4
-
99
-
-
79955039650
-
Coordination polymer nanorods of Fe-MIL-88B and their utilization for selective preparation of hematite and magnetite nanorods
-
Cho, W., S. Park, and M. Oh. 2011. Coordination polymer nanorods of Fe-MIL-88B and their utilization for selective preparation of hematite and magnetite nanorods. Chem. Commun. 47:4138-4140.
-
(2011)
Chem. Commun
, vol.47
, pp. 4138-4140
-
-
Cho, W.1
Park, S.2
Oh, M.3
-
100
-
-
16244395203
-
3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications
-
3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications. Adv. Mater. 17:582-586.
-
(2005)
Adv. Mater
, vol.17
, pp. 582-586
-
-
Chen, J.1
Xu, L.2
Li, W.3
Gou, X.4
-
101
-
-
84863213872
-
Nanoparticulate Iron Oxide Tubes from Microporous Organic Nanotubes as Stable Anode Materials for Lithium Ion Batteries
-
Kang, N., J. H. Park, J. Choi, J. Jin, J. Chun, I. G. Jung, et al. 2012. Nanoparticulate Iron Oxide Tubes from Microporous Organic Nanotubes as Stable Anode Materials for Lithium Ion Batteries. Angew. Chem. Int. Ed. 51:6626-6630.
-
(2012)
Angew. Chem. Int. Ed
, vol.51
, pp. 6626-6630
-
-
Kang, N.1
Park, J.H.2
Choi, J.3
Jin, J.4
Chun, J.5
Jung, I.G.6
-
103
-
-
77957130451
-
Top-Down Fabrication of α-Fe2O3 Single-Crystal Nanodiscs and Microparticles with Tunable Porosity for Largely Improved Lithium Storage Properties
-
Chen, J. S., T. Zhu, X. H. Yang, H. G. Yang, and X. W. Lou. 2010. Top-Down Fabrication of α-Fe2O3 Single-Crystal Nanodiscs and Microparticles with Tunable Porosity for Largely Improved Lithium Storage Properties. J. Am. Chem. Soc. 132:13162-13164.
-
(2010)
J. Am. Chem. Soc
, vol.132
, pp. 13162-13164
-
-
Chen, J.S.1
Zhu, T.2
Yang, X.H.3
Yang, H.G.4
Lou, X.W.5
-
104
-
-
34548633414
-
3 Nanorings Prepared by a Microwave-Assisted Hydrothermal Process and Their Sensing Properties
-
3 Nanorings Prepared by a Microwave-Assisted Hydrothermal Process and Their Sensing Properties. Adv. Mater. 19:2324-2329.
-
(2007)
Adv. Mater
, vol.19
, pp. 2324-2329
-
-
Hu, X.1
Yu, J.C.2
Gong, J.3
Li, Q.4
Li, G.5
-
105
-
-
80755182364
-
Controlled synthesis of monodispersed hematite microcubes and their properties
-
Xiong, S., J. Xu, D. Chen, R. Wang, X. Hu, G. Shen, et al. 2011. Controlled synthesis of monodispersed hematite microcubes and their properties. CrystEngComm 13:7114-7120.
-
(2011)
Crystengcomm
, vol.13
, pp. 7114-7120
-
-
Xiong, S.1
Xu, J.2
Chen, D.3
Wang, R.4
Hu, X.5
Shen, G.6
-
106
-
-
33749168695
-
Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals
-
Liang, X., X. Wang, J. Zhuang, Y. Chen, D. Wang, and Y. Li. 2006. Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv. Funct. Mater. 16:1805-1813.
-
(2006)
Adv. Funct. Mater
, vol.16
, pp. 1805-1813
-
-
Liang, X.1
Wang, X.2
Zhuang, J.3
Chen, Y.4
Wang, D.5
Li, Y.6
-
107
-
-
38049031062
-
Amino-acid-assisted synthesis and size-dependent magnetic behaviors of hematite nanocubes
-
Cao, H., G. Wang, J. H. Warner, and A. A. Watt. 2008. Amino-acid-assisted synthesis and size-dependent magnetic behaviors of hematite nanocubes. Appl. Phys. Lett. 92:013110-013113.
-
(2008)
Appl. Phys. Lett
, vol.92
, pp. 013110-013113
-
-
Cao, H.1
Wang, G.2
Warner, J.H.3
Watt, A.A.4
-
108
-
-
34547524591
-
Hematite hollow spindles and microspheres: Selective synthesis, growth mechanisms, and application in lithium ion battery and water treatment
-
Zeng, S., K. Tang, T. Li, Z. Liang, D. Wang, Y. Wang, et al. 2007. Hematite hollow spindles and microspheres: selective synthesis, growth mechanisms, and application in lithium ion battery and water treatment. J. Phys. Chem. C 111:10217-10225.
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 10217-10225
-
-
Zeng, S.1
Tang, K.2
Li, T.3
Liang, Z.4
Wang, D.5
Wang, Y.6
-
109
-
-
84855603236
-
3 microspheres through template-free hydrothermal route
-
3 microspheres through template-free hydrothermal route. J. Nanopart. Res. 14:1-8.
-
(2012)
J. Nanopart. Res
, vol.14
, pp. 1-8
-
-
Jia, X.H.1
Song, H.J.2
-
110
-
-
47249100664
-
3 Hollow Spheres: Preparation, Growth Mechanism, Photocatalytic Property, and Application in Water Treatment
-
3 Hollow Spheres: Preparation, Growth Mechanism, Photocatalytic Property, and Application in Water Treatment. J. Phys. Chem. C 112:6253-6257.
-
(2008)
J. Phys. Chem. C
, vol.112
, pp. 6253-6257
-
-
Cao, S.-W.1
Zhu, Y.-J.2
-
111
-
-
80054975361
-
Quasiemulsion-Templated Formation of α-Fe2O3 Hollow Spheres with Enhanced Lithium Storage Properties
-
Wang, B., J. S. Chen, H. B. Wu, Z. Wang, and X. W. Lou. 2011. Quasiemulsion-Templated Formation of α-Fe2O3 Hollow Spheres with Enhanced Lithium Storage Properties. J. Am. Chem. Soc. 133:17146-17148.
-
(2011)
J. Am. Chem. Soc
, vol.133
, pp. 17146-17148
-
-
Wang, B.1
Chen, J.S.2
Wu, H.B.3
Wang, Z.4
Lou, X.W.5
-
112
-
-
84866328109
-
3 Anode Material Prepared from MOF Template for High-Rate Lithium Batteries
-
3 Anode Material Prepared from MOF Template for High-Rate Lithium Batteries. Nano Lett. 12:4988-4991.
-
(2012)
Nano Lett
, vol.12
, pp. 4988-4991
-
-
Xu, X.1
Cao, R.2
Jeong, S.3
Cho, J.4
-
113
-
-
49149101041
-
3 urchin-like microstructures and their magnetic properties
-
3 urchin-like microstructures and their magnetic properties. J. Phys. Chem. C 112:10754-10758.
-
(2008)
J. Phys. Chem. C
, vol.112
, pp. 10754-10758
-
-
Du, D.1
Cao, M.2
-
114
-
-
42649088814
-
Facile route for the fabrication of porous hematite nanoflowers: Its synthesis, growth mechanism, application in the lithium ion battery, and magnetic and photocatalytic properties
-
Zeng, S., K. Tang, T. Li, Z. Liang, D. Wang, Y. Wang, et al. 2008. Facile route for the fabrication of porous hematite nanoflowers: its synthesis, growth mechanism, application in the lithium ion battery, and magnetic and photocatalytic properties. J. Phys. Chem. C 112:4836-4843.
-
(2008)
J. Phys. Chem. C
, vol.112
, pp. 4836-4843
-
-
Zeng, S.1
Tang, K.2
Li, T.3
Liang, Z.4
Wang, D.5
Wang, Y.6
-
115
-
-
49449095846
-
Hematite hollow spheres with a mesoporous shell: Controlled synthesis and applications in gas sensor and lithium ion batteries
-
Wu, Z., K. Yu, S. Zhang, and Y. Xie. 2008. Hematite hollow spheres with a mesoporous shell: controlled synthesis and applications in gas sensor and lithium ion batteries. J. Phys. Chem. C 112:11307-11313.
-
(2008)
J. Phys. Chem. C
, vol.112
, pp. 11307-11313
-
-
Wu, Z.1
Yu, K.2
Zhang, S.3
Xie, Y.4
-
116
-
-
79955070174
-
Template-free solvothermal synthesis of hollow hematite spheres and their applications in gas sensors and Li-ion batteries
-
Kim, H.-J., K.-I. Choi, A. Pan, I.-D. Kim, H.-R. Kim, K.-M. Kim, et al. 2011. Template-free solvothermal synthesis of hollow hematite spheres and their applications in gas sensors and Li-ion batteries. J. Mater. Chem. 21:6549-6555.
-
(2011)
J. Mater. Chem
, vol.21
, pp. 6549-6555
-
-
Kim, H.-J.1
Choi, K.-I.2
Pan, A.3
Kim, I.-D.4
Kim, H.-R.5
Kim, K.-M.6
-
118
-
-
78649604675
-
Preparation of Inorganic Hollow Spheres Based on Different Methods
-
Hu, C.-Y., Y.-J. Xu, S.-W. Duo, W.-K. Li, J.-H. Xiang, M.-S. Li, et al. 2010. Preparation of Inorganic Hollow Spheres Based on Different Methods. J. Chin. Chem. Soc. 57:1091.
-
(2010)
J. Chin. Chem. Soc
, vol.57
, pp. 1091
-
-
Hu, C.-Y.1
Xu, Y.-J.2
Duo, S.-W.3
Li, W.-K.4
Xiang, J.-H.5
Li, M.-S.6
-
119
-
-
74949093125
-
Iron oxide-based nanotube arrays derived from sacrificial template-accelerated hydrolysis: Large-area design and reversible lithium storage
-
Liu, J., Y. Li, H. Fan, Z. Zhu, J. Jiang, R. Ding, et al. 2009. Iron oxide-based nanotube arrays derived from sacrificial template-accelerated hydrolysis: large-area design and reversible lithium storage. Chem. Mater. 22:212-217.
-
(2009)
Chem. Mater
, vol.22
, pp. 212-217
-
-
Liu, J.1
Li, Y.2
Fan, H.3
Zhu, Z.4
Jiang, J.5
Ding, R.6
-
120
-
-
84896889684
-
Hollow Cocoon-Like Hematite Mesoparticles of Nanoparticle Aggregates: Structural Evolution and Superior Performances in Lithium Ion Batteries
-
Zhu, J., K. Y. S. Ng, and D. Deng. 2014. Hollow Cocoon-Like Hematite Mesoparticles of Nanoparticle Aggregates: Structural Evolution and Superior Performances in Lithium Ion Batteries. ACS Appl. Mat. Interfac. 6:2996-3001.
-
(2014)
ACS Appl. Mat. Interfac
, vol.6
, pp. 2996-3001
-
-
Zhu, J.1
Ng, K.Y.S.2
Deng, D.3
-
121
-
-
84901917431
-
Micro Single Crystals of Hematite with Nearly 100% Exposed {104} Facets: Preferred Etching and Lithium Storage
-
Zhu, J., K. Y. S. Ng, and D. Deng. 2014. Micro Single Crystals of Hematite with Nearly 100% Exposed {104} Facets: Preferred Etching and Lithium Storage. Cryst. Growth Des. 14:2811-2817.
-
(2014)
Cryst. Growth Des
, vol.14
, pp. 2811-2817
-
-
Zhu, J.1
Ng, K.Y.S.2
Deng, D.3
-
125
-
-
84863116192
-
4 beads and their applications in lithium ion batteries
-
4 beads and their applications in lithium ion batteries. J. Mater. Chem. 22:5006-5012.
-
(2012)
J. Mater. Chem
, vol.22
, pp. 5006-5012
-
-
Chen, Y.1
Xia, H.2
Lu, L.3
Xue, J.4
-
127
-
-
79960726856
-
An in situ method of creating metal oxide-carbon composites and their application as anode materials for lithium-ion batteries
-
Yang, Z., J. Shen, and L. A. Archer. 2011. An in situ method of creating metal oxide-carbon composites and their application as anode materials for lithium-ion batteries. J. Mater. Chem. 21:11092-11097.
-
(2011)
J. Mater. Chem
, vol.21
, pp. 11092-11097
-
-
Yang, Z.1
Shen, J.2
Archer, L.A.3
-
128
-
-
84876717394
-
4@ C core-shell nanorings and their enhanced electrochemical performance for lithium-ion batteries
-
4@ C core-shell nanorings and their enhanced electrochemical performance for lithium-ion batteries. Nanoscale 5:3627-3631.
-
(2013)
Nanoscale
, vol.5
, pp. 3627-3631
-
-
Wang, L.1
Liang, J.2
Zhu, Y.3
Mei, T.4
Zhang, X.5
Yang, Q.6
-
129
-
-
84907154775
-
4 based additive-free electrodes for highly reversible lithium storage
-
4 based additive-free electrodes for highly reversible lithium storage. J. Mater. Chem. A 2:16008-16014.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 16008-16014
-
-
Zhu, J.1
Ng, K.Y.S.2
Deng, D.3
-
130
-
-
77956229708
-
Investigation of solvation in lithium ion battery electrolytes by NMR spectroscopy
-
Yang, L., A. Xiao, and B. L. Lucht. 2010. Investigation of solvation in lithium ion battery electrolytes by NMR spectroscopy. J. Mol. Liq. 154:131-133.
-
(2010)
J. Mol. Liq
, vol.154
, pp. 131-133
-
-
Yang, L.1
Xiao, A.2
Lucht, B.L.3
-
131
-
-
7644227934
-
Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
-
Xu, K. 2004. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 104:4303-4418.
-
(2004)
Chem. Rev
, vol.104
, pp. 4303-4418
-
-
Xu, K.1
-
132
-
-
0032581661
-
Nanocomposite polymer electrolytes for lithium batteries
-
Croce, F., G. B. Appetecchi, L. Persi, and B. Scrosati. 1998. Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456-458.
-
(1998)
Nature
, vol.394
, pp. 456-458
-
-
Croce, F.1
Appetecchi, G.B.2
Persi, L.3
Scrosati, B.4
-
133
-
-
0033730761
-
Trends in polymer electrolytes for secondary lithium batteries
-
Dias, F. B., L. Plomp, and J. B. J. Veldhuis. 2000. Trends in polymer electrolytes for secondary lithium batteries. J. Power Sources 88:169-191.
-
(2000)
J. Power Sources
, vol.88
, pp. 169-191
-
-
Dias, F.B.1
Plomp, L.2
Veldhuis, J.B.J.3
-
134
-
-
0032048128
-
Polymer Electrolytes for Lithium-Ion Batteries
-
Meyer, W. H. 1998. Polymer Electrolytes for Lithium-Ion Batteries. Adv. Mater. 10:439-448.
-
(1998)
Adv. Mater
, vol.10
, pp. 439-448
-
-
Meyer, W.H.1
-
135
-
-
77950297906
-
Ceramic and polymeric solid electrolytes for lithium-ion batteries
-
Fergus, J. W. 2010. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 195:4554-4569.
-
(2010)
J. Power Sources
, vol.195
, pp. 4554-4569
-
-
Fergus, J.W.1
-
136
-
-
33845661878
-
A review on the separators of liquid electrolyte Li-ion batteries
-
Zhang, S. S. 2007. A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 164:351-364.
-
(2007)
J. Power Sources
, vol.164
, pp. 351-364
-
-
Zhang, S.S.1
-
137
-
-
65549123737
-
A novel composite containing nanosized silicon and tin as anode material for lithium ion batteries
-
Wang, X., Z. Wen, Y. Liu, and X. Wu. 2009. A novel composite containing nanosized silicon and tin as anode material for lithium ion batteries. Electrochim. Acta 54:4662-4667.
-
(2009)
Electrochim. Acta
, vol.54
, pp. 4662-4667
-
-
Wang, X.1
Wen, Z.2
Liu, Y.3
Wu, X.4
-
138
-
-
66249125043
-
Fabricating GeneticallyEngineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes
-
Lee, Y. J., H. Yi, W.-J. Kim, K. Kang, D. S. Yun, M. S. Strano, et al. 2009. Fabricating GeneticallyEngineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes. Science 324:1051-1055.
-
(2009)
Science
, vol.324
, pp. 1051-1055
-
-
Lee, Y.J.1
Yi, H.2
Kim, W.-J.3
Kang, K.4
Yun, D.S.5
Strano, M.S.6
-
139
-
-
48149098641
-
From Biomass to a Renewable LiXC6O6 Organic Electrode for Sustainable Li-Ion Batteries
-
Chen, H., M. Armand, G. Demailly, F. Dolhem, P. Poizot, and J.-M. Tarascon. 2008. From Biomass to a Renewable LiXC6O6 Organic Electrode for Sustainable Li-Ion Batteries. Chemsuschem 1:348-355.
-
(2008)
Chemsuschem
, vol.1
, pp. 348-355
-
-
Chen, H.1
Armand, M.2
Demailly, G.3
Dolhem, F.4
Poizot, P.5
Tarascon, J.-M.6
-
140
-
-
77955555624
-
Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles-Critical issues
-
Zackrisson, M., L. Avellan, and J. Orlenius. 2010. Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles-Critical issues. J. Clean. Prod. 18:1519-1529.
-
(2010)
J. Clean. Prod
, vol.18
, pp. 1519-1529
-
-
Zackrisson, M.1
Avellan, L.2
Orlenius, J.3
-
141
-
-
84859499509
-
Linker-free 3D assembly of nanocrystals with tunable unit size for reversible lithium ion storage
-
Deng, D., and J. Y. Lee. 2011. Linker-free 3D assembly of nanocrystals with tunable unit size for reversible lithium ion storage. Nanotechnology 22:355401.
-
(2011)
Nanotechnology
, pp. 22
-
-
Deng, D.1
Lee, J.Y.2
-
144
-
-
34848875178
-
A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries
-
Ellis, B. L., W. R. M. Makahnouk, Y. Makimura, K. Toghill, and L. F. Nazar. 2007. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat. Mater. 6:749-753.
-
(2007)
Nat. Mater
, vol.6
, pp. 749-753
-
-
Ellis, B.L.1
Makahnouk, W.R.M.2
Makimura, Y.3
Toghill, K.4
Nazar, L.F.5
-
145
-
-
84866438723
-
Superionic glass-ceramic electrolytes for roomtemperature rechargeable sodium batteries
-
Hayashi, A., K. Noi, A. Sakuda, and M. Tatsumisago. 2012. Superionic glass-ceramic electrolytes for roomtemperature rechargeable sodium batteries. Nat. Commun. 3:856.
-
(2012)
Nat. Commun
, vol.3
, pp. 856
-
-
Hayashi, A.1
Noi, K.2
Sakuda, A.3
Tatsumisago, M.4
-
146
-
-
80054887056
-
Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries
-
Xiong, H., M. D. Slater, M. Balasubramanian, C. S. Johnson, and T. Rajh. 2011. Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries. J Phys Chem Lett 2:2560-2565.
-
(2011)
J Phys Chem Lett
, vol.2
, pp. 2560-2565
-
-
Xiong, H.1
Slater, M.D.2
Balasubramanian, M.3
Johnson, C.S.4
Rajh, T.5
-
147
-
-
84873405642
-
Sodium-Ion Batteries
-
Slater, M. D., D. Kim, E. Lee, and C. S. Johnson. 2012. Sodium-Ion Batteries. Adv. Funct. Mater. 23:947-958.
-
(2012)
Adv. Funct. Mater
, vol.23
, pp. 947-958
-
-
Slater, M.D.1
Kim, D.2
Lee, E.3
Johnson, C.S.4
-
148
-
-
0033751756
-
High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries
-
Stevens, D. A., and J. R. Dahn. 2000. High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries. J. Electrochem. Soc. 147:1271-1273.
-
(2000)
J. Electrochem. Soc
, vol.147
, pp. 1271-1273
-
-
Stevens, D.A.1
Dahn, J.R.2
-
149
-
-
73249125630
-
Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives
-
Lu, X. C., G. G. Xia, J. P. Lemmon, and Z. G. Yang. 2010. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives. J. Power Sources 195:2431-2442.
-
(2010)
J. Power Sources
, vol.195
, pp. 2431-2442
-
-
Lu, X.C.1
Xia, G.G.2
Lemmon, J.P.3
Yang, Z.G.4
-
150
-
-
84882594139
-
Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
-
Pan, H. L., Y. S. Hu, and L. Q. Chen. 2013. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energ. Environ. Sci. 6:2338-2360.
-
(2013)
Energ. Environ. Sci
, vol.6
, pp. 2338-2360
-
-
Pan, H.L.1
Hu, Y.S.2
Chen, L.Q.3
-
151
-
-
84857615154
-
Na-ion batteries, recent advances and present challenges to become low cost energy storage systems
-
Palomares, V., P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-Gonzalez, and T. Rojo. 2012. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energ. Environ. Sci. 5:5884-5901.
-
(2012)
Energ. Environ. Sci
, vol.5
, pp. 5884-5901
-
-
Palomares, V.1
Serras, P.2
Villaluenga, I.3
Hueso, K.B.4
Carretero-Gonzalez, J.5
Rojo, T.6
-
152
-
-
84867297718
-
Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries
-
Kim, S. W., D. H. Seo, X. H. Ma, G. Ceder, and K. Kang. 2012. Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries. Adv. Energ. Mater. 2:710-721.
-
(2012)
Adv. Energ. Mater
, vol.2
, pp. 710-721
-
-
Kim, S.W.1
Seo, D.H.2
Ma, X.H.3
Ceder, G.4
Kang, K.5
-
153
-
-
84885161279
-
Preparation and characterization of carbon-coated NaVPO4F as cathode material for rechargeable sodium-ion batteries
-
Lu, Y., S. Zhang, Y. Li, L. G. Xue, G. J. Xu, and X. W. Zhang. 2014. Preparation and characterization of carbon-coated NaVPO4F as cathode material for rechargeable sodium-ion batteries. J. Power Sources 247:770-777.
-
(2014)
J. Power Sources
, vol.247
, pp. 770-777
-
-
Lu, Y.1
Zhang, S.2
Li, Y.3
Xue, L.G.4
Xu, G.J.5
Zhang, X.W.6
-
157
-
-
84862175135
-
Prussian blue: A new framework of electrode materials for sodium batteries
-
Lu, Y. H., L. Wang, J. G. Cheng, and J. B. Goodenough. 2012. Prussian blue: a new framework of electrode materials for sodium batteries. Chem. Commun. 48:6544-6546.
-
(2012)
Chem. Commun
, vol.48
, pp. 6544-6546
-
-
Lu, Y.H.1
Wang, L.2
Cheng, J.G.3
Goodenough, J.B.4
-
158
-
-
0024068597
-
Electrochemical intercalation of sodium in graphite
-
Ge, P., and M. Fouletier. 1988. Electrochemical intercalation of sodium in graphite. Solid State Ionics 28-30(Pt 2):1172-1175.
-
(1988)
Solid State Ionics
, vol.28-30
, pp. 1172-1175
-
-
Ge, P.1
Fouletier, M.2
-
159
-
-
80052216133
-
Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies
-
Wenzel, S., T. Hara, J. Janek, and P. Adelhelm. 2011. Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energ. Environ. Sci. 4:3342-3345.
-
(2011)
Energ. Environ. Sci
, vol.4
, pp. 3342-3345
-
-
Wenzel, S.1
Hara, T.2
Janek, J.3
Adelhelm, P.4
-
160
-
-
84863832016
-
Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications
-
Cao, Y. L., L. F. Xiao, M. L. Sushko, W. Wang, B. Schwenzer, J. Xiao, et al. 2012. Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications. Nano Lett. 12:3783-3787.
-
(2012)
Nano Lett
, vol.12
, pp. 3783-3787
-
-
Cao, Y.L.1
Xiao, L.F.2
Sushko, M.L.3
Wang, W.4
Schwenzer, B.5
Xiao, J.6
-
161
-
-
84881581207
-
Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams
-
Shao, Y. Y., J. Xiao, W. Wang, M. Engelhard, X. L. Chen, Z. M. Nie, et al. 2013. Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams. Nano Lett. 13:3909-3914.
-
(2013)
Nano Lett
, vol.13
, pp. 3909-3914
-
-
Shao, Y.Y.1
Xiao, J.2
Wang, W.3
Engelhard, M.4
Chen, X.L.5
Nie, Z.M.6
-
162
-
-
84876484953
-
High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries
-
Qian, J. F., X. Y. Wu, Y. L. Cao, X. P. Ai, and H. X. Yang. 2013. High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries. Angew. Chem. Int. Edit. 52:4633-4636.
-
(2013)
Angew. Chem. Int. Edit
, vol.52
, pp. 4633-4636
-
-
Qian, J.F.1
Wu, X.Y.2
Cao, Y.L.3
Ai, X.P.4
Yang, H.X.5
-
163
-
-
84878877019
-
An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries
-
Kim, Y., Y. Park, A. Choi, N. S. Choi, J. Kim, J. Lee, et al. 2013. An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries. Adv. Mater. 25:3045-3049.
-
(2013)
Adv. Mater
, vol.25
, pp. 3045-3049
-
-
Kim, Y.1
Park, Y.2
Choi, A.3
Choi, N.S.4
Kim, J.5
Lee, J.6
-
166
-
-
84880166567
-
Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Reservoir
-
Zhu, H. L., Z. Jia, Y. C. Chen, N. Weadock, J. Y. Wan, O. Vaaland, et al. 2013. Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Reservoir. Nano Lett. 13:3093-3100.
-
(2013)
Nano Lett
, vol.13
, pp. 3093-3100
-
-
Zhu, H.L.1
Jia, Z.2
Chen, Y.C.3
Weadock, N.4
Wan, J.Y.5
Vaaland, O.6
-
167
-
-
84876516715
-
Tin-coated viral nanoforests as sodium-ion battery anodes
-
Liu, Y. H., Y. H. Xu, Y. J. Zhu, J. N. Culver, C. A. Lundgren, K. Xu, et al. 2013. Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano 7:3627-3634.
-
(2013)
ACS Nano
, vol.7
, pp. 3627-3634
-
-
Liu, Y.H.1
Xu, Y.H.2
Zhu, Y.J.3
Culver, J.N.4
Lundgren, C.A.5
Xu, K.6
-
168
-
-
84869868027
-
Tin and graphite based nanocomposites: Potential anode for sodium ion batteries
-
Datta, M. K., R. Epur, P. Saha, K. Kadakia, S. K. Park, and P. N. Kuma. 2013. Tin and graphite based nanocomposites: Potential anode for sodium ion batteries. J. Power Sources 225:316-322.
-
(2013)
J. Power Sources
, vol.225
, pp. 316-322
-
-
Datta, M.K.1
Epur, R.2
Saha, P.3
Kadakia, K.4
Park, S.K.5
Kuma, P.N.6
-
169
-
-
84876527043
-
2@ graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance
-
2@ graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem. Commun. 49:3131-3133.
-
(2013)
Chem. Commun
, vol.49
, pp. 3131-3133
-
-
Su, D.W.1
Ahn, H.J.2
Wang, G.X.3
-
170
-
-
84874069759
-
Electrochemical Performance of Porous Carbon/ Tin Composite Anodes for Sodium-Ion and Lithium-Ion Batteries
-
Xu, Y. H., Y. J. Zhu, Y. H. Liu, and C. S. Wang. 2013. Electrochemical Performance of Porous Carbon/ Tin Composite Anodes for Sodium-Ion and Lithium-Ion Batteries. Adv. Energ. Mater. 3:128-133.
-
(2013)
Adv. Energ. Mater
, vol.3
, pp. 128-133
-
-
Xu, Y.H.1
Zhu, Y.J.2
Liu, Y.H.3
Wang, C.S.4
-
172
-
-
84920275523
-
Deflated Carbon Nanospheres Encapsulating Tin Decorated on Layered 3-D Carbon Structures for Low-Cost Sodium Ion Batteries
-
Chen, W., and D. Deng. 2015. Deflated Carbon Nanospheres Encapsulating Tin Decorated on Layered 3-D Carbon Structures for Low-Cost Sodium Ion Batteries. ACS Sustain. Chem. Eng. 3:63-70
-
(2015)
ACS Sustain. Chem. Eng
, vol.3
, pp. 63-70
-
-
Chen, W.1
Deng, D.2
|