-
1
-
-
84949987175
-
-
Springer, New York
-
C. Julien, A. Mauger, A. Vijh, and K. Zaghib, Lithium Batteries: Science and Technology, p. 5, Springer, New York, (2015).
-
(2015)
Lithium Batteries: Science and Technology
, pp. 5
-
-
Julien, C.1
Mauger, A.2
Vijh, A.3
Zaghib, K.4
-
2
-
-
7644220712
-
Lithium batteries and cathode materials
-
M. S. Whittingham, "Lithium Batteries and Cathode Materials", Chem. Reviews, 104, 4271 (2004).
-
(2004)
Chem. Reviews
, vol.104
, pp. 4271
-
-
Whittingham, M.S.1
-
3
-
-
0019283532
-
Intercalation electrodes
-
D. W. Murphy, J. Broadhead, and B. C. H. Steele, eds., Plenum Press, New York
-
M. Armand, "Intercalation electrodes", in D. W. Murphy, J. Broadhead, and B. C. H. Steele, eds., Materials for Advanced Batteries, pp 145, Plenum Press, New York, (1980).
-
(1980)
Materials for Advanced Batteries
, pp. 145
-
-
Armand, M.1
-
4
-
-
0001093640
-
A cyclable lithium organic electrolyte cell based on two intercalation electrodes
-
M. Lazzari and B. Scrosati, "A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes", J. Electrochem. Soc., 127, 773 (1980).
-
(1980)
J. Electrochem. Soc.
, vol.127
, pp. 773
-
-
Lazzari, M.1
Scrosati, B.2
-
7
-
-
85012941569
-
The anode electrolyte interface
-
Chap. 16,C. Daniel and J. O. Besenhard, 2nd Ed.Wiley, New York
-
E. Peled, D. Golodnitzky, and J. Penciner, "The anode electrolyte interface", Chap. 16, in C. Daniel and J. O. Besenhard, Handbook of Battery Materials, 2nd Ed., Wiley, New York, (2012).
-
(2012)
Handbook of Battery Materials
-
-
Peled, E.1
Golodnitzky, D.2
Penciner, J.3
-
9
-
-
0020113612
-
A reversible graphite-lithium negative electrode for electrochemical generators
-
R. Yazami and P. Touzain, "A reversible graphite-lithium negative electrode for electrochemical generators", J. Power Sources, 9, 365 (1983).
-
(1983)
J. Power Sources
, vol.9
, pp. 365
-
-
Yazami, R.1
Touzain, P.2
-
10
-
-
0025450991
-
Studies of lithium intercalation into carbons using nonaqueous electrochemical cells
-
R. Fong, U. von Sacken, and J. Dahn, "Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells", J. Electrochem. Soc., 137, 2009 (1990).
-
(2009)
J. Electrochem. Soc.
, pp. 137
-
-
Fong, R.1
Sacken, U.V.2
Dahn, J.3
-
12
-
-
85012913313
-
-
unpublished results
-
G. E. Blomgren, unpublished results.
-
-
-
Blomgren, G.E.1
-
13
-
-
85012927726
-
-
https://www.asahi-kasei.co.jp/asahi/en/r-And-d/interview/yoshino/pdf/lithiumion-battery.pdf.
-
-
-
-
14
-
-
84981185328
-
An introduction to secondary batteries
-
4th Ed. T. B. Reddy and D. Linden, Eds. Chap. 15, McGraw Hill, New York
-
T. B. Reddy, "An introduction to secondary batteries", in Linden's Handbook of Batteries, 4th Ed., T. B. Reddy and D. Linden, Eds., Chap. 15, McGraw Hill, New York, (2011).
-
(2011)
Linden's Handbook of Batteries
-
-
Reddy, T.B.1
-
16
-
-
84895370457
-
My way to lithium-ion batteries
-
M. Yoshio, R. J. Brodd, and A. Kozawa, Eds. Foreword, Springer, New York
-
Y. Nishi, "My way to lithium-ion batteries", in Lithium-Ion Batteries, M. Yoshio, R. J. Brodd, and A. Kozawa, Eds., Foreword, Springer, New York, (2009).
-
(2009)
Lithium-Ion Batteries
-
-
Nishi, Y.1
-
17
-
-
33646717658
-
The development of lithium ion secondary batteries
-
Y. Nishi, "The development of lithium ion secondary batteries", TheChemical Record, 1, 406 (2001).
-
(2001)
TheChemical Record
, vol.1
, pp. 406
-
-
Nishi, Y.1
-
18
-
-
85012888004
-
Early development of lithium-ion batteries
-
K. Ozawa, Ed. Section 1.2, Wiley-VCH Verlag GmbH, Weinheim
-
K. Matsuki and K. Ozawa, "Early Development of Lithium-Ion Batteries" in Lithium Ion Rechargeable Batteries, K. Ozawa, Ed., Section 1.2, Wiley-VCH Verlag GmbH, Weinheim, (2009).
-
(2009)
Lithium Ion Rechargeable Batteries
-
-
Matsuki, K.1
Ozawa, K.2
-
19
-
-
85012881672
-
For a review of the properties of carbon anode materials for rechargeable lithium batteries, see: A. Mabuchi
-
TANSO
-
For a review of the properties of carbon anode materials for rechargeable lithium batteries, see: A. Mabuchi, "A survey on the carbon anode materials for rechargeable lithium batteries", TANSO, [No. 165], pp. 298 (1994).
-
(1994)
A Survey on the Carbon Anode Materials for Rechargeable Lithium Batteries
, Issue.165
, pp. 298
-
-
-
20
-
-
33645907398
-
-
U.S., 25 Sep
-
Y. Nishi, H. Azuma, and A. Omaru, "Non aqueous electrolyte cell", U.S. Pat.4, 959, 281, 25 Sep. (1990).
-
(1990)
Non Aqueous Electrolyte Cell
-
-
Nishi, Y.1
Azuma, H.2
Omaru, A.3
-
23
-
-
85012894011
-
-
http://www.murata.com/∼/media/webrenewal/about/newsroom/news/irnews/irnews/2016/0728/20160728-e.ashx?la=en.
-
-
-
-
24
-
-
85012884035
-
-
U. S. 30 June
-
T. W. Johnson, D. J. Grzybowski, M. A. Kubale, J. J. Rosenbecker, K. F. Scheucher, G. D. Meyer, J. M. Zeller, and K. L. Glasgow, "Lithium based battery pack for a hand-held power tool", U. S. Pat.7, 554, 290 30 June (2009).
-
(2009)
Lithium Based Battery Pack for a Hand-Held Power Tool
-
-
Johnson, T.W.1
Grzybowski, D.J.2
Kubale, M.A.3
Rosenbecker, J.J.4
Scheucher, K.F.5
Meyer, G.D.6
Zeller, J.M.7
Glasgow, K.L.8
-
25
-
-
85012915192
-
-
Website for E-One Moli
-
Website for E-One Moli www.molicel.com/hq/.
-
-
-
-
26
-
-
33745016475
-
Predicting current flow in spiral wound cell geometries
-
J. Reimers, "Predicting current flow in spiral wound cell geometries", J. Power Sources, 158, 663 (2006).
-
(2006)
J. Power Sources
, vol.158
, pp. 663
-
-
Reimers, J.1
-
27
-
-
84885780741
-
Design and simulation of spirally-wound, lithium-ion cells
-
R. Spotnitz et al., "Design and Simulation of Spirally-Wound, Lithium-Ion Cells", Electrochem. Soc. Transactions, 50(26), 209 (2013).
-
(2013)
Electrochem. Soc. Transactions
, vol.50
, Issue.26
, pp. 209
-
-
Spotnitz, R.1
-
28
-
-
33845661878
-
A review on the separators of liquid electrolyte Li-ion batteries
-
S. S. Zhang, " A review on the separators of liquid electrolyte Li-ion batteries", J. Power Sources, 164, 357 (2007).
-
(2007)
J. Power Sources
, vol.164
, pp. 357
-
-
Zhang, S.S.1
-
29
-
-
84968724792
-
Ceramic coated polypropylene separators for lithium-ion batteries with improved safety: Effects of high melting point organic binder
-
L. Yu, Y. Jun, and Y. S Lin, "Ceramic coated polypropylene separators for lithium-ion batteries with improved safety: Effects of high melting point organic binder", RSC Advances, 6, 40002 (2016).
-
(2016)
RSC Advances
, vol.6
, pp. 40002
-
-
Yu, L.1
Jun, Y.2
Lin, Y.S.3
-
31
-
-
85012915716
-
-
See for example
-
See for example: https://chargedevs.com/features/tesla-Tweaks-its-battery-chemistrya-closer-look-At-silicon-Anode-development/.
-
-
-
-
32
-
-
84862950640
-
The development of silicon nanocomposite materials for li-ion secondary batteries
-
J.Wang, Y. Chen, and L. Qui, "The Development of Silicon Nanocomposite Materials for Li-Ion Secondary Batteries", The Open Materials Science Journal, 5(Suppl 1: M5), 228 (2011).
-
(2011)
The Open Materials Science Journal
, vol.5
, Issue.M5
, pp. 228
-
-
Wang, J.1
Chen, Y.2
Qui, L.3
-
33
-
-
85012885639
-
-
https://www.usfa.fema.gov/downloads/pdf/publications/electronic-cigarettes.pdf.
-
-
-
-
34
-
-
85012932107
-
-
http://www.cnn.com/2016/07/06/health/hoverboard-recall-fire-hazard/.
-
-
-
-
35
-
-
84923344444
-
Comparative issues of cathode materials for Li-ion batteries
-
C. M. Julien, A. Mauger, K. Zaghib, and H. Groult, "Comparative Issues of Cathode Materials for Li-Ion Batteries", Inorganics, 2, 132 (2014).
-
(2014)
Inorganics
, vol.2
, pp. 132
-
-
Julien, C.M.1
Mauger, A.2
Zaghib, K.3
Groult, H.4
-
36
-
-
85012937108
-
-
http://www.greencarreports.com/news/1103667-electric-car-battery-costs-Tesla-190-per-kwh-for-pack-gm-145-for-cells.
-
-
-
-
37
-
-
85012870923
-
-
http://energy.gov/eere/eveverywhere/about-ev-everywhere.
-
-
-
-
39
-
-
84875480267
-
Recent progress in advanced materials for lithium ion batteries
-
for a selective review
-
J. Chen, "Recent Progress in Advanced Materials for Lithium Ion Batteries", Materials, 6, 156 (2013) for a selective review.
-
(2013)
Materials
, vol.6
, pp. 156
-
-
Chen, J.1
-
40
-
-
84971281766
-
Modification of Ni-Rich FCG NMC and NCA cathodes by atomic layer deposition: Preventing surface phase transitions for high-voltage lithium-ion batteries
-
D. Mohanty, K. Dahlberg, D. M. King, L. A. David, A. S. Sefat, D. L. Wood, C. Daniel, S. Dhar, V. Mahajan, M. Lee, and F. Albano, "Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries", Scientific Reports, 6, Article no. 26562, (2015).
-
(2015)
Scientific Reports
, pp. 6
-
-
Mohanty, D.1
Dahlberg, K.2
King, D.M.3
David, L.A.4
Sefat, A.S.5
Wood, D.L.6
Daniel, C.7
Dhar, S.8
Mahajan, V.9
Lee, M.10
Albano, F.11
-
41
-
-
84992212821
-
Electrolyte system for high voltage li-ion cells
-
R. Petibon, J. Xia, L. Ma, M. K. G. Bauer, K. J. Nelson, and J. R. Dahn, "Electrolyte System for High Voltage Li-Ion Cells", J. Electrochem. Soc., 163, A2571 (2016).
-
(2016)
J. Electrochem. Soc.
, vol.163
, pp. A2571
-
-
Petibon, R.1
Xia, J.2
Ma, L.3
Bauer, M.K.G.4
Nelson, K.J.5
Dahn, J.R.6
-
42
-
-
85012906096
-
Calendar aging of NCA lithium-ion batteries investigated by differential voltage analysis and coulomb tracking
-
P. Keil and A. Jossen, "Calendar Aging of NCA Lithium-Ion Batteries Investigated by Differential Voltage Analysis and coulomb Tracking", J. Electrochem. Soc., 164, A6066 (2017).
-
(2017)
J. Electrochem. Soc.
, vol.164
, pp. A6066
-
-
Keil, P.1
Jossen, A.2
-
43
-
-
84919706100
-
2(NMC)/graphite pouch cells
-
2(NMC)/graphite pouch cells", J. Electrochem. Soc., 161, A1818 (2014).
-
(2014)
J. Electrochem. Soc.
, vol.161
, pp. A1818
-
-
Wang, D.Y.1
Xia, J.2
Ma, L.3
Nelson, K.J.4
Harlow, J.E.5
Xiong, D.6
Downie, L.E.7
Petibon, R.8
Burns, J.C.9
Xiao, A.10
Lamanna, W.M.11
Dahn, J.R.12
-
44
-
-
0038010286
-
Liquid electrolytes for lithium and lithium-ion batteries
-
G. E. Blomgren, "Liquid electrolytes for lithium and lithium-ion batteries", J. Power Sources, 119-121, 326 (2003).
-
(2003)
J. Power Sources
, vol.119-121
, pp. 326
-
-
Blomgren, G.E.1
-
45
-
-
84992212821
-
Electrolyte system for high voltage li-ion cells
-
R. Petibon, J. Xia, L. Ma, M. K. G. Bauer, K. J. Nelson, and J. R. Dahn, "Electrolyte system for high voltage li-ion cells", J. Electrochem. Soc., 163, A2571 (2016).
-
(2016)
J. Electrochem. Soc.
, vol.163
, pp. A2571
-
-
Petibon, R.1
Xia, J.2
Ma, L.3
Bauer, M.K.G.4
Nelson, K.J.5
Dahn, J.R.6
-
46
-
-
4544333503
-
2 electrodes
-
2 electrodes", Electrochem. Commun., 6, 1085 (2004).
-
(2004)
Electrochem. Commun.
, vol.6
, pp. 1085
-
-
Johnson, C.S.1
Kim, J.S.2
Lefief, C.3
Li, N.4
Vaughey, J.T.5
Thackeray, M.M.6
-
47
-
-
84925129996
-
-
13 Jan
-
M. M. Thackeray, C. S. Johnson, K. Amine, and J. Kim, "Lithium metal oxide electrodes for lithium cells and batteries", U. S. Pat. 6, 677, 082, 13 Jan. (2004).
-
(2004)
Lithium metal oxide electrodes for lithium cells and batteries
-
-
Thackeray, M.M.1
Johnson, C.S.2
Amine, K.3
Kim, J.4
-
48
-
-
0035525711
-
2", for lithium-ion batteries
-
2", for lithium-ion batteries", Electrochem. and Solid State Letters, 4, A191 (2001);.
-
(2001)
Electrochem. and Solid State Letters
, vol.4
, pp. A191
-
-
Lu, Z.1
McNeil, D.D.2
Dahn, J.R.3
-
49
-
-
0035758512
-
2 cathode materials for lithium-ion batteries
-
Z. Lu, D. D. MacNeil, and J. R. Dahn, "Layered Li[NixCo1-2xMnx]O2 cathode materials for lithium-ion batteries", Electrochem. Solid-State Letters, 4, A200 (2001).
-
(2001)
Electrochem. Solid-State Letters
, vol.4
, pp. A200
-
-
Lu, Z.1
MacNeil, D.D.2
Dahn, J.R.3
-
50
-
-
84876516045
-
High-Energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries
-
H. Yu and H. Zhou, "High-Energy Cathode Materials (Li2MnO3-LiMO2) for Lithium-Ion Batteries", J. Phys. Chem. Letters, 4, 1268 (2013).
-
(2013)
J. Phys. Chem. Letters
, vol.4
, pp. 1268
-
-
Yu, H.1
Zhou, H.2
-
51
-
-
84994780632
-
Recent advances on the understanding of structural and composition evolution of LMR cathodes for Li-ion batteries
-
P. Yan, J. Zheng, J. Xiao, C-M. Wang, and J-G. Zhang, "Recent advances on the understanding of structural and composition evolution of LMR cathodes for Li-ion batteries", Frontiers in Energy Res., 3, Article 26 (2015).
-
(2015)
Frontiers in Energy Res
, vol.3
-
-
Yan, P.1
Zheng, J.2
Xiao, J.3
Wang, C.-M.4
Zhang, J.-G.5
-
52
-
-
84934896487
-
Recent progress in theoretical and computational investigations of li-ion battery materials and electrolytes
-
M. D. Bhattab and C. O'Dwyer, "Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes", Phys. Chem. Chem. Phys., 17, 4799 (2015).
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, pp. 4799
-
-
Bhattab, M.D.1
O'Dwyer, C.2
-
53
-
-
84923339475
-
Structural and chemical evolution of Li-And Mn-rich layered cathode material
-
J. Zheng, P. Xu, M. Gu, J. Xiao, N. D. Browning, P. Yan, C. Wang, and J-G. Zhang, "Structural and Chemical Evolution of Li-And Mn-Rich Layered Cathode Material", Chem. Mater., 27, 1381 (2015).
-
(2015)
Chem. Mater.
, vol.27
, pp. 1381
-
-
Zheng, J.1
Xu, P.2
Gu, M.3
Xiao, J.4
Browning, N.D.5
Yan, P.6
Wang, C.7
Zhang, J.-G.8
-
54
-
-
84891418027
-
The role of composition in the atomic structure, oxygen loss, and capacity of layered Li-Mn-Ni oxide cathodes
-
K. A. Jarvis, C-C. Wang, A. Manthiram, and P. J. Ferreora. "The role of composition in the atomic structure, oxygen loss, and capacity of layered Li-Mn-Ni oxide cathodes", J. Mater. Chem. A, 2, 1353 (2014).
-
(2014)
J. Mater. Chem. a
, vol.2
, pp. 1353
-
-
Jarvis, K.A.1
Wang, C.-C.2
Manthiram, A.3
Ferreora, P.J.4
-
55
-
-
84977073557
-
Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries
-
B. Qiu, M. Zhang, L. Wu, J. Wang, Y. Xia, D. Qian, H. Liu, S. Hy, Y. Chen, K. An, Y. Zhu, Z. Liu, and Y. S. Meng, "Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries", Nature Comm., | 7:12108 | DOI:10.1038/ncomms12108 | (2016).
-
(2016)
Nature Comm.
, vol.7
, pp. 12108
-
-
Qiu, B.1
Zhang, M.2
Wu, L.3
Wang, J.4
Xia, Y.5
Qian, D.6
Liu, H.7
Hy, S.8
Chen, Y.9
An, K.10
Zhu, Y.11
Liu, Z.12
Meng, Y.S.13
-
56
-
-
84876007861
-
High performance Li2Ru1- yMnyO3 (0.2 ≤ y ≤ 0.8) cathode materials for rechargeable lithium-ion batteries: Their understanding
-
M. Sathiya, K. Ramesha, G. Rousse, D. Foix, D. Gonbeau, A. S. Prakash, M. L. Doublet, K. Hemalatha, and J.-M. Tarascon, "High Performance Li2Ru1- yMnyO3 (0.2 ≤ y ≤ 0.8) Cathode Materials for Rechargeable Lithium-Ion Batteries: Their Understanding", Chem. Mater., 25, 1121 (2013).
-
(2013)
Chem. Mater.
, vol.25
, pp. 1121
-
-
Sathiya, M.1
Ramesha, K.2
Rousse, G.3
Foix, D.4
Gonbeau, D.5
Prakash, A.S.6
Doublet, M.L.7
Hemalatha, K.8
Tarascon, J.-M.9
-
57
-
-
84887532383
-
Li4NiTeO6 as a positive electrode for Li-ion batteries
-
M. Sathiya, K. Ramesha, G. Rousse, D. Foix, D. Gonbeau, K. Guruprakash, A. S. Prakash, M. L. Doublet, and J-M. Tarascon, "Li4NiTeO6 as a positive electrode for Li-ion batteries", Chem. Commun., 49, 11376 (2013).
-
(2013)
Chem. Commun.
, vol.49
, pp. 11376
-
-
Sathiya, M.1
Ramesha, K.2
Rousse, G.3
Foix, D.4
Gonbeau, D.5
Guruprakash, K.6
Prakash, A.S.7
Doublet, M.L.8
Tarascon, J.-M.9
-
58
-
-
84919732942
-
Solid state NMrof the positive electrode materials Li2Ru1-ySnyO3 for Lithium-ion batteries
-
E Salager, V. Sarou-Karian, M. Sathiya, M. Tang, J-B. Leriche, P. Melin, Z. Wang, H. Vezin, C. Bessada, M. Deschaps, and J-M. Tarascon, "Solid State NMRof the Positive Electrode Materials Li2Ru1-ySnyO3 for Lithium-ion batteries", Chem. Mater., 26, 7009 (2014).
-
(2014)
Chem. Mater.
, vol.26
, pp. 7009
-
-
Salager, E.1
Sarou-Karian, V.2
Sathiya, M.3
Tang, M.4
Leriche, J.-B.5
Melin, P.6
Wang, Z.7
Vezin, H.8
Bessada, C.9
Deschaps, M.10
Tarascon, J.-M.11
-
59
-
-
84925491976
-
Origin of voltage decay in high-capacity layered oxide electrodes
-
M. Sathiya, A. M. Abakumov, D. Foix, G. Rousse, K. Ramesha, M. Saubaǹere, M. L. Doublet, H.Vezin, C. P. Laisa, A. S. Prakash, D. Gonbeau, G.VanTendeloo, and J-M. Tarascon, "Origin of voltage decay in high-capacity layered oxide electrodes", Nature Mater., 14, 230 (2015).
-
(2015)
Nature Mater.
, vol.14
, pp. 230
-
-
Sathiya, M.1
Abakumov, A.M.2
Foix, D.3
Rousse, G.4
Ramesha, K.5
Saubaǹere, M.6
Doublet, M.L.7
Vezin, H.8
Laisa, C.P.9
Prakash, A.S.10
Gonbeau, D.11
VanTendeloo, G.12
Tarascon, J.-M.13
-
60
-
-
84975893295
-
The structural and chemical origin of the oxygen redox activity in layered and cationdisordered Li-excess cathode materials
-
D-H. Seo, J. Lee, A. Urban, R. Malik, S. Y. Kang, and G. Ceder, "The structural and chemical origin of the oxygen redox activity in layered and cationdisordered Li-excess cathode materials", NatureChem., DOI:10.1038/NCHEM.2524(2016).
-
NatureChem
-
-
Seo, D.-H.1
Lee, J.2
Urban, A.3
Malik, R.4
Kang, S.Y.5
Ceder, G.6
-
61
-
-
84940568829
-
A new disordered rock-salt Li-excess material with high capacity: Li1.25Nb0.25Mn0.5O2
-
R. Wang, X. Li, L. Liu, J. Lee, D-H. Seo, S-H. Bo, A. Urban, and G. Ceder, "A new disordered rock-salt Li-excess material with high capacity: Li1.25Nb0.25Mn0.5O2", Electrochem. Commun., 60, 70 (2016).
-
(2016)
Electrochem. Commun.
, vol.60
, pp. 70
-
-
Wang, R.1
Li, X.2
Liu, L.3
Lee, J.4
Seo, D.-H.5
Bo, S.-H.6
Urban, A.7
Ceder, G.8
-
62
-
-
84935024208
-
High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4 -based system with cation-disordered rocksalt structure
-
N. Yabuuchi, M. Takeuchi, M. Nakayama, H. Shiba, M. Ogaawa, K. Nakayama, T. Ohta, D. Endo, T. Ozaki, T. Inamasu, K. Sato, and S. Komaba, "High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4 -based system with cation-disordered rocksalt structure", Proc. Natl Acad. Sci. USA, 112, 7650 (2015).
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. 7650
-
-
Yabuuchi, N.1
Takeuchi, M.2
Nakayama, M.3
Shiba, H.4
Ogaawa, M.5
Nakayama, K.6
Ohta, T.7
Endo, D.8
Ozaki, T.9
Inamasu, T.10
Sato, K.11
Komaba, S.12
-
63
-
-
84946143674
-
A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li-Ni- Ti-mo oxides
-
J. Lee, D-H. Seo, M. Balasubramanian, N. Twu, X. Li, and G. Ceder, "A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li-Ni- Ti-Mo oxides", Energy Environ. Sci., 8, 3255 (2015).
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 3255
-
-
Lee, J.1
Seo, D.-H.2
Balasubramanian, M.3
Twu, N.4
Li, X.5
Ceder, G.6
-
64
-
-
84921721403
-
Critical roles of binders and formulation at multiscales of silicon-based composite electrodes
-
D. Mazouzi, Z. Karkar, C. R. Hernandez, P. J. Manero, D. Guyomard, L. Roue', and B. Lestriez, "Critical roles of binders and formulation at multiscales of silicon-based composite electrodes", J. Power Sources, 280, 533 (2015).
-
(2015)
J. Power Sources
, vol.280
, pp. 533
-
-
Mazouzi, D.1
Karkar, Z.2
Hernandez, C.R.3
Manero, P.J.4
Guyomard, D.5
Roue, L.6
Lestriez, B.7
-
65
-
-
84958567940
-
Effect of solid loading on the processing and behavior of PEDOT:PSS binder based composite cathodes for lithium ion batteries
-
P. R. Dasa, L. Komsiyskaa, O. Ostersa, and G. Wittstock, "Effect of solid loading on the processing and behavior of PEDOT:PSS binder based composite cathodes for lithium ion batteries", Synthetic Metals, 215, 86 (2016).
-
(2016)
Synthetic Metals
, vol.215
, pp. 86
-
-
Dasa, P.R.1
Komsiyskaa, L.2
Ostersa, O.3
Wittstock, G.4
-
66
-
-
84943396376
-
A review of nanofibrous structures in lithium ion batteries
-
E. S. Pampal, E. Stojanovska, B. Simon, and Ali Kilic, "A review of nanofibrous structures in lithium ion batteries", J. Power Sources, 300, 199 (2015).
-
(2015)
J. Power Sources
, vol.300
, pp. 199
-
-
Pampal, E.S.1
Stojanovska, E.2
Simon, B.3
Kilic, A.4
-
67
-
-
84874026164
-
Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes
-
D. Liu, Z. Yang, P.Wang, F. Li, D.Wang, and D. He, "Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes", Nanoscale, 5, 1917 (2013).
-
(2013)
Nanoscale
, vol.5
, pp. 1917
-
-
Liu, D.1
Yang, Z.2
Wang, P.3
Li, F.4
Wang, D.5
He, D.6
|