메뉴 건너뛰기




Volumn 78, Issue , 2017, Pages 14-22

Intelligent computational model for classification of sub-Golgi protein using oversampling and fisher feature selection methods

Author keywords

Bigram position specific scoring matrix; Dipeptide composition; Fisher feature selection; Golgi protein; k nearest neighbor; Split pseudo amino acid composition

Indexed keywords

BIOINFORMATICS; BIOSYNTHESIS; COMPUTATION THEORY; COMPUTATIONAL METHODS; MOTION COMPENSATION; NEAREST NEIGHBOR SEARCH; NEURODEGENERATIVE DISEASES; NUMERICAL METHODS; PATTERN RECOGNITION; PLANTS (BOTANY); PROTEINS;

EID: 85019267862     PISSN: 09333657     EISSN: 18732860     Source Type: Journal    
DOI: 10.1016/j.artmed.2017.05.001     Document Type: Article
Times cited : (36)

References (82)
  • 1
    • 0003422388 scopus 로고
    • Molecular cell biology: Scientific American Books
    • New York
    • [1] Darnell, J.E., Lodish, H., Baltimore, D., Molecular cell biology: Scientific American Books. 1990 New York.
    • (1990)
    • Darnell, J.E.1    Lodish, H.2    Baltimore, D.3
  • 2
    • 15944404360 scopus 로고    scopus 로고
    • The cell
    • Sinauer Associates Sunderland
    • [2] Cooper, G.M., Hausman, R.E., The cell. 2000, Sinauer Associates, Sunderland.
    • (2000)
    • Cooper, G.M.1    Hausman, R.E.2
  • 3
    • 58149528729 scopus 로고    scopus 로고
    • The critical role of Golgi cells in regulating spatio-temporal integration and plasticity at the cerebellum input stage
    • [3] D‘Angelo, E., The critical role of Golgi cells in regulating spatio-temporal integration and plasticity at the cerebellum input stage. Front Neurosci, 2, 2008, 8.
    • (2008) Front Neurosci , vol.2 , pp. 8
    • D‘Angelo, E.1
  • 4
    • 0033594080 scopus 로고    scopus 로고
    • Golgi structure in three dimensions: functional insights from the normal rat kidney cell
    • [4] Ladinsky, M.S., Mastronarde, D.N., McIntosh, J.R., Howell, K.E., Staehelin, L.A., Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 144 (1999), 1135–1149.
    • (1999) J Cell Biol , vol.144 , pp. 1135-1149
    • Ladinsky, M.S.1    Mastronarde, D.N.2    McIntosh, J.R.3    Howell, K.E.4    Staehelin, L.A.5
  • 5
    • 0031928535 scopus 로고    scopus 로고
    • Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus: a challenging hypothesis
    • [5] Hoyer, S., Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus: a challenging hypothesis. J Neural Transm 105 (1998), 415–422.
    • (1998) J Neural Transm , vol.105 , pp. 415-422
    • Hoyer, S.1
  • 6
    • 0035875663 scopus 로고    scopus 로고
    • Structure of Golgi α-mannosidase II: a target for inhibition of growth and metastasis of cancer cells
    • [6] van den Elsen, J.M., Kuntz, D.A., Rose, D.R., Structure of Golgi α-mannosidase II: a target for inhibition of growth and metastasis of cancer cells. EMBO J 20 (2001), 3008–3017.
    • (2001) EMBO J , vol.20 , pp. 3008-3017
    • van den Elsen, J.M.1    Kuntz, D.A.2    Rose, D.R.3
  • 7
    • 77949438990 scopus 로고    scopus 로고
    • Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson's disease models
    • [7] Su, L.J., Auluck, P.K., Outeiro, T.F., Yeger-Lotem, E., Kritzer, J.A., Tardiff, D.F., et al. Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson's disease models. Dis. Models Mech 3 (2010), 194–208.
    • (2010) Dis. Models Mech , vol.3 , pp. 194-208
    • Su, L.J.1    Auluck, P.K.2    Outeiro, T.F.3    Yeger-Lotem, E.4    Kritzer, J.A.5    Tardiff, D.F.6
  • 8
    • 0023038233 scopus 로고
    • Dendritic changes in the basal nucleus of Meynert and in the diagonal band nucleus in Alzheimer's disease—a quantitative Golgi investigation
    • [8] Arendt, T., Zveuintshva, H., Lkontovich, T., Dendritic changes in the basal nucleus of Meynert and in the diagonal band nucleus in Alzheimer's disease—a quantitative Golgi investigation. Neuroscience 19 (1986), 1265–1278.
    • (1986) Neuroscience , vol.19 , pp. 1265-1278
    • Arendt, T.1    Zveuintshva, H.2    Lkontovich, T.3
  • 10
    • 85009962818 scopus 로고    scopus 로고
    • Data Mining: Practical machine learning tools and techniques
    • Morgan Kaufmann
    • [10] Witten, I.H., Frank, E., Hall, M.A., Pal, C.J., Data Mining: Practical machine learning tools and techniques. 2016, Morgan Kaufmann.
    • (2016)
    • Witten, I.H.1    Frank, E.2    Hall, M.A.3    Pal, C.J.4
  • 11
    • 0034922742 scopus 로고    scopus 로고
    • Machine learning for medical diagnosis: history, state of the art and perspective
    • [11] Kononenko, I., Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med 23 (2001), 89–109.
    • (2001) Artif Intell Med , vol.23 , pp. 89-109
    • Kononenko, I.1
  • 12
    • 85013740060 scopus 로고    scopus 로고
    • Using machine learning to predict laboratory test results
    • [12] Luo, Y., Szolovits, P., Dighe, A.S., Baron, J.M., Using machine learning to predict laboratory test results. Am J Clin Pathol 145 (2016), 778–788.
    • (2016) Am J Clin Pathol , vol.145 , pp. 778-788
    • Luo, Y.1    Szolovits, P.2    Dighe, A.S.3    Baron, J.M.4
  • 13
    • 78751550064 scopus 로고    scopus 로고
    • Identify Golgi protein types with modified mahalanobis discriminant algorithm and pseudo amino acid composition
    • [13] Ding, H., Liu, L., Guo, F.-B., Huang, J., Lin, H., Identify Golgi protein types with modified mahalanobis discriminant algorithm and pseudo amino acid composition. Protein Pept Lett 18 (2011), 58–63.
    • (2011) Protein Pept Lett , vol.18 , pp. 58-63
    • Ding, H.1    Liu, L.2    Guo, F.-B.3    Huang, J.4    Lin, H.5
  • 16
    • 84957575309 scopus 로고    scopus 로고
    • A novel feature extraction method with feature selection to identify Golgi-resident protein types from imbalanced data
    • [16] Yang, R., Zhang, C., Gao, R., Zhang, L., A novel feature extraction method with feature selection to identify Golgi-resident protein types from imbalanced data. Int J Mol Sci, 17, 2016, 218.
    • (2016) Int J Mol Sci , vol.17 , pp. 218
    • Yang, R.1    Zhang, C.2    Gao, R.3    Zhang, L.4
  • 17
    • 84949870971 scopus 로고    scopus 로고
    • Predicting Golgi-resident protein types using pseudo amino acid compositions: approaches with positional specific physicochemical properties
    • [17] Jiao, Y.-S., Du, P.-F., Predicting Golgi-resident protein types using pseudo amino acid compositions: approaches with positional specific physicochemical properties. J Theor Biol 391 (2016), 35–42.
    • (2016) J Theor Biol , vol.391 , pp. 35-42
    • Jiao, Y.-S.1    Du, P.-F.2
  • 18
    • 84965002305 scopus 로고    scopus 로고
    • Prediction of Golgi-resident protein types using general form of Chou's pseudo-amino acid compositions: approaches with minimal redundancy maximal relevance feature selection
    • [18] Jiao, Y.-S., Du, P.-F., Prediction of Golgi-resident protein types using general form of Chou's pseudo-amino acid compositions: approaches with minimal redundancy maximal relevance feature selection. J Theor Biol 402 (2016), 38–44.
    • (2016) J Theor Biol , vol.402 , pp. 38-44
    • Jiao, Y.-S.1    Du, P.-F.2
  • 20
    • 85195092893 scopus 로고    scopus 로고
    • The effective redistribution for imbalance dataset: relocating Safe-eevel SMOTE with minority outcast handling
    • [20] Siriseriwan, W., Sinapiromsaran, K., Tipawanna, M., Bunkhumpornpat, C., Keatruangkamala, K., The effective redistribution for imbalance dataset: relocating Safe-eevel SMOTE with minority outcast handling. Chiang Mai J Sci 43 (2016), 1288–1300.
    • (2016) Chiang Mai J Sci , vol.43 , pp. 1288-1300
    • Siriseriwan, W.1    Sinapiromsaran, K.2    Tipawanna, M.3    Bunkhumpornpat, C.4    Keatruangkamala, K.5
  • 21
    • 84968867166 scopus 로고    scopus 로고
    • Using the SMOTE technique and hybrid features to predict the types of ion channel-targeted conotoxins
    • [21] Zhang, L., Zhang, C., Gao, R., Yang, R., Song, Q., Using the SMOTE technique and hybrid features to predict the types of ion channel-targeted conotoxins. J Theor Biol 403 (2016), 75–84.
    • (2016) J Theor Biol , vol.403 , pp. 75-84
    • Zhang, L.1    Zhang, C.2    Gao, R.3    Yang, R.4    Song, Q.5
  • 22
    • 84982830440 scopus 로고    scopus 로고
    • A survey on evolutionary computation approaches to feature selection
    • [22] Xue, B., Zhang, M., Browne, W.N., Yao, X., A survey on evolutionary computation approaches to feature selection. IEEE Trans Evolut Comput 20 (2016), 606–626.
    • (2016) IEEE Trans Evolut Comput , vol.20 , pp. 606-626
    • Xue, B.1    Zhang, M.2    Browne, W.N.3    Yao, X.4
  • 23
    • 84995537924 scopus 로고    scopus 로고
    • Feature selection methods for big data bioinformatics: a survey from the search perspective
    • [23] Wang, L., Wang, Y., Chang, Q., Feature selection methods for big data bioinformatics: a survey from the search perspective. Methods 111 (2016), 21–31.
    • (2016) Methods , vol.111 , pp. 21-31
    • Wang, L.1    Wang, Y.2    Chang, Q.3
  • 25
    • 85019236894 scopus 로고    scopus 로고
    • Feature fusion based SVM classifier for protein subcellular localization prediction
    • [25] Rahman, J., Mondal, M.N.I., Islam, K.B., Hasan, A.M., Feature fusion based SVM classifier for protein subcellular localization prediction. J Integr Bioinformatics, 13, 2016, 288.
    • (2016) J Integr Bioinformatics , vol.13 , pp. 288
    • Rahman, J.1    Mondal, M.N.I.2    Islam, K.B.3    Hasan, A.M.4
  • 26
    • 84946867095 scopus 로고    scopus 로고
    • Prediction of protein–protein interaction sites with machine-learning-based data-cleaning and post-filtering procedures
    • [26] Liu, G.H., Shen, H.B., Yu, D.J., Prediction of protein–protein interaction sites with machine-learning-based data-cleaning and post-filtering procedures. J Membr Biol 249 (2016), 141–153.
    • (2016) J Membr Biol , vol.249 , pp. 141-153
    • Liu, G.H.1    Shen, H.B.2    Yu, D.J.3
  • 27
    • 2542458612 scopus 로고    scopus 로고
    • Classification of nuclear receptors based on amino acid composition and dipeptide composition
    • [27] Bhasin, M., Raghava, G.P., Classification of nuclear receptors based on amino acid composition and dipeptide composition. J Biol Chem 279 (2004), 23262–23266.
    • (2004) J Biol Chem , vol.279 , pp. 23262-23266
    • Bhasin, M.1    Raghava, G.P.2
  • 28
    • 80955133208 scopus 로고    scopus 로고
    • The influence of dipeptide composition on protein folding rates
    • [28] Guo, J.X., Rao, N.N., The influence of dipeptide composition on protein folding rates. Adv Mater Res, 2012, 157–160.
    • (2012) Adv Mater Res , pp. 157-160
    • Guo, J.X.1    Rao, N.N.2
  • 29
    • 80054071147 scopus 로고    scopus 로고
    • MemHyb: predicting membrane protein types by hybridizing SAAC and PSSM
    • [29] Hayat, M., Khan, A., MemHyb: predicting membrane protein types by hybridizing SAAC and PSSM. J Theor Biol 292 (2012), 93–102.
    • (2012) J Theor Biol , vol.292 , pp. 93-102
    • Hayat, M.1    Khan, A.2
  • 30
    • 84862651693 scopus 로고    scopus 로고
    • Mito-GSAAC: mitochondria prediction using genetic ensemble classifier and split amino acid composition
    • [30] Afridi, T.H., Khan, A., Lee, Y.S., Mito-GSAAC: mitochondria prediction using genetic ensemble classifier and split amino acid composition. Amino Acids 42 (2012), 1443–1454.
    • (2012) Amino Acids , vol.42 , pp. 1443-1454
    • Afridi, T.H.1    Khan, A.2    Lee, Y.S.3
  • 31
    • 84978712182 scopus 로고    scopus 로고
    • Protein sequence analysis by incorporating modified chaos game and physicochemical properties into Chou's general pseudo amino acid composition
    • [31] Xu, C., Sun, D., Liu, S., Zhang, Y., Protein sequence analysis by incorporating modified chaos game and physicochemical properties into Chou's general pseudo amino acid composition. J Theor Biol 406 (2016), 105–115.
    • (2016) J Theor Biol , vol.406 , pp. 105-115
    • Xu, C.1    Sun, D.2    Liu, S.3    Zhang, Y.4
  • 32
    • 42749090472 scopus 로고    scopus 로고
    • The modified Mahalanobis discriminant for predicting outer membrane proteins by using Chou's pseudo amino acid composition
    • [32] Lin, H., The modified Mahalanobis discriminant for predicting outer membrane proteins by using Chou's pseudo amino acid composition. J Theor Biol 252 (2008), 350–356.
    • (2008) J Theor Biol , vol.252 , pp. 350-356
    • Lin, H.1
  • 33
    • 65349165718 scopus 로고    scopus 로고
    • Prediction of cell wall lytic enzymes using Chou's amphiphilic pseudo amino acid composition
    • [33] Ding, H., Luo, L., Lin, H., Prediction of cell wall lytic enzymes using Chou's amphiphilic pseudo amino acid composition. Protein Pept Lett 16 (2009), 351–355.
    • (2009) Protein Pept Lett , vol.16 , pp. 351-355
    • Ding, H.1    Luo, L.2    Lin, H.3
  • 34
    • 77958586156 scopus 로고    scopus 로고
    • Predicting ion channels and their types by the dipeptide mode of pseudo amino acid composition
    • [34] Lin, H., Ding, H., Predicting ion channels and their types by the dipeptide mode of pseudo amino acid composition. J Theor Biol 269 (2011), 64–69.
    • (2011) J Theor Biol , vol.269 , pp. 64-69
    • Lin, H.1    Ding, H.2
  • 35
    • 84903592187 scopus 로고    scopus 로고
    • iCTX-type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels
    • [35] Ding, H., Deng, E.-Z., Yuan, L.-F., Liu, L., Lin, H., Chen, W., et al. iCTX-type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels. BioMed Res Int, 2014, 2014.
    • (2014) BioMed Res Int , vol.2014
    • Ding, H.1    Deng, E.-Z.2    Yuan, L.-F.3    Liu, L.4    Lin, H.5    Chen, W.6
  • 36
    • 84859932176 scopus 로고    scopus 로고
    • PseAAC-Builder:across-platform stand-alone program for generating various special Chou's pseudo-amino acid compositions
    • [36] Du, P., Wang, X., Xu, C., Gao, Y., PseAAC-Builder:across-platform stand-alone program for generating various special Chou's pseudo-amino acid compositions. Anal Biochem, 2012, 2012.
    • (2012) Anal Biochem , pp. 2012
    • Du, P.1    Wang, X.2    Xu, C.3    Gao, Y.4
  • 37
    • 84875576158 scopus 로고    scopus 로고
    • propy: a tool to generate various modes of Chou's PseAAC
    • [37] Cao, D.-S., Xu, Q.-S., Liang, Y.-Z., propy: a tool to generate various modes of Chou's PseAAC. Bioinformatics 29 (2013), 960–962.
    • (2013) Bioinformatics , vol.29 , pp. 960-962
    • Cao, D.-S.1    Xu, Q.-S.2    Liang, Y.-Z.3
  • 38
    • 84895429516 scopus 로고    scopus 로고
    • PseAAC-General: fast building various modes of general form of Chou's pseudo-amino acid composition for large-scale protein datasets
    • [38] Du, P., Gu, S., Jiao, Y., PseAAC-General: fast building various modes of general form of Chou's pseudo-amino acid composition for large-scale protein datasets. Int J Mol Sci 15 (2014), 3495–3506.
    • (2014) Int J Mol Sci , vol.15 , pp. 3495-3506
    • Du, P.1    Gu, S.2    Jiao, Y.3
  • 39
    • 84979865452 scopus 로고    scopus 로고
    • Pse-in-One: a webserver for generating various modes of pseudo components of DNA, RNA, and protein sequences
    • gkv458
    • [39] Liu, B., Liu, F., Wang, X., Chen, J., Fang, L., Chou K-, C., Pse-in-One: a webserver for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res, 2015 gkv458.
    • (2015) Nucleic Acids Res
    • Liu, B.1    Liu, F.2    Wang, X.3    Chen, J.4    Fang, L.5    Chou K-, C.6
  • 40
    • 84922387565 scopus 로고    scopus 로고
    • PseKNC-General: a cross-platform package for generating various modes of pseudo nucleotide compositions
    • [40] Chen, W., Zhang, X., Brooker, J., Lin, H., Zhang, L., Chou, K.C., PseKNC-General: a cross-platform package for generating various modes of pseudo nucleotide compositions. Bioinformatics 31 (2015), 119–120.
    • (2015) Bioinformatics , vol.31 , pp. 119-120
    • Chen, W.1    Zhang, X.2    Brooker, J.3    Lin, H.4    Zhang, L.5    Chou, K.C.6
  • 41
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • [41] Jones, D.T., Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292 (1999), 195–202.
    • (1999) J Mol Biol , vol.292 , pp. 195-202
    • Jones, D.T.1
  • 43
    • 84892457142 scopus 로고    scopus 로고
    • Prediction of protein structure classes using hybrid space of multi-profile Bayes and bi-gram probability feature spaces
    • [43] Hayat, M., Tahir, M., Khan, S.A., Prediction of protein structure classes using hybrid space of multi-profile Bayes and bi-gram probability feature spaces. J Theor Biol 346 (2014), 8–15.
    • (2014) J Theor Biol , vol.346 , pp. 8-15
    • Hayat, M.1    Tahir, M.2    Khan, S.A.3
  • 44
    • 84896293227 scopus 로고    scopus 로고
    • A tri-gram based feature extraction technique using linear probabilities of position specific scoring matrix for protein fold recognition
    • [44] Paliwal, K.K., Sharma, A., Lyons, J., Dehzangi, A., A tri-gram based feature extraction technique using linear probabilities of position specific scoring matrix for protein fold recognition. IEEE Trans Nanobiosci 13 (2014), 44–50.
    • (2014) IEEE Trans Nanobiosci , vol.13 , pp. 44-50
    • Paliwal, K.K.1    Sharma, A.2    Lyons, J.3    Dehzangi, A.4
  • 46
    • 34447321808 scopus 로고    scopus 로고
    • Using pseudo amino acid composition to predict protein subnuclear localization: approached with PSSM
    • [46] Mundra, P., Kumar, M., Kumar, K.K., Jayaraman, V.K., Kulkarni, B.D., Using pseudo amino acid composition to predict protein subnuclear localization: approached with PSSM. Pattern Recognit Lett 28 (2007), 1610–1615.
    • (2007) Pattern Recognit Lett , vol.28 , pp. 1610-1615
    • Mundra, P.1    Kumar, M.2    Kumar, K.K.3    Jayaraman, V.K.4    Kulkarni, B.D.5
  • 47
    • 84871963701 scopus 로고    scopus 로고
    • A feature extraction technique using bi-gram probabilities of position specific scoring matrix for protein fold recognition
    • [47] Sharma, A., Lyons, J., Dehzangi, A., Paliwal, K.K., A feature extraction technique using bi-gram probabilities of position specific scoring matrix for protein fold recognition. J Theor Biol 320 (2013), 41–46.
    • (2013) J Theor Biol , vol.320 , pp. 41-46
    • Sharma, A.1    Lyons, J.2    Dehzangi, A.3    Paliwal, K.K.4
  • 48
    • 84885112194 scopus 로고    scopus 로고
    • AcalPred: a sequence-based tool for discriminating between acidic and alkaline enzymes
    • [48] Lin, H., Chen, W., Ding, H., AcalPred: a sequence-based tool for discriminating between acidic and alkaline enzymes. PLoS One, 8, 2013, e75726.
    • (2013) PLoS One , vol.8 , pp. e75726
    • Lin, H.1    Chen, W.2    Ding, H.3
  • 49
    • 84155181072 scopus 로고    scopus 로고
    • ANN vs: SVM: Which one performs better in classification of MCCs in mammogram imaging
    • [49] Ren, J., ANN vs: SVM: Which one performs better in classification of MCCs in mammogram imaging. Knowledge-Based Syst 26 (2012), 144–153.
    • (2012) Knowledge-Based Syst , vol.26 , pp. 144-153
    • Ren, J.1
  • 51
    • 0000512977 scopus 로고    scopus 로고
    • Data Mining for Direct Marketing: Problems and Solutions
    • KDD1998
    • [51] Ling, C.X., Li, C., Data Mining for Direct Marketing: Problems and Solutions. 2017, 73–79 KDD1998.
    • (2017) , pp. 73-79
    • Ling, C.X.1    Li, C.2
  • 53
    • 0003922190 scopus 로고    scopus 로고
    • Pattern Classification
    • John Wiley & Sons
    • [53] Duda, R.O., Hart, P.E., Stork, D.G., Pattern Classification. 2012, John Wiley & Sons.
    • (2012)
    • Duda, R.O.1    Hart, P.E.2    Stork, D.G.3
  • 54
    • 85054068951 scopus 로고    scopus 로고
    • Feature selection for classification: a review
    • [54] Tang, J., Alelyani, S., Liu, H., Feature selection for classification: a review. Data Classif, 2014, 37.
    • (2014) Data Classif , pp. 37
    • Tang, J.1    Alelyani, S.2    Liu, H.3
  • 55
    • 0003922190 scopus 로고    scopus 로고
    • Pattern classification
    • 2nd ed. New York
    • [55] Duda, R.O., Hart, P.E., Stork, D.G., Pattern classification. 2nd ed., 2001, 55 New York.
    • (2001) , pp. 55
    • Duda, R.O.1    Hart, P.E.2    Stork, D.G.3
  • 56
    • 0000581356 scopus 로고
    • An introduction to kernel and nearest-neighbor nonparametric regression
    • [56] Altman, N.S., An introduction to kernel and nearest-neighbor nonparametric regression. Am Statistician 46 (1992), 175–185.
    • (1992) Am Statistician , vol.46 , pp. 175-185
    • Altman, N.S.1
  • 57
    • 4243537514 scopus 로고
    • Alternative k-nearest neighbour rules in supervised pattern recognition: part 1: k-nearest neighbour classification by using alternative voting rules
    • [57] Coomans, D., Massart, D.L., Alternative k-nearest neighbour rules in supervised pattern recognition: part 1: k-nearest neighbour classification by using alternative voting rules. Anal Chim Acta 136 (1982), 15–27.
    • (1982) Anal Chim Acta , vol.136 , pp. 15-27
    • Coomans, D.1    Massart, D.L.2
  • 58
    • 84981765491 scopus 로고    scopus 로고
    • Identification of DNA binding proteins using evolutionary profiles position specific scoring matrix
    • [58] Waris, M., Ahmad, K., Hayat, M., Identification of DNA binding proteins using evolutionary profiles position specific scoring matrix. J Neurocomput 199 (2016), 154–162.
    • (2016) J Neurocomput , vol.199 , pp. 154-162
    • Waris, M.1    Ahmad, K.2    Hayat, M.3
  • 59
    • 84904052819 scopus 로고    scopus 로고
    • Choice of neighbor order in nearest-neighbor classification
    • [59] Hall, P., Park, B.U., Samworth, R.J., Choice of neighbor order in nearest-neighbor classification. Ann Stat 213 (2008), 5–52.
    • (2008) Ann Stat , vol.213 , pp. 5-52
    • Hall, P.1    Park, B.U.2    Samworth, R.J.3
  • 60
    • 84994316617 scopus 로고    scopus 로고
    • iOri-Human: identify human origin of replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition
    • [60] Zhang, C.-J., Tang, H., Li, W.-C., Lin, H., Chen, W., Chou, K.-C., iOri-Human: identify human origin of replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition. Oncotarget 7 (2016), 69783–69793.
    • (2016) Oncotarget , vol.7 , pp. 69783-69793
    • Zhang, C.-J.1    Tang, H.2    Li, W.-C.3    Lin, H.4    Chen, W.5    Chou, K.-C.6
  • 61
    • 84922071321 scopus 로고    scopus 로고
    • Identification of mitochondrial proteins of malaria parasite using analysis of variance
    • [61] Ding, H., Li, D., Identification of mitochondrial proteins of malaria parasite using analysis of variance. Amino Acids 47 (2015), 329–333.
    • (2015) Amino Acids , vol.47 , pp. 329-333
    • Ding, H.1    Li, D.2
  • 62
    • 84967214935 scopus 로고    scopus 로고
    • Machine learning approaches for prediction of extracellular matrix proteins using hybrid feature space
    • [62] Ali, F., Hayat, M., Machine learning approaches for prediction of extracellular matrix proteins using hybrid feature space. J Theor Biol 403 (2016), 30–37.
    • (2016) J Theor Biol , vol.403 , pp. 30-37
    • Ali, F.1    Hayat, M.2
  • 63
    • 84909687958 scopus 로고
    • Cross-validation, the jackknife, and the bootstrap: excess error estimation in forward logistic regression
    • Stanford University
    • [63] Gong, G., Cross-validation, the jackknife, and the bootstrap: excess error estimation in forward logistic regression. 1982, Stanford University.
    • (1982)
    • Gong, G.1
  • 64
    • 0037195776 scopus 로고    scopus 로고
    • Using functional domain composition and support vector machines for prediction of protein subcellular location
    • [64] Chou, K.-C., Cai, Y.-D., Using functional domain composition and support vector machines for prediction of protein subcellular location. J Biol Chem 277 (2002), 45765–45769.
    • (2002) J Biol Chem , vol.277 , pp. 45765-45769
    • Chou, K.-C.1    Cai, Y.-D.2
  • 65
    • 84979255705 scopus 로고    scopus 로고
    • iNuc-STNC: a sequence-based predictor for identification of nucleosome positioning in genomes by extending the concept of SAAC and Chou's PseAAC
    • [65] Tahir, M., Hayat, M., iNuc-STNC: a sequence-based predictor for identification of nucleosome positioning in genomes by extending the concept of SAAC and Chou's PseAAC. J Mol Biosyst 12 (2016), 2587–2593.
    • (2016) J Mol Biosyst , vol.12 , pp. 2587-2593
    • Tahir, M.1    Hayat, M.2
  • 66
    • 85019181082 scopus 로고    scopus 로고
    • Performance measures in evaluating machine learning based bioinformatics predictors for classifications
    • [66] Jiao, Y., Du, P., Performance measures in evaluating machine learning based bioinformatics predictors for classifications. Quant Biol, 2016, 1–11.
    • (2016) Quant Biol , pp. 1-11
    • Jiao, Y.1    Du, P.2
  • 67
    • 65349165718 scopus 로고    scopus 로고
    • Prediction of cell wall lytic enzymes using Chou's amphiphilic pseudo amino acid composition
    • [67] Ding, H., Luo, L., Lin, H., Prediction of cell wall lytic enzymes using Chou's amphiphilic pseudo amino acid composition. Protein Peptide Lett 16 (2009), 351–355.
    • (2009) Protein Peptide Lett , vol.16 , pp. 351-355
    • Ding, H.1    Luo, L.2    Lin, H.3
  • 68
    • 78650209947 scopus 로고    scopus 로고
    • Prediction of thermophilic proteins using feature selection technique
    • [68] Lin, H., Chen, W., Prediction of thermophilic proteins using feature selection technique. J Microbiol Methods 84 (2011), 67–70.
    • (2011) J Microbiol Methods , vol.84 , pp. 67-70
    • Lin, H.1    Chen, W.2
  • 69
    • 84953438875 scopus 로고    scopus 로고
    • The polymer physics of single DNA confined in nanochannels
    • [69] Dai, L., Renner, C.B., Doyle, P.S., The polymer physics of single DNA confined in nanochannels. Adv Colloid Interface Sci 232 (2016), 80–100.
    • (2016) Adv Colloid Interface Sci , vol.232 , pp. 80-100
    • Dai, L.1    Renner, C.B.2    Doyle, P.S.3
  • 70
    • 84903784979 scopus 로고    scopus 로고
    • Identification of bacteriophage virion proteins by the ANOVA feature selection and analysis
    • [70] Ding, H., Feng, P.-M., Chen, W., Lin, H., Identification of bacteriophage virion proteins by the ANOVA feature selection and analysis. Mol BioSyst 10 (2014), 2229–2235.
    • (2014) Mol BioSyst , vol.10 , pp. 2229-2235
    • Ding, H.1    Feng, P.-M.2    Chen, W.3    Lin, H.4
  • 71
    • 84982860421 scopus 로고    scopus 로고
    • Identification of bacterial cell wall lyases via pseudo amino acid composition
    • [71] Chen, X.-X., Tang, H., Li, W.-C., Wu, H., Chen, W., Ding, H., et al. Identification of bacterial cell wall lyases via pseudo amino acid composition. BioMed Res Int, 2016, 2016.
    • (2016) BioMed Res Int , vol.2016
    • Chen, X.-X.1    Tang, H.2    Li, W.-C.3    Wu, H.4    Chen, W.5    Ding, H.6
  • 72
    • 84878789801 scopus 로고    scopus 로고
    • Using over-represented tetrapeptides to predict protein submitochondria locations
    • [72] Lin, H., Chen, W., Yuan, L.-F., Li, Z.-Q., Ding, H., Using over-represented tetrapeptides to predict protein submitochondria locations. Acta Biotheor 61 (2013), 259–268.
    • (2013) Acta Biotheor , vol.61 , pp. 259-268
    • Lin, H.1    Chen, W.2    Yuan, L.-F.3    Li, Z.-Q.4    Ding, H.5
  • 73
    • 84959265987 scopus 로고    scopus 로고
    • Predicting bacteriophage proteins located in host cell with feature selection technique
    • [73] Ding, H., Liang, Z.-Y., Guo, F.-B., Huang, J., Chen, W., Lin, H., Predicting bacteriophage proteins located in host cell with feature selection technique. Comput Biol Med 71 (2016), 156–161.
    • (2016) Comput Biol Med , vol.71 , pp. 156-161
    • Ding, H.1    Liang, Z.-Y.2    Guo, F.-B.3    Huang, J.4    Chen, W.5    Lin, H.6
  • 74
    • 0029157083 scopus 로고
    • Prediction of protein structural classes
    • [74] Chou, K.-C., Zhang, C.-T., Prediction of protein structural classes. Crit Rev Biochem Mol Biol 30 (1995), 275–349.
    • (1995) Crit Rev Biochem Mol Biol , vol.30 , pp. 275-349
    • Chou, K.-C.1    Zhang, C.-T.2
  • 75
    • 84959356402 scopus 로고    scopus 로고
    • iSS-Hyb-mRMR: identification of splicing sites using hybrid space of trinucleotide composition and tetranucleotide composition
    • [75] Iqbal, M., Hayat, M., iSS-Hyb-mRMR: identification of splicing sites using hybrid space of trinucleotide composition and tetranucleotide composition. J Comput Methods Programs Biomed 128 (2016), 1–11.
    • (2016) J Comput Methods Programs Biomed , vol.128 , pp. 1-11
    • Iqbal, M.1    Hayat, M.2
  • 76
    • 0036007085 scopus 로고    scopus 로고
    • Prediction of protein structural classes by support vector machines
    • [76] Cai, Y.-D., Liu, X.-J., Xu, X.-B., Chou, K.-C., Prediction of protein structural classes by support vector machines. Comput Chem 26 (2002), 293–296.
    • (2002) Comput Chem , vol.26 , pp. 293-296
    • Cai, Y.-D.1    Liu, X.-J.2    Xu, X.-B.3    Chou, K.-C.4
  • 77
    • 84905060566 scopus 로고
    • Bootstrap methods: another look at the jackknife
    • Springer
    • [77] Efron, B., Bootstrap methods: another look at the jackknife. Breakthroughs in Statistics, 1992, Springer, 569–593.
    • (1992) Breakthroughs in Statistics , pp. 569-593
    • Efron, B.1
  • 78
    • 0030422272 scopus 로고    scopus 로고
    • Data mining using/spl Mscr//spl Lscr//spl Cscr/++ a machine learning library in C++ tools with artificial intelligence
    • [78] Kohavi, R., Sommerfield, D., Dougherty, J., Data mining using/spl Mscr//spl Lscr//spl Cscr/++ a machine learning library in C++ tools with artificial intelligence. Proceedings Eighth IEEE International Conference on: IEEE, 1996, 234–245.
    • (1996) Proceedings Eighth IEEE International Conference on: IEEE , pp. 234-245
    • Kohavi, R.1    Sommerfield, D.2    Dougherty, J.3
  • 79
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • [79] Kohavi, R., A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI (Stanford, CA), 1995, 1137–1145.
    • (1995) IJCAI (Stanford, CA) , pp. 1137-1145
    • Kohavi, R.1
  • 80
    • 84864758525 scopus 로고    scopus 로고
    • Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation
    • [80] Powers, D.M., Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J Chem Soc Faraday Trans 1, 2011.
    • (2011) J Chem Soc Faraday Trans 1
    • Powers, D.M.1
  • 81
    • 84970866422 scopus 로고
    • Diagnostic tests. 1: sensitivity and specificity
    • [81] Altman, D.G., Bland, J.M., Diagnostic tests. 1: sensitivity and specificity. BMJ, 308, 1994, 1552.
    • (1994) BMJ , vol.308 , pp. 1552
    • Altman, D.G.1    Bland, J.M.2
  • 82
    • 0031790628 scopus 로고    scopus 로고
    • Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine
    • [82] Atkinson, G., Nevill, A.M., Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 26 (1998), 217–238.
    • (1998) Sports Med , vol.26 , pp. 217-238
    • Atkinson, G.1    Nevill, A.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.