메뉴 건너뛰기




Volumn 20, Issue 4, 2016, Pages 606-626

A Survey on Evolutionary Computation Approaches to Feature Selection

Author keywords

Classification; data mining; evolutionary computation; feature selection; machine learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; CALCULATIONS; CLASSIFICATION (OF INFORMATION); DATA MINING; EVOLUTIONARY ALGORITHMS; LEARNING SYSTEMS; SURVEYS;

EID: 84982830440     PISSN: 1089778X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TEVC.2015.2504420     Document Type: Article
Times cited : (1420)

References (250)
  • 1
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • M. Dash and H. Liu, "Feature selection for classification," Intell. Data Anal., vol. 1, nos. 1-4, pp. 131-156, 1997.
    • (1997) Intell. Data Anal , vol.1 , Issue.1-4 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 2
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Mar
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, Mar. 2003.
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 3
    • 84904490572 scopus 로고    scopus 로고
    • Effective automated feature construction and selection for classification of biological sequences
    • A. S. U. Kamath, K. De Jong, and A. Shehu, "Effective automated feature construction and selection for classification of biological sequences," PLoS One, vol. 9, no. 7, 2014, Art. ID e99982.
    • (2014) PLoS One , vol.9 , Issue.7
    • Kamath, A.S.U.1    De Jong, K.2    Shehu, A.3
  • 4
    • 84866846598 scopus 로고    scopus 로고
    • Evolutionary multi-objective optimization of trace transform for invariant feature extraction
    • Brisbane, QLD, Australia
    • W. A. Albukhanajer, Y. Jin, J. A. Briffa, and G. Williams, "Evolutionary multi-objective optimization of trace transform for invariant feature extraction," in Proc. IEEE Congr. Evol. Comput. (CEC), Brisbane, QLD, Australia, 2012, pp. 1-8.
    • (2012) Proc. IEEE Congr. Evol. Comput. (CEC) , pp. 1-8
    • Albukhanajer, W.A.1    Jin, Y.2    Briffa, J.A.3    Williams, G.4
  • 5
    • 85027933336 scopus 로고    scopus 로고
    • Evolutionary multiobjective image feature extraction in the presence of noise
    • Sep
    • W. A. Albukhanajer, J. A. Briffa, and Y. Jin, "Evolutionary multiobjective image feature extraction in the presence of noise," IEEE Trans. Cybern., vol. 45, no. 9, pp. 1757-1768, Sep. 2015.
    • (2015) IEEE Trans. Cybern , vol.45 , Issue.9 , pp. 1757-1768
    • Albukhanajer, W.A.1    Briffa, J.A.2    Jin, Y.3
  • 6
    • 85027931612 scopus 로고    scopus 로고
    • Feature selection based on dependency margin
    • Jun
    • Y. Liu, F. Tang, and Z. Zeng, "Feature selection based on dependency margin," IEEE Trans. Cybern., vol. 45, no. 6, pp. 1209-1221, Jun. 2015.
    • (2015) IEEE Trans. Cybern , vol.45 , Issue.6 , pp. 1209-1221
    • Liu, Y.1    Tang, F.2    Zeng, Z.3
  • 7
    • 84982822495 scopus 로고    scopus 로고
    • Manipulating data and dimension reduction methods: Feature selection
    • Berlin, Germany: Springer
    • H. Liu and Z. Zhao, "Manipulating data and dimension reduction methods: Feature selection," in Encyclopedia of Complexity and Systems Science. Berlin, Germany: Springer, 2009, pp. 5348-5359.
    • (2009) Encyclopedia of Complexity and Systems Science , pp. 5348-5359
    • Liu, H.1    Zhao, Z.2
  • 8
    • 80052872551 scopus 로고    scopus 로고
    • Feature selection: An ever evolving frontier in data mining
    • Hyderabad, India
    • H. Liu, H. Motoda, R. Setiono, and Z. Zhao, "Feature selection: An ever evolving frontier in data mining," in Proc. JMLR Feature Sel. Data Min., vol. 10. Hyderabad, India, 2010, pp. 4-13.
    • (2010) Proc. JMLR Feature Sel. Data Min , vol.10 , pp. 4-13
    • Liu, H.1    Motoda, H.2    Setiono, R.3    Zhao, Z.4
  • 9
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Apr
    • H. Liu and L. Yu, "Toward integrating feature selection algorithms for classification and clustering," IEEE Trans. Knowl. Data Eng., vol. 17, no. 4, pp. 491-502, Apr. 2005.
    • (2005) IEEE Trans. Knowl. Data Eng , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 10
    • 77951139898 scopus 로고    scopus 로고
    • A discrete particle swarm optimization method for feature selection in binary classification problems
    • A. Unler and A. Murat, "A discrete particle swarm optimization method for feature selection in binary classification problems," Eur. J. Oper. Res., vol. 206, no. 3, pp. 528-539, 2010.
    • (2010) Eur. J. Oper. Res , vol.206 , Issue.3 , pp. 528-539
    • Unler, A.1    Murat, A.2
  • 11
    • 79958252965 scopus 로고    scopus 로고
    • An improved particle swarm optimization for feature selection
    • Y. Liu et al., "An improved particle swarm optimization for feature selection," J. Bionic Eng., vol. 8, no. 2, pp. 191-200, 2011.
    • (2011) J. Bionic Eng , vol.8 , Issue.2 , pp. 191-200
    • Liu, Y.1
  • 12
    • 84891840571 scopus 로고    scopus 로고
    • A review of feature selection methods based on mutual information
    • J. R. Vergara and P. A. Estévez, "A review of feature selection methods based on mutual information," Neural Comput. Appl., vol. 24, no. 1, pp. 175-186, 2014.
    • (2014) Neural Comput. Appl , vol.24 , Issue.1 , pp. 175-186
    • Vergara, J.R.1    Estévez, P.A.2
  • 13
    • 84904651375 scopus 로고    scopus 로고
    • The emerging 'big dimensionality
    • Aug
    • Y. Zhai, Y.-S. Ong, and I. W. Tsang, "The emerging 'big dimensionality,"' IEEE Comput. Intell. Mag., vol. 9, no. 3, pp. 14-26, Aug. 2014.
    • (2014) IEEE Comput. Intell. Mag , vol.9 , Issue.3 , pp. 14-26
    • Zhai, Y.1    Ong, Y.-S.2    Tsang, I.W.3
  • 14
    • 84886738635 scopus 로고    scopus 로고
    • Evolutionary computation for feature selection in classification problems
    • B. de la Iglesia, "Evolutionary computation for feature selection in classification problems," Wiley Interdiscipl. Rev. Data Min. Knowl. Disc., vol. 3, no. 6, pp. 381-407, 2013.
    • (2013) Wiley Interdiscipl. Rev. Data Min. Knowl. Disc , vol.3 , Issue.6 , pp. 381-407
    • De La Iglesia, B.1
  • 15
    • 84881571981 scopus 로고    scopus 로고
    • Enhanced feature selection for biomarker discovery in LC-MS data using GP
    • Cancún, Mexico
    • S. Ahmed, M. Zhang, and L. Peng, "Enhanced feature selection for biomarker discovery in LC-MS data using GP," in Proc. IEEE Congr. Evol. Comput. (CEC), Cancún, Mexico, 2013, pp. 584-591.
    • (2013) Proc. IEEE Congr. Evol. Comput. (CEC) , pp. 584-591
    • Ahmed, S.1    Zhang, M.2    Peng, L.3
  • 16
    • 58349085948 scopus 로고    scopus 로고
    • Text feature selection using ant colony optimization
    • M. H. Aghdam, N. Ghasem-Aghaee, and M. E. Basiri, "Text feature selection using ant colony optimization," Expert Syst. Appl., vol. 36, no. 3, pp. 6843-6853, 2009.
    • (2009) Expert Syst. Appl , vol.36 , Issue.3 , pp. 6843-6853
    • Aghdam, M.H.1    Ghasem-Aghaee, N.2    Basiri, M.E.3
  • 17
    • 84880118450 scopus 로고    scopus 로고
    • Self-adaptive differential evolution for feature selection in hyperspectral image data
    • A. Ghosh, A. Datta, and S. Ghosh, "Self-adaptive differential evolution for feature selection in hyperspectral image data," Appl. Soft Comput., vol. 13, no. 4, pp. 1969-1977, 2013.
    • (2013) Appl. Soft Comput , vol.13 , Issue.4 , pp. 1969-1977
    • Ghosh, A.1    Datta, A.2    Ghosh, S.3
  • 18
    • 84982822753 scopus 로고    scopus 로고
    • Evolutionary feature selection and construction
    • New York, NY, USA: Springer
    • K. Krawiec, "Evolutionary feature selection and construction," in Encyclopedia of Machine Learning. New York, NY, USA: Springer, 2010, pp. 353-357.
    • (2010) Encyclopedia of Machine Learning , pp. 353-357
    • Krawiec, K.1
  • 19
    • 31744443319 scopus 로고    scopus 로고
    • Genetic programming for simultaneous feature selection and classifier design
    • Feb
    • D. P. Muni, N. R. Pal, and J. Das, "Genetic programming for simultaneous feature selection and classifier design," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 36, no. 1, pp. 106-117, Feb. 2006.
    • (2006) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.36 , Issue.1 , pp. 106-117
    • Muni, D.P.1    Pal, N.R.2    Das, J.3
  • 20
    • 36148943944 scopus 로고    scopus 로고
    • Classifier design with feature selection and feature extraction using layered genetic programming
    • L. Jung-Yi, K. Hao-Ren, C. Been-Chian, and Y. Wei-Pang, "Classifier design with feature selection and feature extraction using layered genetic programming," Expert Syst. Appl., vol. 34, no. 2, pp. 1384-1393, 2008.
    • (2008) Expert Syst. Appl , vol.34 , Issue.2 , pp. 1384-1393
    • Jung-Yi, L.1    Hao-Ren, K.2    Been-Chian, C.3    Wei-Pang, Y.4
  • 21
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John, "Wrappers for feature subset selection," Artif. Intell., vol. 97, nos. 1-2, pp. 273-324, 1997.
    • (1997) Artif. Intell , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 23
    • 0015125457 scopus 로고
    • A direct method of nonparametric measurement selection
    • vol. C-20, Sep
    • A. W. Whitney, "A direct method of nonparametric measurement selection," IEEE Trans. Comput., vol. C-20, no. 9, pp. 1100-1103, Sep. 1971.
    • (1971) IEEE Trans. Comput , Issue.9 , pp. 1100-1103
    • Whitney, A.W.1
  • 24
    • 84914813506 scopus 로고
    • On the effectiveness of receptors in recognition systems
    • Jan
    • T. Marill and D. M. Green, "On the effectiveness of receptors in recognition systems," IEEE Trans. Inf. Theory, vol. 9, no. 1, pp. 11-17, Jan. 1963.
    • (1963) IEEE Trans. Inf. Theory , vol.9 , Issue.1 , pp. 11-17
    • Marill, T.1    Green, D.M.2
  • 25
    • 0002526012 scopus 로고
    • On selecting features for pattern classifier
    • Coronado, CA, USA
    • S. D. Stearns, "On selecting features for pattern classifier," in Proc. 3rd Int. Conf. Pattern Recognit., Coronado, CA, USA, pp. 71-75, 1976.
    • (1976) Proc. 3rd Int. Conf. Pattern Recognit , pp. 71-75
    • Stearns, S.D.1
  • 26
    • 0028547556 scopus 로고
    • Floating search methods in feature selection
    • P. Pudil, J. Novovičová, and J. V. Kittler, "Floating search methods in feature selection," Pattern Recognit. Lett., vol. 15, no. 11, pp. 1119-1125, 1994.
    • (1994) Pattern Recognit. Lett , vol.15 , Issue.11 , pp. 1119-1125
    • Pudil, P.1    Novovičová, J.2    Kittler, J.V.3
  • 27
    • 84880901313 scopus 로고    scopus 로고
    • A feature selection method for multivariate performance measures
    • Sep
    • Q. Mao and I. W.-H. Tsang, "A feature selection method for multivariate performance measures," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 9, pp. 2051-2063, Sep. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , Issue.9 , pp. 2051-2063
    • Mao, Q.1    Tsang, I.W.-H.2
  • 28
    • 84888054977 scopus 로고    scopus 로고
    • Feature selection with test cost constraint
    • F. Min, Q. Hu, and W. Zhu, "Feature selection with test cost constraint," Int. J. Approx. Reason., vol. 55, no. 1, pp. 167-179, 2014.
    • (2014) Int. J. Approx. Reason , vol.55 , Issue.1 , pp. 167-179
    • Min, F.1    Hu, Q.2    Zhu, W.3
  • 29
    • 84887799080 scopus 로고    scopus 로고
    • Particle swarm optimization for feature selection in classification: A multi-objective approach
    • Dec
    • B. Xue, M. Zhang, and W. N. Browne, "Particle swarm optimization for feature selection in classification: A multi-objective approach," IEEE Trans. Cybern., vol. 43, no. 6, pp. 1656-1671, Dec. 2013.
    • (2013) IEEE Trans. Cybern , vol.43 , Issue.6 , pp. 1656-1671
    • Xue, B.1    Zhang, M.2    Browne, W.N.3
  • 30
    • 85146422424 scopus 로고
    • A practical approach to feature selection
    • San Francisco, CA, USA
    • K. Kira and L. A. Rendell, "A practical approach to feature selection," in Proc. 9th Int. Workshop Mach. Learn., San Francisco, CA, USA, 1992, pp. 249-256.
    • (1992) Proc. 9th Int. Workshop Mach. Learn , pp. 249-256
    • Kira, K.1    Rendell, L.A.2
  • 31
    • 85027928396 scopus 로고    scopus 로고
    • Subspace learning for unsupervised feature selection via matrix factorization
    • S. Wang, W. Pedrycz, Q. Zhu, and W. Zhu, "Subspace learning for unsupervised feature selection via matrix factorization," Pattern Recognit., vol. 48, no. 1, pp. 10-19, 2015.
    • (2015) Pattern Recognit , vol.48 , Issue.1 , pp. 10-19
    • Wang, S.1    Pedrycz, W.2    Zhu, Q.3    Zhu, W.4
  • 32
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and minredundancy
    • Aug
    • H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information criteria of max-dependency, max-relevance, and minredundancy," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, Aug. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 33
    • 77956611003 scopus 로고    scopus 로고
    • Mr2 PSO: A maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification
    • A. Unler, R. B. Chinnam, and A. Murat, "mr2 PSO: A maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification," Inf. Sci., vol. 181, no. 20, pp. 4625-4641, 2011.
    • (2011) Inf. Sci , vol.181 , Issue.20 , pp. 4625-4641
    • Unler, A.1    Chinnam, R.B.2    Murat, A.3
  • 34
    • 84866876345 scopus 로고    scopus 로고
    • Binary particle swarm optimisation for feature selection: A filter based approach
    • Brisbane, QLD, Australia
    • L. Cervante, B. Xue, M. Zhang, and L. Shang, "Binary particle swarm optimisation for feature selection: A filter based approach," in Proc. IEEE Congr. Evol. Comput. (CEC), Brisbane, QLD, Australia, 2012, pp. 1-8.
    • (2012) Proc. IEEE Congr. Evol. Comput. (CEC) , pp. 1-8
    • Cervante, L.1    Xue, B.2    Zhang, M.3    Shang, L.4
  • 35
    • 66249119022 scopus 로고    scopus 로고
    • Application of multiple statistical tests to enhance mass spectrometrybased biomarker discovery
    • May
    • N. C. Tan, W. G. Fisher, K. P. Rosenblatt, and H. R. Garner, "Application of multiple statistical tests to enhance mass spectrometrybased biomarker discovery," BMC Bioinformat., vol. 10, p. 144, May 2009.
    • (2009) BMC Bioinformat , vol.10 , pp. 144
    • Tan, N.C.1    Fisher, W.G.2    Rosenblatt, K.P.3    Garner, H.R.4
  • 36
    • 84885171377 scopus 로고    scopus 로고
    • Minimax sparse logistic regression for very high-dimensional feature selection
    • Oct
    • M. Tan, I. W. Tsang, and L. Wang, "Minimax sparse logistic regression for very high-dimensional feature selection," IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 10, pp. 1609-1622, Oct. 2013.
    • (2013) IEEE Trans. Neural Netw. Learn. Syst , vol.24 , Issue.10 , pp. 1609-1622
    • Tan, M.1    Tsang, I.W.2    Wang, L.3
  • 37
    • 0024895461 scopus 로고
    • A note on genetic algorithms for large-scale feature selection
    • W. Siedlecki and J. Sklansky, "A note on genetic algorithms for large-scale feature selection," Pattern Recognit. Lett., vol. 10, no. 5, pp. 335-347, 1989.
    • (1989) Pattern Recognit. Lett , vol.10 , Issue.5 , pp. 335-347
    • Siedlecki, W.1    Sklansky, J.2
  • 38
    • 68949155378 scopus 로고    scopus 로고
    • Feature subset selection in large dimensionality domains
    • I. A. Gheyas and L. S. Smith, "Feature subset selection in large dimensionality domains," Pattern Recognit., vol. 43, no. 1, pp. 5-13, 2010.
    • (2010) Pattern Recognit , vol.43 , Issue.1 , pp. 5-13
    • Gheyas, I.A.1    Smith, L.S.2
  • 39
    • 84924532800 scopus 로고    scopus 로고
    • An evolutionary algorithm with the partial sequential forward floating search mutation for largescale feature selection problems
    • Y.-S. Jeong, K. S. Shin, and M. K. Jeong, "An evolutionary algorithm with the partial sequential forward floating search mutation for largescale feature selection problems," J. Oper. Res. Soc., vol. 66, no. 4, pp. 529-538, 2014.
    • (2014) J. Oper. Res. Soc , vol.66 , Issue.4 , pp. 529-538
    • Jeong, Y.-S.1    Shin, K.S.2    Jeong, M.K.3
  • 40
    • 79959393323 scopus 로고    scopus 로고
    • Construction of classifier with feature selection based on genetic programming
    • Barcelona, Spain
    • A. Purohit, N. S. Chaudhari, and A. Tiwari, "Construction of classifier with feature selection based on genetic programming," in Proc. IEEE Congr. Evol. Comput. (CEC), Barcelona, Spain, 2010, pp. 1-5.
    • (2010) Proc. IEEE Congr. Evol. Comput. (CEC) , pp. 1-5
    • Purohit, A.1    Chaudhari, N.S.2    Tiwari, A.3
  • 41
    • 84859135670 scopus 로고    scopus 로고
    • Improving relevance measures using genetic programming
    • Málaga, Spain
    • K. Neshatian and M. Zhang, "Improving relevance measures using genetic programming," in Proc. Eur. Conf. Genet. Program. (EuroGP), Málaga, Spain, 2012, vol. 7244, pp. 97-108.
    • (2012) Proc. Eur. Conf. Genet. Program. (EuroGP) , vol.7244 , pp. 97-108
    • Neshatian, K.1    Zhang, M.2
  • 42
    • 0037186503 scopus 로고    scopus 로고
    • Feature selection for structureactivity correlation using binary particle swarms
    • D. K. Agrafiotis and W. Cedeño, "Feature selection for structureactivity correlation using binary particle swarms," J. Med. Chem., vol. 45, no. 5, pp. 1098-1107, 2002.
    • (2002) J. Med. Chem , vol.45 , Issue.5 , pp. 1098-1107
    • Agrafiotis, D.K.1    Cedeño, W.2
  • 43
    • 35048837706 scopus 로고    scopus 로고
    • Ant colony optimization for feature selection in face recognition
    • Heidelberg, Germany: Springer
    • Z. Yan and C. Yuan, "Ant colony optimization for feature selection in face recognition," in Biometric Authentication (LNCS 3072). Heidelberg, Germany: Springer, 2004, pp. 221-226.
    • (2004) Biometric Authentication (LNCS 3072) , pp. 221-226
    • Yan, Z.1    Yuan, C.2
  • 44
    • 79959409880 scopus 로고    scopus 로고
    • A comparative analysis of genetic algorithm and ant colony optimization to select attributes for an heterogeneous ensemble of classifiers
    • Barcelona, Spain
    • L. E. A. Santana, L. Silva, A. M. P. Canuto, F. Pintro, and K. O. Vale, "A comparative analysis of genetic algorithm and ant colony optimization to select attributes for an heterogeneous ensemble of classifiers," in Proc. IEEE Congr. Evol. Comput., Barcelona, Spain, 2010, pp. 1-8.
    • (2010) Proc. IEEE Congr. Evol. Comput , pp. 1-8
    • Santana, L.E.A.1    Silva, L.2    Canuto, A.M.P.3    Pintro, F.4    Vale, K.O.5
  • 45
    • 84875245118 scopus 로고    scopus 로고
    • Efficient ant colony optimization for image feature selection
    • B. Chen, L. Chen, and Y. Chen, "Efficient ant colony optimization for image feature selection," Signal Process., vol. 93, no. 6, pp. 1566-1576, 2012.
    • (2012) Signal Process , vol.93 , Issue.6 , pp. 1566-1576
    • Chen, B.1    Chen, L.2    Chen, Y.3
  • 46
    • 84907312287 scopus 로고    scopus 로고
    • Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton
    • Nov
    • X. Zhao et al., "Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton," Appl. Soft Comput., vol. 24, pp. 585-596, Nov. 2014.
    • (2014) Appl. Soft Comput , vol.24 , pp. 585-596
    • Zhao, X.1
  • 48
    • 84894101318 scopus 로고    scopus 로고
    • Feature selection based on meta-heuristics for biomedicine
    • L. Wang et al., "Feature selection based on meta-heuristics for biomedicine," Optim. Methods Softw., vol. 29, no. 4, pp. 703-719, 2014.
    • (2014) Optim. Methods Softw , vol.29 , Issue.4 , pp. 703-719
    • Wang, L.1
  • 49
    • 34250896121 scopus 로고    scopus 로고
    • Markov blanket-embedded genetic algorithm for gene selection
    • Z. Zhu, Y.-S. Ong, and M. Dash, "Markov blanket-embedded genetic algorithm for gene selection," Pattern Recognit., vol. 40, no. 11, pp. 3236-3248, 2007.
    • (2007) Pattern Recognit , vol.40 , Issue.11 , pp. 3236-3248
    • Zhu, Z.1    Ong, Y.-S.2    Dash, M.3
  • 50
    • 77955415855 scopus 로고    scopus 로고
    • A novel hybrid feature selection via symmetrical uncertainty ranking based local memetic search algorithm
    • S. S. Kannan and N. Ramaraj, "A novel hybrid feature selection via symmetrical uncertainty ranking based local memetic search algorithm," Knowl. Based Syst., vol. 23, no. 6, pp. 580-585, 2010.
    • (2010) Knowl. Based Syst , vol.23 , Issue.6 , pp. 580-585
    • Kannan, S.S.1    Ramaraj, N.2
  • 52
    • 84905639944 scopus 로고    scopus 로고
    • Reusing learned functionality in XCS: Code fragments with constructed functionality and constructed features
    • Vancouver, BC, Canada
    • I. M. Alvarez, W. N. Browne, and M. Zhang, "Reusing learned functionality in XCS: Code fragments with constructed functionality and constructed features," in Proc. Conf. Compan. Genet. Evol. Comput. Compan. (GECCO), Vancouver, BC, Canada, 2014, pp. 969-976.
    • (2014) Proc. Conf. Compan. Genet. Evol. Comput. Compan. (GECCO) , pp. 969-976
    • Alvarez, I.M.1    Browne, W.N.2    Zhang, M.3
  • 53
    • 70449787258 scopus 로고    scopus 로고
    • Design and comparison of different evolution strategies for feature selection and consolidation in music classification
    • Trondheim, Norway
    • I. Vatolkin, W. Theimer, and G. Rudolph, "Design and comparison of different evolution strategies for feature selection and consolidation in music classification," in Proc. IEEE Congr. Evol. Comput., Trondheim, Norway, 2009, pp. 174-181.
    • (2009) Proc. IEEE Congr. Evol. Comput , pp. 174-181
    • Vatolkin, I.1    Theimer, W.2    Rudolph, G.3
  • 54
    • 84982796310 scopus 로고    scopus 로고
    • A bumble bees mating optimization algorithm for the feature selection problem
    • Jun
    • M. Marinaki and Y. Marinakis, "A bumble bees mating optimization algorithm for the feature selection problem," Int. J. Mach. Learn. Cybern., pp. 1-20, Jun. 2014.
    • (2014) Int. J. Mach. Learn. Cybern , pp. 1-20
    • Marinaki, M.1    Marinakis, Y.2
  • 55
    • 84963614582 scopus 로고    scopus 로고
    • A multiobjective artificial bee colony approach to feature selection using fuzzy mutual information
    • Sendai, Japan, May
    • E. Hancer, B. Xue, M. Zhang, D. Karaboga, and B. Akay, "A multiobjective artificial bee colony approach to feature selection using fuzzy mutual information," in Proc. IEEE Congr. Evol. Comput. (CEC), Sendai, Japan, May 2015, pp. 2420-2427.
    • (2015) Proc. IEEE Congr. Evol. Comput. (CEC) , pp. 2420-2427
    • Hancer, E.1    Xue, B.2    Zhang, M.3    Karaboga, D.4    Akay, B.5
  • 56
    • 80053563748 scopus 로고    scopus 로고
    • Parameter tuning, feature selection and weight assignment of features for case-based reasoning by artificial immune system
    • S.-W. Lin and S.-C. Chen, "Parameter tuning, feature selection and weight assignment of features for case-based reasoning by artificial immune system," Appl. Soft Comput., vol. 11, no. 8, pp. 5042-5052, 2011.
    • (2011) Appl. Soft Comput , vol.11 , Issue.8 , pp. 5042-5052
    • Lin, S.-W.1    Chen, S.-C.2
  • 57
    • 85027951631 scopus 로고    scopus 로고
    • An improved artificial immune recognition system with the opposite sign test for feature selection
    • Nov
    • K.-J. Wang, K.-H. Chen, and M.-A. Angelia, "An improved artificial immune recognition system with the opposite sign test for feature selection," Knowl. Based Syst., vol. 71, pp. 126-145, Nov. 2014.
    • (2014) Knowl. Based Syst , vol.71 , pp. 126-145
    • Wang, K.-J.1    Chen, K.-H.2    Angelia, M.-A.3
  • 58
    • 0034194430 scopus 로고    scopus 로고
    • Evolutionary weighting of image features for diagnosing of CNS tumors
    • M. Komosiński and K. Krawiec, "Evolutionary weighting of image features for diagnosing of CNS tumors," Artif. Intell. Med., vol. 19, no. 1, pp. 25-38, 2000.
    • (2000) Artif. Intell. Med , vol.19 , Issue.1 , pp. 25-38
    • Komosiński, M.1    Krawiec, K.2
  • 59
    • 85002377847 scopus 로고
    • Genetic algorithms as a strategy for feature selection
    • R. Leardi, R. Boggia, and M. Terrile, "Genetic algorithms as a strategy for feature selection," J. Chemometr., vol. 6, no. 5, pp. 267-281, 1992.
    • (1992) J. Chemometr , vol.6 , Issue.5 , pp. 267-281
    • Leardi, R.1    Boggia, R.2    Terrile, M.3
  • 60
    • 0032028849 scopus 로고    scopus 로고
    • Feature space transformation using genetic algorithms
    • Mar./Apr
    • H. Vafaie and K. De Jong, "Feature space transformation using genetic algorithms," IEEE Intell. Syst., vol. 13, no. 2, pp. 57-65, Mar./Apr. 1998.
    • (1998) IEEE Intell. Syst , vol.13 , Issue.2 , pp. 57-65
    • Vafaie, H.1    De Jong, K.2
  • 61
    • 0032028297 scopus 로고    scopus 로고
    • Feature subset selection using a genetic algorithm
    • Mar./Apr
    • J. Yang and V. Honavar, "Feature subset selection using a genetic algorithm," IEEE Intell. Syst. Appl., vol. 13, no. 2, pp. 44-49, Mar./Apr. 1998.
    • (1998) IEEE Intell. Syst. Appl , vol.13 , Issue.2 , pp. 44-49
    • Yang, J.1    Honavar, V.2
  • 62
    • 0032627052 scopus 로고    scopus 로고
    • Feature selection using genetics-based algorithm and its application to speaker identification
    • Phoenix, AZ, USA
    • M. Demirekler and A. Haydar, "Feature selection using genetics-based algorithm and its application to speaker identification," in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., Phoenix, AZ, USA, 1999, vol. 1, pp. 329-332.
    • (1999) Proc. IEEE Int. Conf. Acoust. Speech Signal Process , vol.1 , pp. 329-332
    • Demirekler, M.1    Haydar, A.2
  • 64
    • 27944437848 scopus 로고    scopus 로고
    • Genetic programming with a genetic algorithm for feature construction and selection
    • M. G. Smith and L. Bull, "Genetic programming with a genetic algorithm for feature construction and selection," Genet. Program. Evol. Mach., vol. 6, no. 3, pp. 265-281, 2005.
    • (2005) Genet. Program. Evol. Mach , vol.6 , Issue.3 , pp. 265-281
    • Smith, M.G.1    Bull, L.2
  • 65
    • 0036132565 scopus 로고    scopus 로고
    • Genetic feature selection combined with composite fuzzy nearest neighbor classifiers for hyperspectral satellite imagery
    • P. Scheunders, S. Yu, and S. De Backer, "Genetic feature selection combined with composite fuzzy nearest neighbor classifiers for hyperspectral satellite imagery," Pattern Recognit. Lett., vol. 23, nos. 1-3, pp. 183-190, 2002.
    • (2002) Pattern Recognit. Lett , vol.23 , Issue.1-3 , pp. 183-190
    • Scheunders, P.1    Yu, S.2    De Backer, S.3
  • 66
    • 47649086392 scopus 로고    scopus 로고
    • Neuro-genetic approaches to classification of face images with effective feature selection using hybrid classifiers
    • Surathkal, India
    • K. Umamaheswari, S. Sumathi, and S. N. Sivanandam, "Neuro-genetic approaches to classification of face images with effective feature selection using hybrid classifiers," in Proc. Int. Conf. Adv. Comput. Commun., Surathkal, India, 2006, pp. 286-291.
    • (2006) Proc. Int. Conf. Adv. Comput. Commun , pp. 286-291
    • Umamaheswari, K.1    Sumathi, S.2    Sivanandam, S.N.3
  • 68
    • 34250205274 scopus 로고    scopus 로고
    • Feature subset selection for face detection using genetic algorithms and particle swarm optimization
    • Fort Lauderdale, FL, USA
    • M. A. Shoorehdeli, M. Teshnehlab, and H. A. Moghaddam, "Feature subset selection for face detection using genetic algorithms and particle swarm optimization," in Proc. IEEE Int. Conf. Netw. Sens. Control (ICNSC), Fort Lauderdale, FL, USA, 2006, pp. 686-690.
    • (2006) Proc. IEEE Int. Conf. Netw. Sens. Control (ICNSC) , pp. 686-690
    • Shoorehdeli, M.A.1    Teshnehlab, M.2    Moghaddam, H.A.3
  • 69
    • 27844458593 scopus 로고    scopus 로고
    • Efficient huge-scale feature selection with speciated genetic algorithm
    • J.-H. Hong and S.-B. Cho, "Efficient huge-scale feature selection with speciated genetic algorithm," Pattern Recognit. Lett., vol. 27, no. 2, pp. 143-150, 2006.
    • (2006) Pattern Recognit. Lett , vol.27 , Issue.2 , pp. 143-150
    • Hong, J.-H.1    Cho, S.-B.2
  • 70
    • 63149139219 scopus 로고    scopus 로고
    • Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms
    • Singapore
    • E. Alba, J. Garcia-Nieto, L. Jourdan, and E. Talbi, "Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms," in Proc. IEEE Congr. Evol. Comput. (CEC), Singapore, 2007, pp. 284-290.
    • (2007) Proc. IEEE Congr. Evol. Comput. (CEC) , pp. 284-290
    • Alba, E.1    Garcia-Nieto, J.2    Jourdan, L.3    Talbi, E.4
  • 71
    • 55749102264 scopus 로고    scopus 로고
    • Gene expression analyses using genetic algorithm based hybrid approaches
    • Hong Kong
    • D. Chen, K. C. C. Chan, and X. Wu, "Gene expression analyses using genetic algorithm based hybrid approaches," in Proc. IEEE Congr. Evol. Comput., Hong Kong, 2008, pp. 963-969.
    • (2008) Proc. IEEE Congr. Evol. Comput , pp. 963-969
    • Chen, D.1    Chan, K.C.C.2    Wu, X.3
  • 72
    • 34548758629 scopus 로고    scopus 로고
    • A genetic algorithm-based method for feature subset selection
    • F. Tan, X. Z. Fu, Y. Q. Zhang, and A. G. Bourgeois, "A genetic algorithm-based method for feature subset selection," Soft Comput., vol. 12, no. 2, pp. 111-120, 2008.
    • (2008) Soft Comput , vol.12 , Issue.2 , pp. 111-120
    • Tan, F.1    Fu, X.Z.2    Zhang, Y.Q.3    Bourgeois, A.G.4
  • 73
    • 44949091421 scopus 로고    scopus 로고
    • Feature selection to diagnose a business crisis by using a real GA-based support vector machine: An empirical study
    • L.-H. Chen and H.-D. Hsiao, "Feature selection to diagnose a business crisis by using a real GA-based support vector machine: An empirical study," Expert Syst. Appl., vol. 35, no. 3, pp. 1145-1155, 2008.
    • (2008) Expert Syst. Appl , vol.35 , Issue.3 , pp. 1145-1155
    • Chen, L.-H.1    Hsiao, H.-D.2
  • 74
    • 44949219266 scopus 로고    scopus 로고
    • Genetic algorithm-based feature selection in high-resolution NMR spectra
    • H.-W. Cho et al., "Genetic algorithm-based feature selection in high-resolution NMR spectra," Expert Syst. Appl., vol. 35, no. 3, pp. 967-975, 2008.
    • (2008) Expert Syst. Appl , vol.35 , Issue.3 , pp. 967-975
    • Cho, H.-W.1
  • 75
    • 67349257422 scopus 로고    scopus 로고
    • Research of multi-population agent genetic algorithm for feature selection
    • Y. Li, S. Zhang, and X. Zeng, "Research of multi-population agent genetic algorithm for feature selection," Expert Syst. Appl., vol. 36, no. 9, pp. 11570-11581, 2009.
    • (2009) Expert Syst. Appl , vol.36 , Issue.9 , pp. 11570-11581
    • Li, Y.1    Zhang, S.2    Zeng, X.3
  • 76
    • 70350655272 scopus 로고    scopus 로고
    • A first study on the use of coevolutionary algorithms for instance and feature selection
    • Berlin, Germany: Springer
    • J. Derrac, S. Garcia, and F. Herrera, "A first study on the use of coevolutionary algorithms for instance and feature selection," in Hybrid Artificial Intelligence Systems (LNCS 5572). Berlin, Germany: Springer, 2009, pp. 557-564.
    • (2009) Hybrid Artificial Intelligence Systems (LNCS 5572) , pp. 557-564
    • Derrac, J.1    Garcia, S.2    Herrera, F.3
  • 77
    • 77549085570 scopus 로고    scopus 로고
    • Dynamic Adaboost learning with feature selection based on parallel genetic algorithm for image annotation
    • R. Li, J. Lu, Y. Zhang, and T. Zhao, "Dynamic Adaboost learning with feature selection based on parallel genetic algorithm for image annotation," Knowl. Based Syst., vol. 23, no. 3, pp. 195-201, 2010.
    • (2010) Knowl. Based Syst , vol.23 , Issue.3 , pp. 195-201
    • Li, R.1    Lu, J.2    Zhang, Y.3    Zhao, T.4
  • 78
    • 60249087028 scopus 로고    scopus 로고
    • Different metaheuristic strategies to solve the feature selection problem
    • S. C. Yusta, "Different metaheuristic strategies to solve the feature selection problem," Pattern Recognit. Lett., vol. 30, no. 5, pp. 525-534, 2009.
    • (2009) Pattern Recognit. Lett , vol.30 , Issue.5 , pp. 525-534
    • Yusta, S.C.1
  • 79
    • 80053569949 scopus 로고    scopus 로고
    • Hybrid soft computing techniques for feature selection and parameter optimization in power quality data mining
    • K. Manimala, K. Selvi, and R. Ahila, "Hybrid soft computing techniques for feature selection and parameter optimization in power quality data mining," Appl. Soft Comput., vol. 11, no. 8, pp. 5485-5497, 2011.
    • (2011) Appl. Soft Comput , vol.11 , Issue.8 , pp. 5485-5497
    • Manimala, K.1    Selvi, K.2    Ahila, R.3
  • 80
    • 80052925423 scopus 로고    scopus 로고
    • Improving the ranking quality of medical image retrieval using a genetic feature selection method
    • S. F. Da Silva, M. X. Ribeiro, J. do E. S. Batista Neto, C. Traina, Jr., and A. J. M. Traina, "Improving the ranking quality of medical image retrieval using a genetic feature selection method," Decis. Support Syst., vol. 51, no. 4, pp. 810-820, 2011.
    • (2011) Decis. Support Syst , vol.51 , Issue.4 , pp. 810-820
    • Da Silva, S.F.1    Ribeiro, M.X.2    Do Batista Neto, J.E.S.3    Traina, C.4    Traina, A.J.M.5
  • 81
    • 80051922252 scopus 로고    scopus 로고
    • Identification of cancer diagnosis estimation models using evolutionary algorithms: A case study for breast cancer, melanoma, and cancer in the respiratory system
    • Dublin, Ireland
    • S. M. Winkler, M. Affenzeller, W. Jacak, and H. Stekel, "Identification of cancer diagnosis estimation models using evolutionary algorithms: A case study for breast cancer, melanoma, and cancer in the respiratory system," in Proc. 13th Annu. Conf. Compan. Genet. Evol. Comput. (GECCO), Dublin, Ireland, 2011, pp. 503-510.
    • (2011) Proc. 13th Annu. Conf. Compan. Genet. Evol. Comput. (GECCO) , pp. 503-510
    • Winkler, S.M.1    Affenzeller, M.2    Jacak, W.3    Stekel, H.4
  • 82
    • 77958568540 scopus 로고    scopus 로고
    • Feature selection and classification by using grid computing based evolutionary approach for the microarray data
    • Chengdu, China
    • T. C. Chen, Y.-C. Hsieh, P.-S. You, and Y.-C. Lee, "Feature selection and classification by using grid computing based evolutionary approach for the microarray data," in Proc. 3rd IEEE Int. Conf. Comput. Sci. Inf. Technol. (ICCSIT), Chengdu, China, 2010, vol. 9, pp. 85-89.
    • (2010) Proc. 3rd IEEE Int. Conf. Comput. Sci. Inf. Technol. (ICCSIT) , vol.9 , pp. 85-89
    • Chen, T.C.1    Hsieh, Y.-C.2    You, P.-S.3    Lee, Y.-C.4
  • 83
    • 80655125737 scopus 로고    scopus 로고
    • Co-evolutionary genetic multilayer perceptron for feature selection and model design
    • Toulouse, France
    • F. Souza, T. Matias, and R. Araujo, "Co-evolutionary genetic multilayer perceptron for feature selection and model design," in Proc. 16th Conf. Emerg. Technol. Factory Autom. (ETFA), Toulouse, France, 2011, pp. 1-7.
    • (2011) Proc. 16th Conf. Emerg. Technol. Factory Autom. (ETFA) , pp. 1-7
    • Souza, F.1    Matias, T.2    Araujo, R.3
  • 84
    • 84883067291 scopus 로고    scopus 로고
    • Human action recognition optimization based on evolutionary feature subset selection
    • Amsterdam, The Netherlands
    • A. A. Chaaraoui and F. Florez-Revuelta, "Human action recognition optimization based on evolutionary feature subset selection," in Proc. 15th Annu. Conf. Genet. Evol. Comput. (GECCO), Amsterdam, The Netherlands, 2013, pp. 1229-1236.
    • (2013) Proc. 15th Annu. Conf. Genet. Evol. Comput. (GECCO) , pp. 1229-1236
    • Chaaraoui, A.A.1    Florez-Revuelta, F.2
  • 85
    • 84888315345 scopus 로고    scopus 로고
    • Genetic algorithm-based heuristic for feature selection in credit risk assessment
    • S. Oreski and G. Oreski, "Genetic algorithm-based heuristic for feature selection in credit risk assessment," Expert Syst. Appl., vol. 41, no. 4, pp. 2052-2064, 2014.
    • (2014) Expert Syst. Appl , vol.41 , Issue.4 , pp. 2052-2064
    • Oreski, S.1    Oreski, G.2
  • 86
    • 84896341034 scopus 로고    scopus 로고
    • Feature selection for very shortterm heavy rainfall prediction using evolutionary computation
    • Jan
    • J.-H. Seo, Y. H. Lee, and Y.-H. Kim, "Feature selection for very shortterm heavy rainfall prediction using evolutionary computation," Adv. Meteorol., vol. 2014, pp. 1-15, Jan. 2014.
    • (2014) Adv. Meteorol , vol.2014 , pp. 1-15
    • Seo, J.-H.1    Lee, Y.H.2    Kim, Y.-H.3
  • 87
    • 84922766449 scopus 로고    scopus 로고
    • The effect of feature selection on financial distress prediction
    • Jan
    • D. Liang, C.-F. Tsai, and H.-T. Wu, "The effect of feature selection on financial distress prediction," Knowl. Based Syst., vol. 73, pp. 289-297, Jan. 2015.
    • (2015) Knowl. Based Syst , vol.73 , pp. 289-297
    • Liang, D.1    Tsai, C.-F.2    Wu, H.-T.3
  • 88
    • 0033676397 scopus 로고    scopus 로고
    • A multiobjective evolutionary setting for feature selection and a commonality-based crossover operator
    • La Jolla, CA, USA
    • C. Emmanouilidis, A. Hunter, and J. MacIntyre, "A multiobjective evolutionary setting for feature selection and a commonality-based crossover operator," in Proc. IEEE Congr. Evol. Comput., vol. 1. La Jolla, CA, USA, 2000, pp. 309-316.
    • (2000) Proc. IEEE Congr. Evol. Comput , vol.1 , pp. 309-316
    • Emmanouilidis, C.1    Hunter, A.2    MacIntyre, J.3
  • 90
    • 18044365477 scopus 로고    scopus 로고
    • Feature selection using multi-objective genetic algorithms for handwritten digit recognition
    • Québec City, QC, Canada
    • L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen, "Feature selection using multi-objective genetic algorithms for handwritten digit recognition," in Proc. 16th Int. Conf. Pattern Recognit. (ICPR), Québec City, QC, Canada, 2002, vol. 1, pp. 568-571.
    • (2002) Proc. 16th Int. Conf. Pattern Recognit. (ICPR) , vol.1 , pp. 568-571
    • Oliveira, L.S.1    Sabourin, R.2    Bortolozzi, F.3    Suen, C.Y.4
  • 91
    • 77950383368 scopus 로고    scopus 로고
    • Feature subset selection using multiobjective genetic algorithms
    • Islamabad, Pakistan
    • K. Waqas, R. Baig, and S. Ali, "Feature subset selection using multiobjective genetic algorithms," in Proc. IEEE 13th Int. Conf. Multitopic Conf. (INMIC), Islamabad, Pakistan, 2009, pp. 1-6.
    • (2009) Proc. IEEE 13th Int. Conf. Multitopic Conf. (INMIC) , pp. 1-6
    • Waqas, K.1    Baig, R.2    Ali, S.3
  • 92
    • 73549103101 scopus 로고    scopus 로고
    • Multi-objective feature selection by using NSGA-II for customer churn prediction in telecommunications
    • B. Huang, B. Buckley, and T.-M. Kechadi, "Multi-objective feature selection by using NSGA-II for customer churn prediction in telecommunications," Expert Syst. Appl., vol. 37, no. 5, pp. 3638-3646, 2010.
    • (2010) Expert Syst. Appl , vol.37 , Issue.5 , pp. 3638-3646
    • Huang, B.1    Buckley, B.2    Kechadi, T.-M.3
  • 93
    • 84868670567 scopus 로고    scopus 로고
    • Multi-objective evolutionary feature selection for instrument recognition in polyphonic audio mixtures
    • I. Vatolkin, M. Preuß, G. Rudolph, M. Eichhoff, and C. Weihs, "Multi-objective evolutionary feature selection for instrument recognition in polyphonic audio mixtures," Soft Comput., vol. 16, no. 12, pp. 2027-2047, 2012.
    • (2012) Soft Comput , vol.16 , Issue.12 , pp. 2027-2047
    • Vatolkin, I.1    Preuß, M.2    Rudolph, G.3    Eichhoff, M.4    Weihs, C.5
  • 94
    • 84892609372 scopus 로고    scopus 로고
    • An SVM-wrapped multiobjective evolutionary feature selection approach for identifying cancermicroRNA markers
    • Dec
    • A. Mukhopadhyay and U. Maulik, "An SVM-wrapped multiobjective evolutionary feature selection approach for identifying cancermicroRNA markers," IEEE Trans. Nanobiosci., vol. 12, no. 4, pp. 275-281, Dec. 2013.
    • (2013) IEEE Trans. Nanobiosci , vol.12 , Issue.4 , pp. 275-281
    • Mukhopadhyay, A.1    Maulik, U.2
  • 95
    • 84878287376 scopus 로고    scopus 로고
    • Feature selection for face recognition based on multi-objective evolutionary wrappers
    • L. D. Vignolo, D. H. Milone, and J. Scharcanskia, "Feature selection for face recognition based on multi-objective evolutionary wrappers," Expert Syst. Appl., vol. 40, no. 13, pp. 5077-5084, 2013.
    • (2013) Expert Syst. Appl , vol.40 , Issue.13 , pp. 5077-5084
    • Vignolo, L.D.1    Milone, D.H.2    Scharcanskia, J.3
  • 96
    • 84888074993 scopus 로고    scopus 로고
    • A multi-objective evolutionary algorithm-based ensemble optimizer for feature selection and classification with neural network models
    • Feb
    • C. J. Tan, C. P. Lim, and Y.-N. Cheah, "A multi-objective evolutionary algorithm-based ensemble optimizer for feature selection and classification with neural network models," Neurocomputing, vol. 125, pp. 217-228, Feb. 2014.
    • (2014) Neurocomputing , vol.125 , pp. 217-228
    • Tan, C.J.1    Lim, C.P.2    Cheah, Y.-N.3
  • 97
    • 84908054655 scopus 로고    scopus 로고
    • Feature selection by multi-objective optimisation: Application to network anomaly detection by hierarchical self-organising maps
    • Nov
    • E. de la Hoz, E. de la Hoz, A. Ortiz, J. Ortega, and A. Martínez-Álvarez, "Feature selection by multi-objective optimisation: Application to network anomaly detection by hierarchical self-organising maps," Knowl. Based Syst., vol. 71, pp. 322-338, Nov. 2014.
    • (2014) Knowl. Based Syst , vol.71 , pp. 322-338
    • De La Hoz, E.1    De La Hoz, E.2    Ortiz, A.3    Ortega, J.4    Martínez-Álvarez, A.5
  • 98
    • 0030704138 scopus 로고    scopus 로고
    • Fast feature selection with genetic algorithms: A filter approach
    • Indianapolis, IN, USA
    • P. L. Lanzi, "Fast feature selection with genetic algorithms: A filter approach," in Proc. IEEE Int. Conf. Evol. Comput., Indianapolis, IN, USA, 1997, pp. 537-540.
    • (1997) Proc. IEEE Int. Conf. Evol. Comput , pp. 537-540
    • Lanzi, P.L.1
  • 99
    • 8844244184 scopus 로고    scopus 로고
    • Genetic algorithm with fuzzy fitness function for feature selection
    • L'Aquila, Italy
    • B. Chakraborty, "Genetic algorithm with fuzzy fitness function for feature selection," in Proc. IEEE Int. Symp. Ind. Electron. (ISIE), L'Aquila, Italy, 2002, vol. 1, pp. 315-319.
    • (2002) Proc. IEEE Int. Symp. Ind. Electron. (ISIE) , vol.1 , pp. 315-319
    • Chakraborty, B.1
  • 100
    • 44649098855 scopus 로고    scopus 로고
    • A niching memetic algorithm for simultaneous clustering and feature selection
    • Jul
    • W. Sheng, X. Liu, and M. Fairhurst, "A niching memetic algorithm for simultaneous clustering and feature selection," IEEE Trans. Knowl. Data Eng., vol. 20, no. 7, pp. 868-879, Jul. 2008.
    • (2008) IEEE Trans. Knowl. Data Eng , vol.20 , Issue.7 , pp. 868-879
    • Sheng, W.1    Liu, X.2    Fairhurst, M.3
  • 101
    • 84255215765 scopus 로고    scopus 로고
    • Evolutionary methods for unsupervised feature selection using Sammon's stress function
    • A. Saxena, N. R. Pal, and M. Vora, "Evolutionary methods for unsupervised feature selection using Sammon's stress function," Fuzzy Inf. Eng., vol. 2, no. 3, pp. 229-247, 2010.
    • (2010) Fuzzy Inf. Eng , vol.2 , Issue.3 , pp. 229-247
    • Saxena, A.1    Pal, N.R.2    Vora, M.3
  • 102
    • 84883206290 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms for filter based feature selection in classification
    • B. Xue, L. Cervante, L. Shang, W. N. Browne, and M. Zhang, "Multiobjective evolutionary algorithms for filter based feature selection in classification," Int. J. Artif. Intell. Tools, vol. 22, no. 4, 2013, Art. ID 1350024.
    • (2013) Int. J. Artif. Intell. Tools , vol.22 , Issue.4
    • Xue, B.1    Cervante, L.2    Shang, L.3    Browne, W.N.4    Zhang, M.5
  • 103
    • 34447345696 scopus 로고    scopus 로고
    • Evolutionary rough feature selection in gene expression data
    • Jul
    • M. Banerjee, S. Mitra, and H. Banka, "Evolutionary rough feature selection in gene expression data," IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 37, no. 4, pp. 622-632, Jul. 2007.
    • (2007) IEEE Trans. Syst., Man, Cybern. C, Appl. Rev , vol.37 , Issue.4 , pp. 622-632
    • Banerjee, M.1    Mitra, S.2    Banka, H.3
  • 105
    • 79953810166 scopus 로고    scopus 로고
    • Multi-objective genetic algorithm evaluation in feature selection
    • Heidelberg, Germany: Springer
    • N. Spolaôr, A. C. Lorena, and H. D. Lee, "Multi-objective genetic algorithm evaluation in feature selection," in Evolutionary Multi-Criterion Optimization (LNCS 6576). Heidelberg, Germany: Springer, 2011, pp. 462-476.
    • (2011) Evolutionary Multi-Criterion Optimization (LNCS 6576) , pp. 462-476
    • Spolaôr, N.1    Lorena, A.C.2    Lee, H.D.3
  • 106
    • 84906950951 scopus 로고    scopus 로고
    • Multi-objective unsupervised feature selection algorithm utilizing redundancy measure and negative epsilon-dominance for fault diagnosis
    • Dec
    • H. Xia, J. Zhuang, and D. Yu, "Multi-objective unsupervised feature selection algorithm utilizing redundancy measure and negative epsilon-dominance for fault diagnosis," Neurocomputing, vol. 146, pp. 113-124, Dec. 2014.
    • (2014) Neurocomputing , vol.146 , pp. 113-124
    • Xia, H.1    Zhuang, J.2    Yu, D.3
  • 107
    • 84865090987 scopus 로고    scopus 로고
    • A genetic-based approach to features selection for ensembles using a hybrid and adaptive fitness function
    • Brisbane, QLD, Australia
    • A. M. P. Canuto and D. S. C. Nascimento, "A genetic-based approach to features selection for ensembles using a hybrid and adaptive fitness function," in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Brisbane, QLD, Australia, 2012, pp. 1-8.
    • (2012) Proc. Int. Joint Conf. Neural Netw. (IJCNN) , pp. 1-8
    • Canuto, A.M.P.1    Nascimento, D.S.C.2
  • 108
    • 77955785580 scopus 로고    scopus 로고
    • Evolutionary-rough feature selection for face recognition
    • Heidelberg, Germany: Springer
    • D. Mazumdar, S. Mitra, and S. Mitra, "Evolutionary-rough feature selection for face recognition," in Transactions on Rough Sets XII (LNCS 6190). Heidelberg, Germany: Springer, 2010, pp. 117-142.
    • (2010) Transactions on Rough Sets XII (LNCS 6190) , pp. 117-142
    • Mazumdar, D.1    Mitra, S.2    Mitra, S.3
  • 109
    • 84882738506 scopus 로고    scopus 로고
    • Email spam detection: A symbiotic feature selection approach fostered by evolutionary computation
    • P. Sousa, P. Cortez, R. Vaz, M. Rocha, and M. Rio, "Email spam detection: A symbiotic feature selection approach fostered by evolutionary computation," Int. J. Inf. Technol. Decis. Making, vol. 12, no. 4, pp. 863-884, 2013.
    • (2013) Int. J. Inf. Technol. Decis. Making , vol.12 , Issue.4 , pp. 863-884
    • Sousa, P.1    Cortez, P.2    Vaz, R.3    Rocha, M.4    Rio, M.5
  • 110
    • 84893681940 scopus 로고    scopus 로고
    • Evolutionary ELM wrapper feature selection for Alzheimer's disease CAD on anatomical brain MRI
    • Mar
    • D. Chyzhyk, A. Savio, and M. Graña, "Evolutionary ELM wrapper feature selection for Alzheimer's disease CAD on anatomical brain MRI," Neurocomputing, vol. 128, pp. 73-80, Mar. 2014.
    • (2014) Neurocomputing , vol.128 , pp. 73-80
    • Chyzhyk, D.1    Savio, A.2    Graña, M.3
  • 111
    • 84890123891 scopus 로고    scopus 로고
    • Novel feature selection methods to financial distress prediction
    • F. Lin, D. Liang, C.-C. Yeh, and J.-C. Huang, "Novel feature selection methods to financial distress prediction," Expert Syst. Appl., vol. 41, no. 5, pp. 2472-2483, 2014.
    • (2014) Expert Syst. Appl , vol.41 , Issue.5 , pp. 2472-2483
    • Lin, F.1    Liang, D.2    Yeh, C.-C.3    Huang, J.-C.4
  • 112
    • 80053080403 scopus 로고    scopus 로고
    • Feature selection for high dimensional data: An evolutionary filter approach
    • A. A. Yahya, A. Osman, A. R. Ramli, and A. Balola, "Feature selection for high dimensional data: An evolutionary filter approach," J. Comput. Sci., vol. 7, no. 5, pp. 800-820, 2011.
    • (2011) J. Comput. Sci , vol.7 , Issue.5 , pp. 800-820
    • Yahya, A.A.1    Osman, A.2    Ramli, A.R.3    Balola, A.4
  • 113
    • 27144450271 scopus 로고    scopus 로고
    • Genetic programming-based construction of features for machine learning and knowledge discovery tasks
    • K. Krawiec, "Genetic programming-based construction of features for machine learning and knowledge discovery tasks," Genet. Program. Evol. Mach., vol. 3, no. 4, pp. 329-343, 2002.
    • (2002) Genet. Program. Evol. Mach , vol.3 , Issue.4 , pp. 329-343
    • Krawiec, K.1
  • 114
    • 33644839730 scopus 로고    scopus 로고
    • Novel feature selection method for genetic programming using metabolomic 1H NMR data
    • R. A. Davis, A. J. Charlton, S. Oehlschlager, and J. C. Wilson, "Novel feature selection method for genetic programming using metabolomic 1H NMR data," Chemometr. Intell. Lab. Syst., vol. 81, no. 1, pp. 50-59, 2006.
    • (2006) Chemometr. Intell. Lab. Syst , vol.81 , Issue.1 , pp. 50-59
    • Davis, R.A.1    Charlton, A.J.2    Oehlschlager, S.3    Wilson, J.C.4
  • 115
    • 84871380541 scopus 로고    scopus 로고
    • A genetic programming approach to hyper-heuristic feature selection
    • Heidelberg, Germany: Springer
    • R. Hunt, K. Neshatian, and M. Zhang, "A genetic programming approach to hyper-heuristic feature selection," in Simulated Evolution and Learning (LNCS 7673). Heidelberg, Germany: Springer, 2012, pp. 320-330.
    • (2012) Simulated Evolution and Learning (LNCS 7673) , pp. 320-330
    • Hunt, R.1    Neshatian, K.2    Zhang, M.3
  • 116
    • 84866840233 scopus 로고    scopus 로고
    • Aggressive and effective feature selection using genetic programming
    • Brisbane, QLD, Australia
    • I. Sandin et al., "Aggressive and effective feature selection using genetic programming," in Proc. IEEE Congr. Evol. Comput. (CEC), Brisbane, QLD, Australia, 2012, pp. 1-8.
    • (2012) Proc. IEEE Congr. Evol. Comput. (CEC) , pp. 1-8
    • Sandin, I.1
  • 117
    • 84871384459 scopus 로고    scopus 로고
    • Genetic programming for biomarker detection in mass spectrometry data
    • Heidelberg, Germany: Springer
    • S. Ahmed, M. Zhang, and L. Peng, "Genetic programming for biomarker detection in mass spectrometry data," in Advances in Artificial Intelligence (LNCS 7691). Heidelberg, Germany: Springer, 2012, pp. 266-278.
    • (2012) Advances in Artificial Intelligence (LNCS 7691) , pp. 266-278
    • Ahmed, S.1    Zhang, M.2    Peng, L.3
  • 118
    • 84904575736 scopus 로고    scopus 로고
    • Improving feature ranking for biomarker discovery in proteomics mass spectrometry data using genetic programming
    • S. Ahmed, M. Zhang, and L. Peng, "Improving feature ranking for biomarker discovery in proteomics mass spectrometry data using genetic programming," Connect. Sci., vol. 26, no. 3, pp. 215-243, 2014.
    • (2014) Connect. Sci , vol.26 , Issue.3 , pp. 215-243
    • Ahmed, S.1    Zhang, M.2    Peng, L.3
  • 119
    • 84875122317 scopus 로고    scopus 로고
    • Feature selection and classification of high dimensional mass spectrometry data: A genetic programming approach
    • S. Ahmed, M. Zhang, and L. Peng, "Feature selection and classification of high dimensional mass spectrometry data: A genetic programming approach," in Proc. EvoBio, Vienna, Austria, 2013, vol. 7833, pp. 43-55.
    • (2013) Proc. EvoBio, Vienna, Austria , vol.7833 , pp. 43-55
    • Ahmed, S.1    Zhang, M.2    Peng, L.3
  • 120
    • 84860717944 scopus 로고    scopus 로고
    • Using genetic programming for contextsensitive feature scoring in classification problems
    • K. Neshatian and M. Zhang, "Using genetic programming for contextsensitive feature scoring in classification problems," Connect. Sci., vol. 23, no. 3, pp. 183-207, 2011.
    • (2011) Connect. Sci , vol.23 , Issue.3 , pp. 183-207
    • Neshatian, K.1    Zhang, M.2
  • 121
    • 80051962192 scopus 로고    scopus 로고
    • Meta-learning and feature ranking using genetic programming for classification: Variable terminal weighting
    • New Orleans, LA, USA
    • A. Friedlander, K. Neshatian, and M. Zhang, "Meta-learning and feature ranking using genetic programming for classification: Variable terminal weighting," in Proc. IEEE Congr. Evol. Comput., New Orleans, LA, USA, 2011, pp. 941-948.
    • (2011) Proc. IEEE Congr. Evol. Comput , pp. 941-948
    • Friedlander, A.1    Neshatian, K.2    Zhang, M.3
  • 122
    • 84905665773 scopus 로고    scopus 로고
    • Prediction of detectable peptides in ms data using genetic programming
    • Vancouver, BC, Canada
    • S. Ahmed, M. Zhang, and L. Peng, "Prediction of detectable peptides in ms data using genetic programming," in Proc. Compan. Conf. Genet. Evol. Comput. Compan. (GECCO), Vancouver, BC, Canada, 2014, pp. 37-38.
    • (2014) Proc. Compan. Conf. Genet. Evol. Comput. Compan. (GECCO) , pp. 37-38
    • Ahmed, S.1    Zhang, M.2    Peng, L.3
  • 123
    • 0030393867 scopus 로고    scopus 로고
    • Automatic selection of features for classification using genetic programming
    • Adelaide, SA, Australia
    • J. Sherrah, R. E. Bogner, and A. Bouzerdoum, "Automatic selection of features for classification using genetic programming," in Proc. Aust. New Zealand Conf. Intell. Inf. Syst., Adelaide, SA, Australia, 1996, pp. 284-287.
    • (1996) Proc. Aust. New Zealand Conf. Intell. Inf. Syst , pp. 284-287
    • Sherrah, J.1    Bogner, R.E.2    Bouzerdoum, A.3
  • 124
    • 5444266247 scopus 로고    scopus 로고
    • Evaluation of mutual information and genetic programming for feature selection in QSAR
    • V. Venkatraman, A. R. Dalby, and Z. R. Yang, "Evaluation of mutual information and genetic programming for feature selection in QSAR," J. Chem. Inf. Comput. Sci., vol. 44, no. 5, pp. 1686-1692, 2004.
    • (2004) J. Chem. Inf. Comput. Sci , vol.44 , Issue.5 , pp. 1686-1692
    • Venkatraman, V.1    Dalby, A.R.2    Yang, Z.R.3
  • 125
    • 34548125719 scopus 로고    scopus 로고
    • Features selection based on rough membership and genetic programming
    • Taipei, Taiwan
    • B.-C. Chien and J.-H. Yang, "Features selection based on rough membership and genetic programming," in Proc. IEEE Int. Conf. Syst. Man Cybern. (SMC), Taipei, Taiwan, 2006, vol. 5, pp. 4124-4129.
    • (2006) Proc. IEEE Int. Conf. Syst. Man Cybern. (SMC) , vol.5 , pp. 4124-4129
    • Chien, B.-C.1    Yang, J.-H.2
  • 126
    • 84938568867 scopus 로고    scopus 로고
    • Automated feature design for numeric sequence classification by genetic programming
    • Aug
    • D. Y. Harvey and M. D. Todd, "Automated feature design for numeric sequence classification by genetic programming," IEEE Trans. Evol. Comput., vol. 19, no. 4, pp. 474-489, Aug. 2015.
    • (2015) IEEE Trans. Evol. Comput , vol.19 , Issue.4 , pp. 474-489
    • Harvey, D.Y.1    Todd, M.D.2
  • 127
    • 78650429699 scopus 로고    scopus 로고
    • Unsupervised elimination of redundant features using genetic programming
    • Melbourne, VIC, Australia
    • K. Neshatian and M. Zhang, "Unsupervised elimination of redundant features using genetic programming," in Proc. 22nd Aust. Joint Conf. Artif. Intell., Melbourne, VIC, Australia, 2009, vol. 5866, pp. 432-442.
    • (2009) Proc. 22nd Aust. Joint Conf. Artif. Intell , vol.5866 , pp. 432-442
    • Neshatian, K.1    Zhang, M.2
  • 128
    • 77951150549 scopus 로고    scopus 로고
    • Dimensionality reduction in face detection: A genetic programming approach
    • Wellington, New Zealand
    • K. Neshatian and M. Zhang, "Dimensionality reduction in face detection: A genetic programming approach," in Proc. 24th Int. Conf. Image Vis. Comput. New Zealand (IVCNZ), Wellington, New Zealand, 2009, pp. 391-396.
    • (2009) Proc. 24th Int. Conf. Image Vis. Comput. New Zealand (IVCNZ) , pp. 391-396
    • Neshatian, K.1    Zhang, M.2
  • 129
    • 72749084593 scopus 로고    scopus 로고
    • Pareto front feature selection: Using genetic programming to explore feature space
    • Montreal, QC, Canada
    • K. Neshatian and M. Zhang, "Pareto front feature selection: Using genetic programming to explore feature space," in Proc. 11th Annu. Conf. Genet. Evol. Comput. (GECCO), Montreal, QC, Canada, 2009, pp. 1027-1034.
    • (2009) Proc. 11th Annu. Conf. Genet. Evol. Comput. (GECCO) , pp. 1027-1034
    • Neshatian, K.1    Zhang, M.2
  • 130
    • 67650675481 scopus 로고    scopus 로고
    • Genetic programming for feature subset ranking in binary classification problems
    • Tübingen, Germany
    • K. Neshatian and M. Zhang, "Genetic programming for feature subset ranking in binary classification problems," in Proc. Eur. Conf. Genet. Program., Tübingen, Germany, 2009, pp. 121-132.
    • (2009) Proc. Eur. Conf. Genet. Program , pp. 121-132
    • Neshatian, K.1    Zhang, M.2
  • 131
    • 84897519903 scopus 로고    scopus 로고
    • Automatic design of scheduling policies for dynamic multi-objective job shop scheduling via cooperative coevolution genetic programming
    • Apr
    • S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, "Automatic design of scheduling policies for dynamic multi-objective job shop scheduling via cooperative coevolution genetic programming," IEEE Trans. Evol. Comput., vol. 18, no. 2, pp. 193-208, Apr. 2014.
    • (2014) IEEE Trans. Evol. Comput , vol.18 , Issue.2 , pp. 193-208
    • Nguyen, S.1    Zhang, M.2    Johnston, M.3    Tan, K.C.4
  • 132
    • 84921341804 scopus 로고    scopus 로고
    • Genetic programming for multiclass texture classification using a small number of instances
    • Cham, Switzerland: Springer
    • H. Al-Sahaf, M. Zhang, and M. Johnston, "Genetic programming for multiclass texture classification using a small number of instances," in Simulated Evolution and Learning (LNCS 8886). Cham, Switzerland: Springer, 2014, pp. 335-346.
    • (2014) Simulated Evolution and Learning (LNCS 8886) , pp. 335-346
    • Al-Sahaf, H.1    Zhang, M.2    Johnston, M.3
  • 133
    • 71349083973 scopus 로고    scopus 로고
    • A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine
    • I. Babaoglu, O. Findik, and E. Ülker, "A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine," Expert Syst. Appl., vol. 37, no. 4, pp. 3177-3183, 2010.
    • (2010) Expert Syst. Appl , vol.37 , Issue.4 , pp. 3177-3183
    • Babaoglu, I.1    Findik, O.2    Ülker, E.3
  • 134
    • 27944487521 scopus 로고    scopus 로고
    • Using PSO algorithm to evolve an optimum input subset for a SVM in time series forecasting
    • Waikoloa Village, HI, USA
    • C. Zhang and H. Hu, "Using PSO algorithm to evolve an optimum input subset for a SVM in time series forecasting," in Proc. IEEE Int. Conf. Syst. Man Cybern. (SMC), Waikoloa Village, HI, USA, 2005, vol. 4, pp. 3793-3796.
    • (2005) Proc. IEEE Int. Conf. Syst. Man Cybern. (SMC) , vol.4 , pp. 3793-3796
    • Zhang, C.1    Hu, H.2
  • 136
    • 40249088411 scopus 로고    scopus 로고
    • Feature-level fusion by multi-objective binary particle swarm based unbiased feature selection for optimized sensor system design
    • Heidelberg, Germany
    • K. Iswandy and A. Koenig, "Feature-level fusion by multi-objective binary particle swarm based unbiased feature selection for optimized sensor system design," in Proc. IEEE Int. Conf. Multisensor Fusion Integr. Intell. Syst., Heidelberg, Germany, 2006, pp. 365-370.
    • (2006) Proc. IEEE Int. Conf. Multisensor Fusion Integr. Intell. Syst , pp. 365-370
    • Iswandy, K.1    Koenig, A.2
  • 137
    • 70449106536 scopus 로고    scopus 로고
    • An approach to feature selection for keystroke dynamics systems based on PSO and feature weighting
    • Singapore
    • G. L. F. Azevedo, G. D. C. Cavalcanti, and E. C. B. C. Filho, "An approach to feature selection for keystroke dynamics systems based on PSO and feature weighting," in Proc. IEEE Congr. Evol. Comput. (CEC), Singapore, 2007, pp. 3577-3584.
    • (2007) Proc. IEEE Congr. Evol. Comput. (CEC) , pp. 3577-3584
    • Azevedo, G.L.F.1    Cavalcanti, G.D.C.2    Filho, E.C.B.C.3
  • 138
    • 48749109333 scopus 로고    scopus 로고
    • Particle swarm optimization for parameter determination and feature selection of support vector machines
    • S.-W. Lin, K.-C. Ying, S.-C. Chen, and Z.-J. Lee, "Particle swarm optimization for parameter determination and feature selection of support vector machines," Expert Syst. Appl., vol. 35, no. 4, pp. 1817-1824, 2008.
    • (2008) Expert Syst. Appl , vol.35 , Issue.4 , pp. 1817-1824
    • Lin, S.-W.1    Ying, K.-C.2    Chen, S.-C.3    Lee, Z.-J.4
  • 139
    • 37549069306 scopus 로고    scopus 로고
    • Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data
    • Q. Shen, W.-M. Shi, and W. Kong, "Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data," Comput. Biol. Chem., vol. 32, no. 1, pp. 53-60, 2008.
    • (2008) Comput. Biol. Chem , vol.32 , Issue.1 , pp. 53-60
    • Shen, Q.1    Shi, W.-M.2    Kong, W.3
  • 140
    • 37549011765 scopus 로고    scopus 로고
    • Improved binary PSO for feature selection using gene expression data
    • L.-Y. Chuang, H.-W. Chang, C.-J. Tu, and C.-H. Yang, "Improved binary PSO for feature selection using gene expression data," Comput. Biol. Chem., vol. 32, no. 1, pp. 29-38, 2008.
    • (2008) Comput. Biol. Chem , vol.32 , Issue.1 , pp. 29-38
    • Chuang, L.-Y.1    Chang, H.-W.2    Tu, C.-J.3    Yang, C.-H.4
  • 141
    • 50149108380 scopus 로고    scopus 로고
    • A distributed PSO-SVM hybrid system with feature selection and parameter optimization
    • C.-L. Huang and J.-F. Dun, "A distributed PSO-SVM hybrid system with feature selection and parameter optimization," Appl. Soft Comput., vol. 8, no. 4, pp. 1381-1391, 2008.
    • (2008) Appl. Soft Comput , vol.8 , Issue.4 , pp. 1381-1391
    • Huang, C.-L.1    Dun, J.-F.2
  • 142
    • 70449914877 scopus 로고    scopus 로고
    • Particle swarm optimization based Adaboost for face detection
    • Trondheim, Norway
    • A. Mohemmed, M. Zhang, and M. Johnston, "Particle swarm optimization based Adaboost for face detection," in Proc. IEEE Congr. Evol. Comput. (CEC), Trondheim, Norway, 2009, pp. 2494-2501.
    • (2009) Proc. IEEE Congr. Evol. Comput. (CEC) , pp. 2494-2501
    • Mohemmed, A.1    Zhang, M.2    Johnston, M.3
  • 143
    • 67349196796 scopus 로고    scopus 로고
    • PSOLDA: A particle swarm optimization approach for enhancing classification accuracy rate of linear discriminant analysis
    • S.-W. Lin and S.-C. Chen, "PSOLDA: A particle swarm optimization approach for enhancing classification accuracy rate of linear discriminant analysis," Appl. Soft Comput., vol. 9, no. 3, pp. 1008-1015, 2009.
    • (2009) Appl. Soft Comput , vol.9 , Issue.3 , pp. 1008-1015
    • Lin, S.-W.1    Chen, S.-C.2
  • 144
    • 82155181627 scopus 로고    scopus 로고
    • A modified binary particle swarm optimization for selecting the small subset of informative genes from gene expression data
    • Nov
    • M. S. Mohamad, S. Omatu, S. Deris, and M. Yoshioka, "A modified binary particle swarm optimization for selecting the small subset of informative genes from gene expression data," IEEE Trans. Inf. Technol. Biomed., vol. 15, no. 6, pp. 813-822, Nov. 2011.
    • (2011) IEEE Trans. Inf. Technol. Biomed , vol.15 , Issue.6 , pp. 813-822
    • Mohamad, M.S.1    Omatu, S.2    Deris, S.3    Yoshioka, M.4
  • 145
    • 79957970608 scopus 로고    scopus 로고
    • Improved binary particle swarm optimization using catfish effect for feature selection
    • L.-Y. Chuang, S.-W. Tsai, and C.-H. Yang, "Improved binary particle swarm optimization using catfish effect for feature selection," Expert Syst. Appl., vol. 38, no. 10, pp. 12699-12707, 2011.
    • (2011) Expert Syst. Appl , vol.38 , Issue.10 , pp. 12699-12707
    • Chuang, L.-Y.1    Tsai, S.-W.2    Yang, C.-H.3
  • 146
    • 84866844130 scopus 로고    scopus 로고
    • Metaheuristics for feature selection: Application to sepsis outcome prediction
    • Brisbane, QLD, Australia
    • S. M. Vieira, L. F. Mendonca, G. J. Farinha, and J. M. C. Sousa, "Metaheuristics for feature selection: Application to sepsis outcome prediction," in Proc. IEEE Congr. Evol. Comput. (CEC), Brisbane, QLD, Australia, 2012, pp. 1-8.
    • (2012) Proc. IEEE Congr. Evol. Comput. (CEC) , pp. 1-8
    • Vieira, S.M.1    Mendonca, L.F.2    Farinha, G.J.3    Sousa, J.M.C.4
  • 147
    • 84866865991 scopus 로고    scopus 로고
    • New fitness functions in binary particle swarm optimisation for feature selection
    • Brisbane, QLD, Australia
    • B. Xue, M. Zhang, and W. N. Browne, "New fitness functions in binary particle swarm optimisation for feature selection," in Proc. IEEE Congr. Evol. Comput. (CEC), Brisbane, QLD, Australia, 2012, pp. 1-8.
    • (2012) Proc. IEEE Congr. Evol. Comput. (CEC) , pp. 1-8
    • Xue, B.1    Zhang, M.2    Browne, W.N.3
  • 148
    • 84868684316 scopus 로고    scopus 로고
    • Single feature ranking and binary particle swarm optimisation based feature subset ranking for feature selection
    • Melbourne, VIC, Australia
    • B. Xue, M. Zhang, and W. N. Browne, "Single feature ranking and binary particle swarm optimisation based feature subset ranking for feature selection," in Proc. Aust. Comput. Sci. Conf. (ACSC), vol. 122. Melbourne, VIC, Australia, 2012, pp. 27-36.
    • (2012) Proc. Aust. Comput. Sci. Conf. (ACSC) , vol.122 , pp. 27-36
    • Xue, B.1    Zhang, M.2    Browne, W.N.3
  • 149
    • 84861841294 scopus 로고    scopus 로고
    • Attribute selection method based on a hybrid BPNN and PSO algorithms
    • C. Jin, S.-W. Jin, and L.-N. Qin, "Attribute selection method based on a hybrid BPNN and PSO algorithms," Appl. Soft Comput., vol. 12, no. 8, pp. 2147-2155, 2012.
    • (2012) Appl. Soft Comput , vol.12 , Issue.8 , pp. 2147-2155
    • Jin, C.1    Jin, S.-W.2    Qin, L.-N.3
  • 150
    • 84875645049 scopus 로고    scopus 로고
    • Novel initialisation and updating mechanisms in PSO for feature selection in classification
    • Heidelberg, Germany: Springer
    • B. Xue, M. Zhang, and W. N. Browne, "Novel initialisation and updating mechanisms in PSO for feature selection in classification," in Applications of Evolutionary Computation (LNCS 7835). Heidelberg, Germany: Springer, 2013, pp. 428-438.
    • (2013) Applications of Evolutionary Computation (LNCS 7835) , pp. 428-438
    • Xue, B.1    Zhang, M.2    Browne, W.N.3
  • 151
    • 84655161276 scopus 로고    scopus 로고
    • New insights on nontechnical losses characterization through evolutionary-based feature selection
    • Jan
    • C. C. O. Ramos, A. N. de Souza, A. X. Falcao, and J. P. Papa, "New insights on nontechnical losses characterization through evolutionary-based feature selection," IEEE Trans. Power Del., vol. 27, no. 1, pp. 140-146, Jan. 2012.
    • (2012) IEEE Trans. Power Del , vol.27 , Issue.1 , pp. 140-146
    • Ramos, C.C.O.1    De Souza, A.N.2    Falcao, A.X.3    Papa, J.P.4
  • 152
    • 84878154666 scopus 로고    scopus 로고
    • Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients
    • S. M. Vieira, L. F. Mendonça, G. J. Farinha, and J. M. C. Sousa, "Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients," Appl. Soft Comput., vol. 13, no. 8, pp. 3494-3504, 2013.
    • (2013) Appl. Soft Comput , vol.13 , Issue.8 , pp. 3494-3504
    • Vieira, S.M.1    Mendonça, L.F.2    Farinha, G.J.3    Sousa, J.M.C.4
  • 153
    • 84893720363 scopus 로고    scopus 로고
    • Particle swarm optimisation and statistical clustering for feature selection
    • Cham, Switzerland: Springer
    • M. C. Lane, B. Xue, I. Liu, and M. Zhang, "Particle swarm optimisation and statistical clustering for feature selection," in Advances in Artificial Intelligence (LNCS 8272). Cham, Switzerland: Springer, 2013, pp. 214-220.
    • (2013) Advances in Artificial Intelligence (LNCS 8272) , pp. 214-220
    • Lane, M.C.1    Xue, B.2    Liu, I.3    Zhang, M.4
  • 154
    • 84921327742 scopus 로고    scopus 로고
    • PSO and statistical clustering for feature selection: A new representation
    • Cham, Switzerland: Springer
    • H. B. Nguyen, B. Xue, I. Liu, and M. Zhang, "PSO and statistical clustering for feature selection: A new representation," in Simulated Evolution and Learning (LNCS 8886). Cham, Switzerland: Springer, 2014, pp. 569-581.
    • (2014) Simulated Evolution and Learning (LNCS 8886) , pp. 569-581
    • Nguyen, H.B.1    Xue, B.2    Liu, I.3    Zhang, M.4
  • 155
    • 84921327883 scopus 로고    scopus 로고
    • Improved PSO for feature selection on high-dimensional datasets
    • Cham, Switzerland: Springer
    • B. Tran, B. Xue, and M. Zhang, "Improved PSO for feature selection on high-dimensional datasets," in Simulated Evolution and Learning (LNCS 8886). Cham, Switzerland: Springer, 2014, pp. 503-515.
    • (2014) Simulated Evolution and Learning (LNCS 8886) , pp. 503-515
    • Tran, B.1    Xue, B.2    Zhang, M.3
  • 156
    • 84921362004 scopus 로고    scopus 로고
    • Gaussian based particle swarm optimisation and statistical clustering for feature selection
    • Berlin, Germany: Springer
    • M. C. Lane, B. Xue, I. Liu, and M. Zhang, "Gaussian based particle swarm optimisation and statistical clustering for feature selection," in Evolutionary Computation in Combinatorial Optimisation (LNCS 8600). Berlin, Germany: Springer, 2014, pp. 133-144.
    • (2014) Evolutionary Computation in Combinatorial Optimisation (LNCS 8600) , pp. 133-144
    • Lane, M.C.1    Xue, B.2    Liu, I.3    Zhang, M.4
  • 157
    • 84897113235 scopus 로고    scopus 로고
    • Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms
    • May
    • B. Xue, M. Zhang, and W. N. Browne, "Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms," Appl. Soft Comput., vol. 18, pp. 261-276, May 2014.
    • (2014) Appl. Soft Comput , vol.18 , pp. 261-276
    • Xue, B.1    Zhang, M.2    Browne, W.N.3
  • 158
    • 84925854087 scopus 로고    scopus 로고
    • Gaussian transformation based representation in particle swarm optimisation for feature selection
    • Cham, Switzerland: Springer
    • H. B. Nguyen, B. Xue, I. Liu, P. Andreae, and M. Zhang, "Gaussian transformation based representation in particle swarm optimisation for feature selection," in Applications of Evolutionary Computation (LNCS 9028). Cham, Switzerland: Springer, 2015, pp. 541-553.
    • (2015) Applications of Evolutionary Computation (LNCS 9028) , pp. 541-553
    • Nguyen, H.B.1    Xue, B.2    Liu, I.3    Andreae, P.4    Zhang, M.5
  • 159
    • 84908072362 scopus 로고    scopus 로고
    • Feature selection algorithm based on bare bones particle swarm optimization
    • Jan
    • Y. Zhang, D. Gong, Y. Hu, and W. Zhang, "Feature selection algorithm based on bare bones particle swarm optimization," Neurocomputing, vol. 148, pp. 150-157, Jan. 2015.
    • (2015) Neurocomputing , vol.148 , pp. 150-157
    • Zhang, Y.1    Gong, D.2    Hu, Y.3    Zhang, W.4
  • 160
  • 161
    • 84921822460 scopus 로고    scopus 로고
    • Multi-objective PSO algorithm for feature selection problems with unreliable data
    • Cham, Switzerland: Springer
    • Y. Zhang, C. Xia, D. Gong, and X. Sun, "Multi-objective PSO algorithm for feature selection problems with unreliable data," in Advances in Swarm Intelligence (LNCS 8794). Cham, Switzerland: Springer, 2014, pp. 386-393.
    • (2014) Advances in Swarm Intelligence (LNCS 8794) , pp. 386-393
    • Zhang, Y.1    Xia, C.2    Gong, D.3    Sun, X.4
  • 162
    • 33845523839 scopus 로고    scopus 로고
    • Feature selection based on rough sets and particle swarm optimization
    • X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen, "Feature selection based on rough sets and particle swarm optimization," Pattern Recognit. Lett., vol. 28, no. 4, pp. 459-471, 2007.
    • (2007) Pattern Recognit. Lett , vol.28 , Issue.4 , pp. 459-471
    • Wang, X.1    Yang, J.2    Teng, X.3    Xia, W.4    Jensen, R.5
  • 163
    • 60349114690 scopus 로고    scopus 로고
    • Feature subset selection by particle swarm optimization with fuzzy fitness function
    • Xiamen, China
    • B. Chakraborty, "Feature subset selection by particle swarm optimization with fuzzy fitness function," in Proc. 3rd Int. Conf. Intell. Syst. Knowl. Eng. (ISKE), Xiamen, China, 2008, vol. 1, pp. 1038-1042.
    • (2008) Proc. 3rd Int. Conf. Intell. Syst. Knowl. Eng. (ISKE) , vol.1 , pp. 1038-1042
    • Chakraborty, B.1
  • 164
    • 84859072573 scopus 로고    scopus 로고
    • Optimal feature selection based on image pre-processing using accelerated binary particle swarm optimization for enhanced face recognition
    • M. Aneesh, A. A. Masand, and K. Manikantan, "Optimal feature selection based on image pre-processing using accelerated binary particle swarm optimization for enhanced face recognition," Procedia Eng., vol. 30, no. 5, pp. 750-758, 2012.
    • (2012) Procedia Eng , vol.30 , Issue.5 , pp. 750-758
    • Aneesh, M.1    Masand, A.A.2    Manikantan, K.3
  • 165
    • 84893629718 scopus 로고    scopus 로고
    • Fuzzy consistency measure with particle swarm optimization for feature selection
    • Manchester, U.K.
    • B. Chakraborty and G. Chakraborty, "Fuzzy consistency measure with particle swarm optimization for feature selection," in Proc. IEEE Int. Conf. Syst. Man Cybern. (SMC), Manchester, U.K., 2013, pp. 4311-4315.
    • (2013) Proc. IEEE Int. Conf. Syst. Man Cybern. (SMC) , pp. 4311-4315
    • Chakraborty, B.1    Chakraborty, G.2
  • 166
    • 84881571608 scopus 로고    scopus 로고
    • Binary particle swarm optimisation and rough set theory for dimension reduction in classification
    • Cancún, Mexico
    • L. Cervante, B. Xue, L. Shang, and M. Zhang, "Binary particle swarm optimisation and rough set theory for dimension reduction in classification," in Proc. IEEE Congr. Evol. Comput. (CEC), Cancún, Mexico, 2013, pp. 2428-2435.
    • (2013) Proc. IEEE Congr. Evol. Comput. (CEC) , pp. 2428-2435
    • Cervante, L.1    Xue, B.2    Shang, L.3    Zhang, M.4
  • 167
    • 79952809060 scopus 로고    scopus 로고
    • Feature selection with intelligent dynamic swarm and rough set
    • C. Bae, W.-C. Yeh, Y. Y. Chung, and S.-L. Liu, "Feature selection with intelligent dynamic swarm and rough set," Expert Syst. Appl., vol. 37, no. 10, pp. 7026-7032, 2010.
    • (2010) Expert Syst. Appl , vol.37 , Issue.10 , pp. 7026-7032
    • Bae, C.1    Yeh, W.-C.2    Chung, Y.Y.3    Liu, S.-L.4
  • 168
    • 83755206518 scopus 로고    scopus 로고
    • Feature and instance selection via cooperative PSO
    • Anchorage, AK, USA
    • S. S. S. Ahmad and W. Pedrycz, "Feature and instance selection via cooperative PSO," in Proc. IEEE Int. Conf. Syst. Man Cybern. (SMC), Anchorage, AK, USA, 2011, pp. 2127-2132.
    • (2011) Proc. IEEE Int. Conf. Syst. Man Cybern. (SMC) , pp. 2127-2132
    • Ahmad, S.S.S.1    Pedrycz, W.2
  • 169
    • 84871389617 scopus 로고    scopus 로고
    • A dimension reduction approach to classification based on particle swarm optimisation and rough set theory
    • Sydney, NSW, Australia
    • L. Cervante, B. Xue, L. Shang, and M. Zhang, "A dimension reduction approach to classification based on particle swarm optimisation and rough set theory," in Proc. 25th Aust. Joint Conf. Artif. Intell., Sydney, NSW, Australia, 2012, vol. 7691, pp. 313-325.
    • (2012) Proc. 25th Aust. Joint Conf. Artif. Intell , vol.7691 , pp. 313-325
    • Cervante, L.1    Xue, B.2    Shang, L.3    Zhang, M.4
  • 170
    • 84898740781 scopus 로고    scopus 로고
    • A graph-theoretic approach for identifying non-redundant and relevant gene markers from microarray data using multiobjective binary PSO
    • M. Mandal and A. Mukhopadhyay, "A graph-theoretic approach for identifying non-redundant and relevant gene markers from microarray data using multiobjective binary PSO," PLoS ONE, vol. 9, no. 3, pp. 1-13, 2014, Art. ID. e90949.
    • (2014) PLoS ONE , vol.9 , Issue.3 , pp. 1-13
    • Mandal, M.1    Mukhopadhyay, A.2
  • 171
    • 84875116101 scopus 로고    scopus 로고
    • A multi-objective feature selection approach based on binary PSO and rough set theory
    • Vienna, Austria
    • L. Cervante, B. Xue, L. Shang, and M. Zhang, "A multi-objective feature selection approach based on binary PSO and rough set theory," in Proc. 13th Eur. Conf. Evol. Comput. Comb. Optim. (EvoCOP), Vienna, Austria, 2013, vol. 7832, pp. 25-36.
    • (2013) Proc. 13th Eur. Conf. Evol. Comput. Comb. Optim. (EvoCOP) , vol.7832 , pp. 25-36
    • Cervante, L.1    Xue, B.2    Shang, L.3    Zhang, M.4
  • 172
    • 84871342606 scopus 로고    scopus 로고
    • A multi-objective particle swarm optimisation for filter based feature selection in classification problems
    • B. Xue, L. Cervante, L. Shang, W. N. Browne, and M. Zhang, "A multi-objective particle swarm optimisation for filter based feature selection in classification problems," Connect. Sci., vol. 24, nos. 2-3, pp. 91-116, 2012.
    • (2012) Connect. Sci , vol.24 , Issue.2-3 , pp. 91-116
    • Xue, B.1    Cervante, L.2    Shang, L.3    Browne, W.N.4    Zhang, M.5
  • 173
    • 84903730957 scopus 로고    scopus 로고
    • Binary PSO and rough set theory for feature selection: A multi-objective filter based approach
    • B. Xue, L. Cervante, L. Shang, W. N. Browne, and M. Zhang, "Binary PSO and rough set theory for feature selection: A multi-objective filter based approach," Int. J. Comput. Intell. Appl., vol. 13, no. 2, 2014, Art. ID 1450009.
    • (2014) Int. J. Comput. Intell. Appl , vol.13 , Issue.2
    • Xue, B.1    Cervante, L.2    Shang, L.3    Browne, W.N.4    Zhang, M.5
  • 175
    • 84886736053 scopus 로고    scopus 로고
    • A novel feature selection algorithm using particle swarm optimization for cancer microarray data
    • Sep
    • B. Sahu and D. Mishra, "A novel feature selection algorithm using particle swarm optimization for cancer microarray data," Procedia Eng., vol. 38, pp. 27-31, Sep. 2012.
    • (2012) Procedia Eng , vol.38 , pp. 27-31
    • Sahu, B.1    Mishra, D.2
  • 176
    • 84908582763 scopus 로고    scopus 로고
    • Filter based backward elimination in wrapper based PSO for feature selection in classification
    • Beijing, China
    • H. B. Nguyen, B. Xue, I. Liu, and M. Zhang, "Filter based backward elimination in wrapper based PSO for feature selection in classification," in Proc. IEEE Congr. Evol. Comput. (CEC), Beijing, China, 2014, pp. 3111-3118.
    • (2014) Proc. IEEE Congr. Evol. Comput. (CEC) , pp. 3111-3118
    • Nguyen, H.B.1    Xue, B.2    Liu, I.3    Zhang, M.4
  • 177
    • 51849110463 scopus 로고    scopus 로고
    • Feature selection using double parallel feedforward neural networks and particle swarm optimization
    • Singapore
    • R. Huang and M. He, "Feature selection using double parallel feedforward neural networks and particle swarm optimization," in Proc. IEEE Congr. Evol. Comput. (CEC), Singapore, 2007, pp. 692-696.
    • (2007) Proc. IEEE Congr. Evol. Comput. (CEC) , pp. 692-696
    • Huang, R.1    He, M.2
  • 178
    • 84861820472 scopus 로고    scopus 로고
    • Application of global optimization methods to model and feature selection
    • A. Boubezoul and S. Paris, "Application of global optimization methods to model and feature selection," Pattern Recognit., vol. 45, no. 10, pp. 3676-3686, 2012.
    • (2012) Pattern Recognit , vol.45 , Issue.10 , pp. 3676-3686
    • Boubezoul, A.1    Paris, S.2
  • 181
    • 0031352450 scopus 로고    scopus 로고
    • A discrete binary version of the particle swarm algorithm
    • Orlando, FL, USA
    • J. Kennedy and R. C. Eberhart, "A discrete binary version of the particle swarm algorithm," in Proc. IEEE Int. Conf. Syst. Man Cybern., vol. 5. Orlando, FL, USA, 1997, pp. 4104-4108.
    • (1997) Proc. IEEE Int. Conf. Syst. Man Cybern , vol.5 , pp. 4104-4108
    • Kennedy, J.1    Eberhart, R.C.2
  • 182
    • 9644297845 scopus 로고    scopus 로고
    • Finding rough set reducts with ant colony optimization
    • Bristol, U.K.
    • R. Jensen and Q. Shen, "Finding rough set reducts with ant colony optimization," in Proc. U.K. Workshop Comput. Intell., Bristol, U.K., 2003, pp. 15-22.
    • (2003) Proc. U.K. Workshop Comput. Intell , pp. 15-22
    • Jensen, R.1    Shen, Q.2
  • 183
    • 28444441282 scopus 로고    scopus 로고
    • Ant colony optimization based network intrusion feature selection and detection
    • Guangzhou, China
    • H.-H. Gao, H.-H. Yang, and X.-Y. Wang, "Ant colony optimization based network intrusion feature selection and detection," in Proc. Int. Conf. Mach. Learn. Cybern., Guangzhou, China, 2005, vol. 6, pp. 3871-3875.
    • (2005) Proc. Int. Conf. Mach. Learn. Cybern , vol.6 , pp. 3871-3875
    • Gao, H.-H.1    Yang, H.-H.2    Wang, X.-Y.3
  • 184
    • 33845621875 scopus 로고    scopus 로고
    • A hybrid approach for feature subset selection using neural networks and ant colony optimization
    • R. K. Sivagaminathan and S. Ramakrishnan, "A hybrid approach for feature subset selection using neural networks and ant colony optimization," Expert Syst. Appl., vol. 33, no. 1, pp. 49-60, 2007.
    • (2007) Expert Syst. Appl , vol.33 , Issue.1 , pp. 49-60
    • Sivagaminathan, R.K.1    Ramakrishnan, S.2
  • 185
    • 37249055074 scopus 로고    scopus 로고
    • Ant colony optimization applied to feature selection in fuzzy classifiers
    • Cancún, Mexico
    • S. M. Vieira, J. M. C. Sousa, and T. A. Runkler, "Ant colony optimization applied to feature selection in fuzzy classifiers," in Proc. Found. Fuzzy Logic Soft Comput., Cancún, Mexico, 2007, vol. 4529, pp. 778-788.
    • (2007) Proc. Found. Fuzzy Logic Soft Comput , vol.4529 , pp. 778-788
    • Vieira, S.M.1    Sousa, J.M.C.2    Runkler, T.A.3
  • 186
    • 54249083003 scopus 로고    scopus 로고
    • An improved feature selection method based on ant colony optimization (ACO) evaluated on face recognition system
    • H. R. Kanan and K. Faez, "An improved feature selection method based on ant colony optimization (ACO) evaluated on face recognition system," Appl. Math. Comput., vol. 205, no. 2, pp. 716-725, 2008.
    • (2008) Appl. Math. Comput , vol.205 , Issue.2 , pp. 716-725
    • Kanan, H.R.1    Faez, K.2
  • 187
    • 57649213892 scopus 로고    scopus 로고
    • Simultaneous feature selection and parameter optimisation using an artificial ant colony: Case study of melting point prediction
    • Oct
    • N. M. O'Boyle, D. S. Palmer, F. Nigsch, and J. B. Mitchell, "Simultaneous feature selection and parameter optimisation using an artificial ant colony: Case study of melting point prediction," Chem. Central J., vol. 2, pp. 1-15, Oct. 2008.
    • (2008) Chem. Central J , vol.2 , pp. 1-15
    • O'Boyle, N.M.1    Palmer, D.S.2    Nigsch, F.3    Mitchell, J.B.4
  • 188
    • 76749153275 scopus 로고    scopus 로고
    • A modified ant colony optimization algorithm for tumor marker gene selection
    • H. Yu, G. Gu, H. Liu, J. Shen, and J. Zhao, "A modified ant colony optimization algorithm for tumor marker gene selection," Genomics, Proteomics Bioinformat., vol. 7, no. 4, pp. 200-208, 2009.
    • (2009) Genomics, Proteomics Bioinformat , vol.7 , Issue.4 , pp. 200-208
    • Yu, H.1    Gu, G.2    Liu, H.3    Shen, J.4    Zhao, J.5
  • 189
    • 71549117600 scopus 로고    scopus 로고
    • Two cooperative ant colonies for feature selection using fuzzy models
    • S. M. Vieira, J. M. C. Sousa, and T. A. Runkler, "Two cooperative ant colonies for feature selection using fuzzy models," Expert Syst. Appl., vol. 37, no. 4, pp. 2714-2723, 2010.
    • (2010) Expert Syst. Appl , vol.37 , Issue.4 , pp. 2714-2723
    • Vieira, S.M.1    Sousa, J.M.C.2    Runkler, T.A.3
  • 190
    • 78649967742 scopus 로고    scopus 로고
    • Shape feature selection and weed recognition based on image processing and ant colony optimization
    • X. Li, W. Zhu, B. Ji, B. Liu, and C. Ma, "Shape feature selection and weed recognition based on image processing and ant colony optimization," Trans. Chin. Soc. Agr. Eng., vol. 26, no. 10, pp. 178-182, 2010.
    • (2010) Trans. Chin. Soc. Agr. Eng , vol.26 , Issue.10 , pp. 178-182
    • Li, X.1    Zhu, W.2    Ji, B.3    Liu, B.4    Ma, C.5
  • 191
    • 84888580579 scopus 로고    scopus 로고
    • A new feature selection algorithm based on binary ant colony optimization
    • Shiraz, Iran
    • S. Kashef and H. Nezamabadi-Pour, "A new feature selection algorithm based on binary ant colony optimization," in Proc. 5th Conf. Inf. Knowl. Technol. (IKT), Shiraz, Iran, 2013, pp. 50-54.
    • (2013) Proc. 5th Conf. Inf. Knowl. Technol. (IKT) , pp. 50-54
    • Kashef, S.1    Nezamabadi-Pour, H.2
  • 192
    • 84924050625 scopus 로고    scopus 로고
    • An advanced ACO algorithm for feature subset selection
    • Jan
    • S. Kashef and H. Nezamabadi-Pour, "An advanced ACO algorithm for feature subset selection," Neurocomputing, vol. 147, pp. 271-279, Jan. 2014.
    • (2014) Neurocomputing , vol.147 , pp. 271-279
    • Kashef, S.1    Nezamabadi-Pour, H.2
  • 194
    • 28444485325 scopus 로고    scopus 로고
    • Feature selection using the hybrid of ant colony optimization and mutual information for the forecaster
    • Guangzhou, China
    • C.-K. Zhang and H. Hu, "Feature selection using the hybrid of ant colony optimization and mutual information for the forecaster," in Proc. Int. Conf. Mach. Learn. Cybern., Guangzhou, China, 2005, vol. 3, pp. 1728-1732.
    • (2005) Proc. Int. Conf. Mach. Learn. Cybern , vol.3 , pp. 1728-1732
    • Zhang, C.-K.1    Hu, H.2
  • 196
    • 43249111682 scopus 로고    scopus 로고
    • An efficient ant colony optimization approach to attribute reduction in rough set theory
    • L. Ke, Z. Feng, and Z. Ren, "An efficient ant colony optimization approach to attribute reduction in rough set theory," Pattern Recognit. Lett., vol. 29, no. 9, pp. 1351-1357, 2008.
    • (2008) Pattern Recognit. Lett , vol.29 , Issue.9 , pp. 1351-1357
    • Ke, L.1    Feng, Z.2    Ren, Z.3
  • 197
    • 62349094550 scopus 로고    scopus 로고
    • Feature selection based on ant colony optimization and rough set theory
    • Shanghai, China
    • M. He, "Feature selection based on ant colony optimization and rough set theory," in Proc. Int. Symp. Comput. Sci. Comput. Technol., Shanghai, China, 2008, vol. 1, pp. 247-250.
    • (2008) Proc. Int. Symp. Comput. Sci. Comput. Technol , vol.1 , pp. 247-250
    • He, M.1
  • 198
    • 73849148050 scopus 로고    scopus 로고
    • Feature selection and classification based on ant colony algorithm for hyperspectral remote sensing images
    • Tianjin, China
    • S. Zhou, J.-P. Zhang, and B.-K. Su, "Feature selection and classification based on ant colony algorithm for hyperspectral remote sensing images," in Proc. 2nd Int. Congr. Image Signal Process., Tianjin, China, 2009, pp. 1-4.
    • (2009) Proc. 2nd Int. Congr. Image Signal Process , pp. 1-4
    • Zhou, S.1    Zhang, J.-P.2    Su, B.-K.3
  • 199
    • 72449177821 scopus 로고    scopus 로고
    • A rough set approach to feature selection based on ant colony optimization
    • Y. Chen, D. Miao, and R. Wang, "A rough set approach to feature selection based on ant colony optimization," Pattern Recognit. Lett., vol. 31, no. 3, pp. 226-233, 2010.
    • (2010) Pattern Recognit. Lett , vol.31 , Issue.3 , pp. 226-233
    • Chen, Y.1    Miao, D.2    Wang, R.3
  • 200
    • 83855160795 scopus 로고    scopus 로고
    • Ant colony optimization-based feature selection method for surface electromyography signals classification
    • H. Huang, H.-B. Xie, J.-Y. Guo, and H.-J. Chen, "Ant colony optimization-based feature selection method for surface electromyography signals classification," Comput. Biol. Med., vol. 42, no. 1, pp. 30-38, 2012.
    • (2012) Comput. Biol. Med , vol.42 , Issue.1 , pp. 30-38
    • Huang, H.1    Xie, H.-B.2    Guo, J.-Y.3    Chen, H.-J.4
  • 201
    • 84871950558 scopus 로고    scopus 로고
    • A feature subset selection method based on symmetric uncertainty and ant colony optimization
    • Islamabad, Pakistan
    • S. I. Ali and W. Shahzad, "A feature subset selection method based on symmetric uncertainty and ant colony optimization," in Proc. Int. Conf. Emerg. Technol. (ICET), Islamabad, Pakistan, 2012, pp. 1-6.
    • (2012) Proc. Int. Conf. Emerg. Technol. (ICET) , pp. 1-6
    • Ali, S.I.1    Shahzad, W.2
  • 202
    • 84958528022 scopus 로고    scopus 로고
    • Tackling ant colony optimization meta-heuristic as search method in feature subset selection based on correlation or consistency measures
    • Cham, Switzerland: Springer
    • A. J. Tallón-Ballesteros and J. C. Riquelme, "Tackling ant colony optimization meta-heuristic as search method in feature subset selection based on correlation or consistency measures," in Intelligent Data Engineering and Automated Learning (IDEAL) (LNCS 8669). Cham, Switzerland: Springer, 2014, pp. 386-393.
    • (2014) Intelligent Data Engineering and Automated Learning (IDEAL) (LNCS 8669) , pp. 386-393
    • Tallón-Ballesteros, A.J.1    Riquelme, J.C.2
  • 204
    • 80255138746 scopus 로고    scopus 로고
    • A new hybrid ant colony optimization algorithm for feature selection
    • M. M. Kabir, M. Shahjahan, and K. Murase, "A new hybrid ant colony optimization algorithm for feature selection," Expert Syst. Appl., vol. 39, no. 3, pp. 3747-3763, 2012.
    • (2012) Expert Syst. Appl , vol.39 , Issue.3 , pp. 3747-3763
    • Kabir, M.M.1    Shahjahan, M.2    Murase, K.3
  • 205
    • 62449087097 scopus 로고    scopus 로고
    • A rough set based hybrid method to feature selection
    • Wuhan, China
    • M. He, "A rough set based hybrid method to feature selection," in Proc. Int. Symp. Knowl. Acquisit. Model. (KAM), Wuhan, China, 2008, pp. 585-588.
    • (2008) Proc. Int. Symp. Knowl. Acquisit. Model. (KAM) , pp. 585-588
    • He, M.1
  • 206
    • 84921358838 scopus 로고    scopus 로고
    • Multi-objective feature selection in classification: A differential evolution approach
    • Cham, Switzerland: Springer
    • B. Xue, W. Fu, and M. Zhang, "Multi-objective feature selection in classification: A differential evolution approach," in Simulated Evolution and Learning (LNCS 8886). Cham, Switzerland: Springer, 2014, pp. 516-528.
    • (2014) Simulated Evolution and Learning (LNCS 8886) , pp. 516-528
    • Xue, B.1    Fu, W.2    Zhang, M.3
  • 207
    • 58349092287 scopus 로고    scopus 로고
    • Evolutionary-based feature selection approaches with new criteria for data mining: A case study of credit approval data
    • C.-M. Wang and Y.-F. Huang, "Evolutionary-based feature selection approaches with new criteria for data mining: A case study of credit approval data," Expert Syst. Appl., vol. 36, no. 3, pp. 5900-5908, 2009.
    • (2009) Expert Syst. Appl , vol.36 , Issue.3 , pp. 5900-5908
    • Wang, C.-M.1    Huang, Y.-F.2
  • 208
    • 78649516546 scopus 로고    scopus 로고
    • Differential evolution based band selection in hyperspectral data classification
    • Heidelberg, Germany: Springer
    • X. Liu, C. Yu, and Z. Cai, "Differential evolution based band selection in hyperspectral data classification," in Advances in Computation and Intelligence (LNCS 6382). Heidelberg, Germany: Springer, 2010, pp. 86-94.
    • (2010) Advances in Computation and Intelligence (LNCS 6382) , pp. 86-94
    • Liu, X.1    Yu, C.2    Cai, Z.3
  • 209
    • 79955585005 scopus 로고    scopus 로고
    • Feature subset selection using differential evolution and a statistical repair mechanism
    • R. N. Khushaba, A. Al-Ani, and A. Al-Jumaily, "Feature subset selection using differential evolution and a statistical repair mechanism," Expert Syst. Appl., vol. 38, no. 9, pp. 11515-11526, 2011.
    • (2011) Expert Syst. Appl , vol.38 , Issue.9 , pp. 11515-11526
    • Khushaba, R.N.1    Al-Ani, A.2    Al-Jumaily, A.3
  • 210
    • 84901838355 scopus 로고    scopus 로고
    • Cooperative co-evolution with differential grouping for large scale optimization
    • Jun
    • M. N. Omidvar, X. Li, Y. Mei, and X. Yao, "Cooperative co-evolution with differential grouping for large scale optimization," IEEE Trans. Evol. Comput., vol. 18, no. 3, pp. 378-393, Jun. 2014.
    • (2014) IEEE Trans. Evol. Comput , vol.18 , Issue.3 , pp. 378-393
    • Omidvar, M.N.1    Li, X.2    Mei, Y.3    Yao, X.4
  • 211
    • 80053955085 scopus 로고    scopus 로고
    • Scalability of generalized adaptive differential evolution for large-scale continuous optimization
    • Z. Yang, K. Tang, and X. Yao, "Scalability of generalized adaptive differential evolution for large-scale continuous optimization," Soft Comput., vol. 15, no. 11, pp. 2141-2155, 2011.
    • (2011) Soft Comput , vol.15 , Issue.11 , pp. 2141-2155
    • Yang, Z.1    Tang, K.2    Yao, X.3
  • 212
    • 84881600220 scopus 로고    scopus 로고
    • Feature selection by differential evolution algorithm-A case study in personnel identification
    • Cancún, Mexico
    • K. Chakravarty, D. Das, A. Sinha, and A. Konar, "Feature selection by differential evolution algorithm-A case study in personnel identification," in Proc. IEEE Congr. Evol. Comput. (CEC), Cancún, Mexico, 2013, pp. 892-899.
    • (2013) Proc. IEEE Congr. Evol. Comput. (CEC) , pp. 892-899
    • Chakravarty, K.1    Das, D.2    Sinha, A.3    Konar, A.4
  • 214
    • 84878657683 scopus 로고    scopus 로고
    • Incorporating feature ranking and evolutionary methods for the classification of high-dimensional DNA microarray gene expression data
    • M. Abedini, M. Kirley, and R. Chiong, "Incorporating feature ranking and evolutionary methods for the classification of high-dimensional DNA microarray gene expression data," Aust. Med. J., vol. 6, no. 5, pp. 272-279, 2013.
    • (2013) Aust. Med. J , vol.6 , Issue.5 , pp. 272-279
    • Abedini, M.1    Kirley, M.2    Chiong, R.3
  • 215
    • 84875221723 scopus 로고    scopus 로고
    • Feature subset selection using differential evolution and a wheel based search strategy
    • Apr
    • A. Al-Ani, A. Alsukker, and R. N. Khushaba, "Feature subset selection using differential evolution and a wheel based search strategy," Swarm Evol. Comput., vol. 9, pp. 15-26, Apr. 2013.
    • (2013) Swarm Evol. Comput , vol.9 , pp. 15-26
    • Al-Ani, A.1    Alsukker, A.2    Khushaba, R.N.3
  • 216
    • 84952781516 scopus 로고    scopus 로고
    • Optimal feature subset selection using differential evolution and extreme learning machine
    • P. T. Bharathi and P. Subashini, "Optimal feature subset selection using differential evolution and extreme learning machine," Int. J. Sci. Res., vol. 3, no. 7, pp. 1898-1905, 2014.
    • (2014) Int. J. Sci. Res , vol.3 , Issue.7 , pp. 1898-1905
    • Bharathi, P.T.1    Subashini, P.2
  • 217
    • 84908600435 scopus 로고    scopus 로고
    • Feature selection based on manifold-learning with dynamic constraint handling differential evolution
    • Beijing, China
    • Z. Li, Z. Shang, B. Y. Qu, and J. J. Liang, "Feature selection based on manifold-learning with dynamic constraint handling differential evolution," in Proc. IEEE Congr. Evol. Comput., Beijing, China, 2014, pp. 332-337.
    • (2014) Proc. IEEE Congr. Evol. Comput , pp. 332-337
    • Li, Z.1    Shang, Z.2    Qu, B.Y.3    Liang, J.J.4
  • 218
    • 12844260916 scopus 로고    scopus 로고
    • Hybrid genetic algorithms for feature selection
    • Nov
    • I.-S. Oh, J.-S. Lee, and B.-R. Moon, "Hybrid genetic algorithms for feature selection," IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 11, pp. 1424-1437, Nov. 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell , vol.26 , Issue.11 , pp. 1424-1437
    • Oh, I.-S.1    Lee, J.-S.2    Moon, B.-R.3
  • 219
    • 84866000333 scopus 로고    scopus 로고
    • Bees algorithm for feature selection in network anomaly detection
    • O. Alomari and Z. A. Othman, "Bees algorithm for feature selection in network anomaly detection," J. Appl. Sci. Res., vol. 8, no. 3, pp. 1748-1756, 2012.
    • (2012) J. Appl. Sci. Res , vol.8 , Issue.3 , pp. 1748-1756
    • Alomari, O.1    Othman, Z.A.2
  • 220
    • 84904203806 scopus 로고    scopus 로고
    • Artificial bee colony approach for optimizing feature selection
    • S. Palanisamy and S. Kanmani, "Artificial bee colony approach for optimizing feature selection," Int. J. Comput. Sci. Issues, vol. 9, no. 3, pp. 432-438, 2012.
    • (2012) Int. J. Comput. Sci. Issues , vol.9 , Issue.3 , pp. 432-438
    • Palanisamy, S.1    Kanmani, S.2
  • 221
    • 84982820037 scopus 로고    scopus 로고
    • Feature selection with chaotic hybrid artificial bee colony algorithm based on fuzzy (CHABCF)
    • Dec
    • V. Chahkandi, M. Yaghoobi, and G. Veisi, "Feature selection with chaotic hybrid artificial bee colony algorithm based on fuzzy (CHABCF)," J. Soft Comput. Appl., vol. 2013, pp. 1-8, Dec. 2013.
    • (2013) J. Soft Comput. Appl , vol.2013 , pp. 1-8
    • Chahkandi, V.1    Yaghoobi, M.2    Veisi, G.3
  • 222
    • 84939813691 scopus 로고    scopus 로고
    • A binary ABC algorithm based on advanced similarity scheme for feature selection
    • Nov
    • E. Hancer, B. Xue, D. Karaboga, and M. Zhang, "A binary ABC algorithm based on advanced similarity scheme for feature selection," Appl. Soft Comput., vol. 36, pp. 334-348, Nov. 2015.
    • (2015) Appl. Soft Comput , vol.36 , pp. 334-348
    • Hancer, E.1    Xue, B.2    Karaboga, D.3    Zhang, M.4
  • 223
    • 84881600564 scopus 로고    scopus 로고
    • Hybrid feature selection and peptide binding affinity prediction using an EDA based algorithm
    • Cancún, Mexico
    • K. Shelke, S. Jayaraman, S. Ghosh, and J. Valadi, "Hybrid feature selection and peptide binding affinity prediction using an EDA based algorithm," in Proc. IEEE Congr. Evol. Comput. (CEC), Cancún, Mexico, 2013, pp. 2384-2389.
    • (2013) Proc. IEEE Congr. Evol. Comput. (CEC) , pp. 2384-2389
    • Shelke, K.1    Jayaraman, S.2    Ghosh, S.3    Valadi, J.4
  • 224
    • 84904605824 scopus 로고    scopus 로고
    • Feature subset selection by gravitational search algorithm optimization
    • Oct
    • X. Han et al., "Feature subset selection by gravitational search algorithm optimization," Inf. Sci., vol. 281, pp. 128-146, Oct. 2014.
    • (2014) Inf. Sci , vol.281 , pp. 128-146
    • Han, X.1
  • 225
    • 0035294798 scopus 로고    scopus 로고
    • Feature selection using tabu search method
    • Mar
    • H. Zhang and G. Sun, "Feature selection using tabu search method," Pattern Recognit., vol. 35, no. 3, pp. 701-711, Mar. 2002.
    • (2002) Pattern Recognit , vol.35 , Issue.3 , pp. 701-711
    • Zhang, H.1    Sun, G.2
  • 226
    • 77951263213 scopus 로고    scopus 로고
    • Towards a memetic feature selection paradigm [application notes]
    • May
    • Z. Zhu, S. Jia, and Z. Ji, "Towards a memetic feature selection paradigm [application notes]," IEEE Comput. Intell. Mag., vol. 5, no. 2, pp. 41-53, May 2010.
    • (2010) IEEE Comput. Intell. Mag , vol.5 , Issue.2 , pp. 41-53
    • Zhu, Z.1    Jia, S.2    Ji, Z.3
  • 227
    • 37249039472 scopus 로고    scopus 로고
    • Memetic algorithms for feature selection on microarray data
    • Heidelberg, Germany: Springer
    • Z. Zhu and Y.-S. Ong, "Memetic algorithms for feature selection on microarray data," in Advances in Neural Networks (ISNN) (LNCS 4491). Heidelberg, Germany: Springer, 2007, pp. 1327-1335.
    • (2007) Advances in Neural Networks (ISNN) (LNCS 4491) , pp. 1327-1335
    • Zhu, Z.1    Ong, Y.-S.2
  • 228
    • 34447343762 scopus 로고    scopus 로고
    • A hybrid genetic algorithm for feature selection wrapper based on mutual information
    • J. Huang, Y. Cai, and X. Xu, "A hybrid genetic algorithm for feature selection wrapper based on mutual information," Pattern Recognit. Lett., vol. 28, no. 13, pp. 1825-1844, 2007.
    • (2007) Pattern Recognit. Lett , vol.28 , Issue.13 , pp. 1825-1844
    • Huang, J.1    Cai, Y.2    Xu, X.3
  • 230
    • 80051980112 scopus 로고    scopus 로고
    • A cooperative coevolution-based pittsburgh learning classifier system embedded with memetic feature selection
    • New Orleans, LA, USA
    • Y. Wen and H. Xu, "A cooperative coevolution-based pittsburgh learning classifier system embedded with memetic feature selection," in Proc. IEEE Congr. Evol. Comput., New Orleans, LA, USA, 2011, pp. 2415-2422.
    • (2011) Proc. IEEE Congr. Evol. Comput , pp. 2415-2422
    • Wen, Y.1    Xu, H.2
  • 231
    • 84914816279 scopus 로고    scopus 로고
    • Data feature selection based on artificial bee colony algorithm
    • Dec
    • M. Schiezaro and H. Pedrini, "Data feature selection based on artificial bee colony algorithm," EURASIP J. Image Video Process., vol. 2013, no. 1, pp. 1-8, Dec. 2013.
    • (2013) EURASIP J. Image Video Process , vol.2013 , Issue.1 , pp. 1-8
    • Schiezaro, M.1    Pedrini, H.2
  • 232
    • 0029305145 scopus 로고
    • Rough set reduction of attributes and their domains for neural networks
    • J. Jelonek, K. Krawiec, and R. Slowiński, "Rough set reduction of attributes and their domains for neural networks," Comput. Intell., vol. 11, no. 2, pp. 339-347, 1995.
    • (1995) Comput. Intell , vol.11 , Issue.2 , pp. 339-347
    • Jelonek, J.1    Krawiec, K.2    Slowiński, R.3
  • 233
    • 84921372723 scopus 로고    scopus 로고
    • Ph.D. dissertation, School Eng. Comput. Sci., Victoria Univ. Wellington, Wellington, New Zealand
    • B. Xue, "Particle swarm optimisation for feature selection," Ph.D. dissertation, School Eng. Comput. Sci., Victoria Univ. Wellington, Wellington, New Zealand, 2014.
    • (2014) Particle Swarm Optimisation for Feature Selection
    • Xue, B.1
  • 234
    • 55349138108 scopus 로고    scopus 로고
    • Memetic algorithms for feature selection in face recognition
    • Barcelona, Spain
    • D. Kumar, D. Kumar, and C. S. Rai, "Memetic algorithms for feature selection in face recognition," in Proc. Int. Conf. Hybrid Intell. Syst., Barcelona, Spain, 2008, pp. 931-934.
    • (2008) Proc. Int. Conf. Hybrid Intell. Syst , pp. 931-934
    • Kumar, D.1    Kumar, D.2    Rai, C.S.3
  • 236
    • 84890397212 scopus 로고    scopus 로고
    • Scaling up estimation of distribution algorithms for continuous optimization
    • Dec
    • W. Dong, T. Chen, P. Tino, and X. Yao, "Scaling up estimation of distribution algorithms for continuous optimization," IEEE Trans. Evol. Comput., vol. 17, no. 6, pp. 797-822, Dec. 2013.
    • (2013) IEEE Trans. Evol. Comput , vol.17 , Issue.6 , pp. 797-822
    • Dong, W.1    Chen, T.2    Tino, P.3    Yao, X.4
  • 237
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Dec
    • L. Yu and H. Liu, "Efficient feature selection via analysis of relevance and redundancy," J. Mach. Learn. Res., vol. 5, pp. 1205-1224, Dec. 2004.
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 238
    • 0004493166 scopus 로고    scopus 로고
    • On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems
    • E. Amaldi and V. Kann, "On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems," Theor. Comput. Sci., vol. 209, nos. 1-2, pp. 237-260, 1998.
    • (1998) Theor. Comput. Sci , vol.209 , Issue.1-2 , pp. 237-260
    • Amaldi, E.1    Kann, V.2
  • 239
  • 240
    • 60849097547 scopus 로고    scopus 로고
    • Normalized mutual information feature selection
    • Feb
    • P. A. Estévez, M. Tesmer, C. A. Perez, and J. M. Zurada, "Normalized mutual information feature selection," IEEE Trans. Neural Netw., vol. 20, no. 2, pp. 189-201, Feb. 2009.
    • (2009) IEEE Trans. Neural Netw , vol.20 , Issue.2 , pp. 189-201
    • Estévez, P.A.1    Tesmer, M.2    Perez, C.A.3    Zurada, J.M.4
  • 241
    • 14344249891 scopus 로고    scopus 로고
    • Testing the significance of attribute interactions
    • Banff, AB, Canada
    • A. Jakulin and I. Bratko, "Testing the significance of attribute interactions," in Proc. 21 Int. Conf. Mach. Learn. (ICML), Banff, AB, Canada, 2004, pp. 52-59.
    • (2004) Proc. 21 Int. Conf. Mach. Learn. (ICML) , pp. 52-59
    • Jakulin, A.1    Bratko, I.2
  • 242
    • 84867122131 scopus 로고    scopus 로고
    • Discovering support and affiliated features from very high dimensions
    • Edinburgh, U.K.
    • Y. Zhai, M. Tan, I. Tsang, and Y. S. Ong, "Discovering support and affiliated features from very high dimensions," in Proc. 29th Int. Conf. Mach. Learn. (ICML), Edinburgh, U.K., 2012, p. 8.
    • (2012) Proc. 29th Int. Conf. Mach. Learn. (ICML) , pp. 8
    • Zhai, Y.1    Tan, M.2    Tsang, I.3    Ong, Y.S.4
  • 243
    • 33644978280 scopus 로고    scopus 로고
    • Evolutionary multi-objective optimization: A historical view of the field
    • Feb
    • C. A. C. Coello, "Evolutionary multi-objective optimization: A historical view of the field," IEEE Comput. Intell. Mag., vol. 1, no. 1, pp. 28-36, Feb. 2006.
    • (2006) IEEE Comput. Intell. Mag , vol.1 , Issue.1 , pp. 28-36
    • Coello, C.A.C.1
  • 244
    • 35248887077 scopus 로고    scopus 로고
    • Performance scaling of multiobjective evolutionary algorithms
    • Berlin, Germany: Springer
    • V. Khare, X. Yao, and K. Deb, "Performance scaling of multiobjective evolutionary algorithms," in Evolutionary Multi-Criterion Optimization. Berlin, Germany: Springer, 2003, pp. 376-390.
    • (2003) Evolutionary Multi-Criterion Optimization , pp. 376-390
    • Khare, V.1    Yao, X.2    Deb, K.3
  • 245
    • 79955333128 scopus 로고    scopus 로고
    • How well do multi-objective evolutionary algorithms scale to large problems
    • Singapore
    • K. Praditwong and X. Yao, "How well do multi-objective evolutionary algorithms scale to large problems," in Proc. IEEE Congr. Evol. Comput. (CEC), Singapore, 2007, pp. 3959-3966.
    • (2007) Proc. IEEE Congr. Evol. Comput. (CEC) , pp. 3959-3966
    • Praditwong, K.1    Yao, X.2
  • 246
    • 84866878034 scopus 로고    scopus 로고
    • Ph.D. dissertation, Dept. Comput. Sci., Victoria Univ. Wellington, Wellington, New Zealand
    • K. Neshatian, "Feature manipulation with genetic programming," Ph.D. dissertation, Dept. Comput. Sci., Victoria Univ. Wellington, Wellington, New Zealand, 2010.
    • (2010) Feature Manipulation with Genetic Programming
    • Neshatian, K.1
  • 247
    • 0037076322 scopus 로고    scopus 로고
    • Selection bias in gene extraction on the basis of microarray gene-expression data
    • C. Ambroise and G. J. McLachlan, "Selection bias in gene extraction on the basis of microarray gene-expression data," Proc. Nat. Acad. Sci., vol. 99, no. 10, pp. 6562-6566, 2002.
    • (2002) Proc. Nat. Acad. Sci , vol.99 , Issue.10 , pp. 6562-6566
    • Ambroise, C.1    McLachlan, G.J.2
  • 248
    • 33749252959 scopus 로고    scopus 로고
    • Feature subset selection bias for classification learning
    • Pittsburgh, PA, USA
    • S. K. Singhi and H. Liu, "Feature subset selection bias for classification learning," in Proc. 23rd Int. Conf. Mach. Learn. (ICML), Pittsburgh, PA, USA, 2006, pp. 849-856.
    • (2006) Proc. 23rd Int. Conf. Mach. Learn. (ICML) , pp. 849-856
    • Singhi, S.K.1    Liu, H.2
  • 249
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classification?
    • U. M. Braga-Neto and E. R. Dougherty, "Is cross-validation valid for small-sample microarray classification?" Bioinformatics, vol. 20, no. 3, pp. 374-380, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.3 , pp. 374-380
    • Braga-Neto, U.M.1    Dougherty, E.R.2
  • 250
    • 84942434123 scopus 로고    scopus 로고
    • Coselect: Feature selection with instance selection for social media data
    • Austin, TX, USA
    • J. Tang and H. Liu, "Coselect: Feature selection with instance selection for social media data," in Proc. SIAM Int. Conf. Data Min. (SDM), Austin, TX, USA, 2013, pp. 695-703.
    • (2013) Proc. SIAM Int. Conf. Data Min. (SDM) , pp. 695-703
    • Tang, J.1    Liu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.