메뉴 건너뛰기




Volumn 249, Issue 1-2, 2016, Pages 141-153

Prediction of Protein–Protein Interaction Sites with Machine-Learning-Based Data-Cleaning and Post-Filtering Procedures

Author keywords

Data cleaning; Imbalanced learning; Post filtering; Protein protein interaction sites; Random forests

Indexed keywords

ACCURACY; ALGORITHM; AMINO ACID SEQUENCE; ARTICLE; COMPLEX FORMATION; CORRELATION COEFFICIENT; DATA CLEANING; DATA PROCESSING; FALSE POSITIVE RESULT; MACHINE LEARNING; POSITION WEIGHT MATRIX; POST FILTERING; PREDICTION; PROTEIN ANALYSIS; PROTEIN PROTEIN INTERACTION; RANDOM FOREST; SEQUENCE ALIGNMENT; X RAY CRYSTALLOGRAPHY; BINDING SITE; BIOLOGY; CHEMISTRY; METABOLISM; MOLECULAR MODEL; PROCEDURES; PROTEIN CONFORMATION; PROTEIN DATABASE; REPRODUCIBILITY; WORKFLOW;

EID: 84946867095     PISSN: 00222631     EISSN: 14321424     Source Type: Journal    
DOI: 10.1007/s00232-015-9856-z     Document Type: Article
Times cited : (39)

References (97)
  • 1
    • 84892364468 scopus 로고    scopus 로고
    • A computational tool to predict the evolutionarily conserved protein–protein interaction hot-spot residues from the structure of the unbound protein
    • COI: 1:CAS:528:DC%2BC3sXhvVWksbvE, PID: 24239538
    • Agrawal NJ, Helk B, Trout BL (2014) A computational tool to predict the evolutionarily conserved protein–protein interaction hot-spot residues from the structure of the unbound protein. FEBS Lett 588:326–333
    • (2014) FEBS Lett , vol.588 , pp. 326-333
    • Agrawal, N.J.1    Helk, B.2    Trout, B.L.3
  • 2
    • 84921684619 scopus 로고    scopus 로고
    • Protein–protein interactions among enzymes of starch biosynthesis in high-amylose barley genotypes reveal differential roles of heteromeric enzyme complexes in the synthesis of A and B granules
    • COI: 1:CAS:528:DC%2BC2MXotVCksg%3D%3D, PID: 25711817
    • Ahmed Z, Tetlow IJ, Ahmed R, Morell MK, Emes MJ (2015) Protein–protein interactions among enzymes of starch biosynthesis in high-amylose barley genotypes reveal differential roles of heteromeric enzyme complexes in the synthesis of A and B granules. Plant Sci 233:95–106
    • (2015) Plant Sci , vol.233 , pp. 95-106
    • Ahmed, Z.1    Tetlow, I.J.2    Ahmed, R.3    Morell, M.K.4    Emes, M.J.5
  • 5
    • 0033931867 scopus 로고    scopus 로고
    • Assessing the accuracy of prediction algorithms for classification: an overview
    • COI: 1:CAS:528:DC%2BD3cXlvVKqt74%3D, PID: 10871264
    • Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H (2000) Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16:412–424
    • (2000) Bioinformatics , vol.16 , pp. 412-424
    • Baldi, P.1    Brunak, S.2    Chauvin, Y.3    Andersen, C.A.4    Nielsen, H.5
  • 7
    • 0035023445 scopus 로고    scopus 로고
    • Predicting protein–protein interactions from primary structure
    • COI: 1:CAS:528:DC%2BD3MXktlyiurs%3D, PID: 11331240
    • Bock JR, Gough DA (2001) Predicting protein–protein interactions from primary structure. Bioinformatics 17:455–460
    • (2001) Bioinformatics , vol.17 , pp. 455-460
    • Bock, J.R.1    Gough, D.A.2
  • 8
    • 17444372787 scopus 로고    scopus 로고
    • Improved prediction of protein–protein binding sites using a support vector machines approach
    • COI: 1:CAS:528:DC%2BD2MXjtlGgs7w%3D, PID: 15613384
    • Bradford JR, Westhead DR (2005) Improved prediction of protein–protein binding sites using a support vector machines approach. Bioinformatics 21:1487–1494
    • (2005) Bioinformatics , vol.21 , pp. 1487-1494
    • Bradford, J.R.1    Westhead, D.R.2
  • 9
    • 33748779553 scopus 로고    scopus 로고
    • Insights into protein–protein interfaces using a Bayesian network prediction method
    • COI: 1:CAS:528:DC%2BD28XovVSrt7Y%3D, PID: 16919296
    • Bradford JR, Needham CJ, Bulpitt AJ, Westhead DR (2006) Insights into protein–protein interfaces using a Bayesian network prediction method. J Mol Biol 362:365–386
    • (2006) J Mol Biol , vol.362 , pp. 365-386
    • Bradford, J.R.1    Needham, C.J.2    Bulpitt, A.J.3    Westhead, D.R.4
  • 10
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L (2001) Random forests. Mach Learn 45:5–32
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 11
    • 33745597909 scopus 로고    scopus 로고
    • Predicting protein interaction sites: binding hot-spots in protein–protein and protein–ligand interfaces
    • COI: 1:CAS:528:DC%2BD28XmtlOjsb8%3D, PID: 16522669
    • Burgoyne NJ, Jackson RM (2006) Predicting protein interaction sites: binding hot-spots in protein–protein and protein–ligand interfaces. Bioinformatics 22:1335–1342
    • (2006) Bioinformatics , vol.22 , pp. 1335-1342
    • Burgoyne, N.J.1    Jackson, R.M.2
  • 12
    • 61449249266 scopus 로고    scopus 로고
    • Sequence-based prediction of protein interaction sites with an integrative method
    • PID: 19153136
    • Chen X-W, Jeong J-C (2009) Sequence-based prediction of protein interaction sites with an integrative method. Bioinformatics 25:585–591
    • (2009) Bioinformatics , vol.25 , pp. 585-591
    • Chen, X.-W.1    Jeong, J.-C.2
  • 13
    • 84862003258 scopus 로고    scopus 로고
    • Protein-protein interaction site predictions with three-dimensional probability distributions of interacting atoms on protein surfaces
    • COI: 1:CAS:528:DC%2BC38Xos1Knur4%3D, PID: 22701576
    • Chen C-T, Peng H-P, Jian J-W, Tsai K-C, Chang J-Y, Yang E-W, Chen J-B, Ho S-Y, Hsu W-L, Yang A-S (2012) Protein-protein interaction site predictions with three-dimensional probability distributions of interacting atoms on protein surfaces. PLoS One 7:e37706
    • (2012) PLoS One , vol.7 , pp. e37706
    • Chen, C.-T.1    Peng, H.-P.2    Jian, J.-W.3    Tsai, K.-C.4    Chang, J.-Y.5    Yang, E.-W.6    Chen, J.-B.7    Ho, S.-Y.8    Hsu, W.-L.9    Yang, A.-S.10
  • 14
    • 84876053736 scopus 로고    scopus 로고
    • iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition
    • COI: 1:CAS:528:DC%2BC3sXlsVCntLs%3D, PID: 23303794
    • Chen W, Feng PM, Lin H, Chou KC (2013) iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res 41:e68
    • (2013) Nucleic Acids Res , vol.41 , pp. e68
    • Chen, W.1    Feng, P.M.2    Lin, H.3    Chou, K.C.4
  • 15
    • 84921500317 scopus 로고    scopus 로고
    • iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition
    • COI: 1:CAS:528:DC%2BC2cXht12mt7vJ, PID: 25016190
    • Chen W, Feng P-M, Deng E-Z, Lin H, Chou K-C (2014) iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition. Anal Biochem 462:76–83
    • (2014) Anal Biochem , vol.462 , pp. 76-83
    • Chen, W.1    Feng, P.-M.2    Deng, E.-Z.3    Lin, H.4    Chou, K.-C.5
  • 16
    • 84942246769 scopus 로고    scopus 로고
    • iRNA-methyl: identifying N 6-methyladenosine sites using pseudo nucleotide composition
    • COI: 1:CAS:528:DC%2BC2MXhsV2ns73M, PID: 26314792
    • Chen W, Feng P, Ding H, Lin H, Chou K-C (2015) iRNA-methyl: identifying N 6-methyladenosine sites using pseudo nucleotide composition. Anal Biochem 490:26–33
    • (2015) Anal Biochem , vol.490 , pp. 26-33
    • Chen, W.1    Feng, P.2    Ding, H.3    Lin, H.4    Chou, K.-C.5
  • 17
    • 0016708122 scopus 로고
    • Principles of protein-protein recognition
    • COI: 1:CAS:528:DyaE2MXlsF2ntr8%3D, PID: 1153006
    • Chothia C, Janin J (1975) Principles of protein-protein recognition. Nature 256:705–708
    • (1975) Nature , vol.256 , pp. 705-708
    • Chothia, C.1    Janin, J.2
  • 18
    • 0035030201 scopus 로고    scopus 로고
    • Using subsite coupling to predict signal peptides
    • COI: 1:CAS:528:DC%2BD3MXjsVektrs%3D, PID: 11297664
    • Chou K (2001) Using subsite coupling to predict signal peptides. Protein Eng 14:75–79
    • (2001) Protein Eng , vol.14 , pp. 75-79
    • Chou, K.1
  • 19
    • 79951518208 scopus 로고    scopus 로고
    • Some remarks on protein attribute prediction and pseudo amino acid composition
    • COI: 1:CAS:528:DC%2BC3MXhvV2rs7k%3D, PID: 21168420
    • Chou KC (2011) Some remarks on protein attribute prediction and pseudo amino acid composition. J Theor Biol 273:236–247
    • (2011) J Theor Biol , vol.273 , pp. 236-247
    • Chou, K.C.1
  • 20
    • 84877758233 scopus 로고    scopus 로고
    • Some remarks on predicting multi-label attributes in molecular biosystems
    • COI: 1:CAS:528:DC%2BC3sXntFygu7o%3D, PID: 23536215
    • Chou KC (2013) Some remarks on predicting multi-label attributes in molecular biosystems. Mol Biosyst 9:1092–1100
    • (2013) Mol Biosyst , vol.9 , pp. 1092-1100
    • Chou, K.C.1
  • 21
    • 84926619444 scopus 로고    scopus 로고
    • Impacts of bioinformatics to medicinal chemistry
    • COI: 1:CAS:528:DC%2BC2MXmsF2hsLg%3D, PID: 25548930
    • Chou K-C (2015) Impacts of bioinformatics to medicinal chemistry. Med Chem 11:218–234
    • (2015) Med Chem , vol.11 , pp. 218-234
    • Chou, K.-C.1
  • 22
    • 84900297215 scopus 로고    scopus 로고
    • Non-redundant unique interface structures as templates for modeling protein interactions
    • PID: 24475173
    • Cukuroglu E, Gursoy A, Nussinov R, Keskin O (2014) Non-redundant unique interface structures as templates for modeling protein interactions. PLoS One 9:e86738
    • (2014) PLoS One , vol.9 , pp. e86738
    • Cukuroglu, E.1    Gursoy, A.2    Nussinov, R.3    Keskin, O.4
  • 23
    • 84964624039 scopus 로고    scopus 로고
    • DeLano WL (2002) The PyMOL molecular graphics system
    • DeLano WL (2002) The PyMOL molecular graphics system, http://www.pymol.org
  • 24
    • 84896369631 scopus 로고    scopus 로고
    • Sequence-based prediction of protein-protein interaction sites with L1-logreg classifier
    • COI: 1:CAS:528:DC%2BC2cXkslSrsbo%3D, PID: 24486250
    • Dhole K, Singh G, Pai PP, Mondal S (2014) Sequence-based prediction of protein-protein interaction sites with L1-logreg classifier. J Theor Biol 348:47–54
    • (2014) J Theor Biol , vol.348 , pp. 47-54
    • Dhole, K.1    Singh, G.2    Pai, P.P.3    Mondal, S.4
  • 25
    • 84903592187 scopus 로고    scopus 로고
    • iCTX-Type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels
    • Ding H, Deng E-Z, Yuan L-F, Liu L, Lin H, Chen W, Chou K-C (2014) iCTX-Type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels. BioMed Res Int. doi:10.1155/2014/286419
    • (2014) BioMed Res Int
    • Ding, H.1    Deng, E.-Z.2    Yuan, L.-F.3    Liu, L.4    Lin, H.5    Chen, W.6    Chou, K.-C.7
  • 26
    • 0037376703 scopus 로고    scopus 로고
    • Global approaches to protein–protein interactions
    • COI: 1:CAS:528:DC%2BD3sXitV2ms7Y%3D, PID: 12648676
    • Drewes G, Bouwmeester T (2003) Global approaches to protein–protein interactions. Curr Opin Cell Biol 15:199–205
    • (2003) Curr Opin Cell Biol , vol.15 , pp. 199-205
    • Drewes, G.1    Bouwmeester, T.2
  • 27
    • 0036805329 scopus 로고    scopus 로고
    • Bridging structural biology and genomics: assessing protein interaction data with known complexes
    • COI: 1:CAS:528:DC%2BD38Xnt1CqsLc%3D, PID: 12350343
    • Edwards AM, Kus B, Jansen R, Greenbaum D, Greenblatt J, Gerstein M (2002) Bridging structural biology and genomics: assessing protein interaction data with known complexes. Trends Genet 18:529–536
    • (2002) Trends Genet , vol.18 , pp. 529-536
    • Edwards, A.M.1    Kus, B.2    Jansen, R.3    Greenbaum, D.4    Greenblatt, J.5    Gerstein, M.6
  • 28
    • 63449090301 scopus 로고    scopus 로고
    • Learning on the border: active learning in imbalanced data classification. In: ACM Conference on Information and Knowledge Management
    • Ertekin S, Huang J, Bottou L, Giles L (2007a). Learning on the border: active learning in imbalanced data classification. In: ACM Conference on Information and Knowledge Management, pp 127–136
    • (2007) pp 127–136
    • Ertekin, S.1    Huang, J.2    Bottou, L.3    Giles, L.4
  • 30
    • 1442356040 scopus 로고    scopus 로고
    • A multiple resampling method for learning from imbalanced data sets
    • Estabrooks A, Jo TH, Japkowicz N (2004) A multiple resampling method for learning from imbalanced data sets. Comput Intell 20:18–36
    • (2004) Comput Intell , vol.20 , pp. 18-36
    • Estabrooks, A.1    Jo, T.H.2    Japkowicz, N.3
  • 31
    • 0036122073 scopus 로고    scopus 로고
    • Prediction of protein–protein interaction sites in heterocomplexes with neural networks
    • COI: 1:CAS:528:DC%2BD38Xit1Cnsrs%3D, PID: 11874449
    • Fariselli P, Pazos F, Valencia A, Casadio R (2002) Prediction of protein–protein interaction sites in heterocomplexes with neural networks. Eur J Biochem 269:1356–1361
    • (2002) Eur J Biochem , vol.269 , pp. 1356-1361
    • Fariselli, P.1    Pazos, F.2    Valencia, A.3    Casadio, R.4
  • 32
    • 33751353420 scopus 로고    scopus 로고
    • Modelling interaction sites in protein domains with interaction profile hidden Markov models
    • COI: 1:CAS:528:DC%2BD28Xht1Ogsr3O, PID: 17000753
    • Friedrich T, Pils B, Dandekar T, Schultz J, Müller T (2006) Modelling interaction sites in protein domains with interaction profile hidden Markov models. Bioinformatics 22:2851–2857
    • (2006) Bioinformatics , vol.22 , pp. 2851-2857
    • Friedrich, T.1    Pils, B.2    Dandekar, T.3    Schultz, J.4    Müller, T.5
  • 33
    • 84927927217 scopus 로고    scopus 로고
    • Targeting protein-protein interactions for drug discovery
    • COI: 1:CAS:528:DC%2BC28Xls1Ortbw%3D
    • Fry DC (2015) Targeting protein-protein interactions for drug discovery. Protein Protein Interact Methods Appl 1278:93–106
    • (2015) Protein Protein Interact Methods Appl , vol.1278 , pp. 93-106
    • Fry, D.C.1
  • 34
    • 0034730415 scopus 로고    scopus 로고
    • A fast method to predict protein interaction sites from sequences
    • COI: 1:CAS:528:DC%2BD3cXmsFemu7Y%3D, PID: 10993732
    • Gallet X, Charloteaux B, Thomas A, Brasseur R (2000) A fast method to predict protein interaction sites from sequences. J Mol Biol 302:917–926
    • (2000) J Mol Biol , vol.302 , pp. 917-926
    • Gallet, X.1    Charloteaux, B.2    Thomas, A.3    Brasseur, R.4
  • 35
    • 72949113228 scopus 로고    scopus 로고
    • Energy based approach for understanding the recognition mechanism in protein–protein complexes
    • PID: 19593470
    • Gromiha MM, Yokota K, Fukui K (2009) Energy based approach for understanding the recognition mechanism in protein–protein complexes. Mol Biosyst 5:1779–1786
    • (2009) Mol Biosyst , vol.5 , pp. 1779-1786
    • Gromiha, M.M.1    Yokota, K.2    Fukui, K.3
  • 36
    • 84896463976 scopus 로고    scopus 로고
    • iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition
    • COI: 1:CAS:528:DC%2BC2cXosFSmsb0%3D, PID: 24504871
    • Guo SH, Deng EZ, Xu LQ, Ding H, Lin H, Chen W, Chou KC (2014) iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Bioinformatics 30:1522–1529
    • (2014) Bioinformatics , vol.30 , pp. 1522-1529
    • Guo, S.H.1    Deng, E.Z.2    Xu, L.Q.3    Ding, H.4    Lin, H.5    Chen, W.6    Chou, K.C.7
  • 37
    • 33846051527 scopus 로고    scopus 로고
    • Protein microarray technology
    • COI: 1:CAS:528:DC%2BD2sXmtVWrtg%3D%3D, PID: 17126887
    • Hall DA, Ptacek J, Snyder M (2007) Protein microarray technology. Mech Ageing Dev 128:161–167
    • (2007) Mech Ageing Dev , vol.128 , pp. 161-167
    • Hall, D.A.1    Ptacek, J.2    Snyder, M.3
  • 40
    • 84964637158 scopus 로고    scopus 로고
    • TargetFreeze: identifying antifreeze proteins via a combination of weights using sequence evolutionary information and pseudo amino acid composition
    • He X, Han K, Hu J, Yan H, Yang J-Y, Shen H-B, Yu D-J (2015) TargetFreeze: identifying antifreeze proteins via a combination of weights using sequence evolutionary information and pseudo amino acid composition. J Membr Biol 19(1):1–10
    • (2015) J Membr Biol , vol.19 , Issue.1 , pp. 1-10
    • He, X.1    Han, K.2    Hu, J.3    Yan, H.4    Yang, J.-Y.5    Shen, H.-B.6    Yu, D.-J.7
  • 41
    • 33846046907 scopus 로고    scopus 로고
    • A kernel-based two-class classifier for imbalanced data sets
    • PID: 17278459
    • Hong X, Chen S, Harris CJ (2007) A kernel-based two-class classifier for imbalanced data sets. IEEE Trans Neural Networks 18:28–41
    • (2007) IEEE Trans Neural Networks , vol.18 , pp. 28-41
    • Hong, X.1    Chen, S.2    Harris, C.J.3
  • 42
    • 79251604991 scopus 로고    scopus 로고
    • Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties
    • COI: 1:CAS:528:DC%2BC3MXht1Kksb0%3D, PID: 21283518
    • Hu L, Huang T, Shi X, Lu W-C, Cai Y-D, Chou K-C (2011) Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties. PLoS One 6:e14556
    • (2011) PLoS One , vol.6 , pp. e14556
    • Hu, L.1    Huang, T.2    Shi, X.3    Lu, W.-C.4    Cai, Y.-D.5    Chou, K.-C.6
  • 43
    • 84907211145 scopus 로고    scopus 로고
    • A new supervised over-sampling algorithm with application to protein-nucleotide binding residue prediction
    • Hu J, He X, Yu D-J, Yang X-B, Yang J-Y, Shen H-B (2014) A new supervised over-sampling algorithm with application to protein-nucleotide binding residue prediction. PLoS One 9(9):107676
    • (2014) PLoS One , vol.9 , Issue.9 , pp. 107676
    • Hu, J.1    He, X.2    Yu, D.-J.3    Yang, X.-B.4    Yang, J.-Y.5    Shen, H.-B.6
  • 46
    • 0033974688 scopus 로고    scopus 로고
    • Toward a protein–protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins
    • COI: 1:CAS:528:DC%2BD3cXpvFenuw%3D%3D, PID: 10655498
    • Ito T, Tashiro K, Muta S, Ozawa R, Chiba T, Nishizawa M, Yamamoto K, Kuhara S, Sakaki Y (2000) Toward a protein–protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc Natl Acad Sci 97:1143–1147
    • (2000) Proc Natl Acad Sci , vol.97 , pp. 1143-1147
    • Ito, T.1    Tashiro, K.2    Muta, S.3    Ozawa, R.4    Chiba, T.5    Nishizawa, M.6    Yamamoto, K.7    Kuhara, S.8    Sakaki, Y.9
  • 47
    • 0035836765 scopus 로고    scopus 로고
    • A comprehensive two-hybrid analysis to explore the yeast protein interactome
    • COI: 1:CAS:528:DC%2BD3MXjtVagtLc%3D, PID: 11283351
    • Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci 98:4569–4574
    • (2001) Proc Natl Acad Sci , vol.98 , pp. 4569-4574
    • Ito, T.1    Chiba, T.2    Ozawa, R.3    Yoshida, M.4    Hattori, M.5    Sakaki, Y.6
  • 48
    • 84981217089 scopus 로고    scopus 로고
    • Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition
    • PID: 26375780
    • Jia J, Liu Z, Xiao X, Liu B, Chou K-C (2015a) Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition. J Biomol Struct Dyn. doi:10.1080/07391102.2015.1095116
    • (2015) J Biomol Struct Dyn
    • Jia, J.1    Liu, Z.2    Xiao, X.3    Liu, B.4    Chou, K.-C.5
  • 49
    • 84928722799 scopus 로고    scopus 로고
    • iPPI-Esml: An ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC
    • COI: 1:CAS:528:DC%2BC2MXntFKiu70%3D, PID: 25908206
    • Jia J, Liu Z, Xiao X, Liu B, Chou K-C (2015b) iPPI-Esml: An ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. J Theor Biol 377:47–56
    • (2015) J Theor Biol , vol.377 , pp. 47-56
    • Jia, J.1    Liu, Z.2    Xiao, X.3    Liu, B.4    Chou, K.-C.5
  • 50
    • 84971393059 scopus 로고    scopus 로고
    • Prediction of protein-protein interactions with physicochemical descriptors and wavelet transform via random forests
    • PID: 25882187
    • Jia J, Xiao X, Liu B (2015c) Prediction of protein-protein interactions with physicochemical descriptors and wavelet transform via random forests. J Lab Autom. doi:10.1177/2211068215581487
    • (2015) J Lab Autom
    • Jia, J.1    Xiao, X.2    Liu, B.3
  • 51
    • 0029109468 scopus 로고
    • Protein-protein interactions: a review of protein dimer structures
    • COI: 1:CAS:528:DyaK2MXlsFWksL4%3D, PID: 7746868
    • Jones S, Thornton JM (1995) Protein-protein interactions: a review of protein dimer structures. Prog Biophys Mol Biol 63:31–65
    • (1995) Prog Biophys Mol Biol , vol.63 , pp. 31-65
    • Jones, S.1    Thornton, J.M.2
  • 52
    • 0031565729 scopus 로고    scopus 로고
    • Analysis of protein-protein interaction sites using surface patches
    • COI: 1:CAS:528:DyaK2sXmt1WgtrY%3D, PID: 9299342
    • Jones S, Thornton JM (1997a) Analysis of protein-protein interaction sites using surface patches. J Mol Biol 272:121–132
    • (1997) J Mol Biol , vol.272 , pp. 121-132
    • Jones, S.1    Thornton, J.M.2
  • 53
    • 0031565725 scopus 로고    scopus 로고
    • Prediction of protein-protein interaction sites using patch analysis
    • COI: 1:CAS:528:DyaK2sXmt1Wgtrc%3D, PID: 9299343
    • Jones S, Thornton JM (1997b) Prediction of protein-protein interaction sites using patch analysis. J Mol Biol 272:133–143
    • (1997) J Mol Biol , vol.272 , pp. 133-143
    • Jones, S.1    Thornton, J.M.2
  • 54
    • 84862184719 scopus 로고    scopus 로고
    • Sann: solvent accessibility prediction of proteins by nearest neighbor method
    • COI: 1:CAS:528:DC%2BC38Xms1Wlt7c%3D
    • Joo K, Lee SJ, Lee J (2012) Sann: solvent accessibility prediction of proteins by nearest neighbor method. Proteins Struct Function Bioinform 80:1791–1797
    • (2012) Proteins Struct Function Bioinform , vol.80 , pp. 1791-1797
    • Joo, K.1    Lee, S.J.2    Lee, J.3
  • 55
    • 33750593995 scopus 로고    scopus 로고
    • EUS SVMs: ensemble of under-sampled SVMs for data imbalance problems
    • Kang PS, Cho SZ (2006) EUS SVMs: ensemble of under-sampled SVMs for data imbalance problems. Neural Inf Process Proc 4232(1):837–846
    • (2006) Neural Inf Process Proc , vol.4232 , Issue.1 , pp. 837-846
    • Kang, P.S.1    Cho, S.Z.2
  • 56
    • 0020475449 scopus 로고
    • A simple method for displaying the hydropathic character of a protein
    • COI: 1:CAS:528:DyaL38Xks1yjtro%3D, PID: 7108955
    • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132
    • (1982) J Mol Biol , vol.157 , pp. 105-132
    • Kyte, J.1    Doolittle, R.F.2
  • 57
    • 84947425690 scopus 로고    scopus 로고
    • Improving identification of difficult small classes by balancing class distribution
    • Laurikkala J (2001) Improving identification of difficult small classes by balancing class distribution. Artif Intell Med Proc 2101:63–66
    • (2001) Artif Intell Med Proc , vol.2101 , pp. 63-66
    • Laurikkala, J.1
  • 58
    • 84874928986 scopus 로고    scopus 로고
    • iLoc-Animal: a multi-label learning classifier for predicting subcellular localization of animal proteins
    • Lin WZ, Fang JA, Xiao X, Chou KC (2013) iLoc-Animal: a multi-label learning classifier for predicting subcellular localization of animal proteins. Mol BioSyst 4:634–644
    • (2013) Mol BioSyst , vol.4 , pp. 634-644
    • Lin, W.Z.1    Fang, J.A.2    Xiao, X.3    Chou, K.C.4
  • 59
    • 84941040066 scopus 로고    scopus 로고
    • iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition
    • PID: 25361964
    • Lin H, Deng E-Z, Ding H, Chen W, Chou K-C (2014) iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res 42:12961–12972
    • (2014) Nucleic Acids Res , vol.42 , pp. 12961-12972
    • Lin, H.1    Deng, E.-Z.2    Ding, H.3    Chen, W.4    Chou, K.-C.5
  • 60
    • 84906975785 scopus 로고    scopus 로고
    • iDNA-Prot|dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition
    • PID: 25184541
    • Liu B, Xu J, Lan X, Xu R, Zhou J, Wang X, Chou K-C (2014) iDNA-Prot|dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition. PLoS One 9(9):e106691
    • (2014) PLoS One , vol.9 , Issue.9 , pp. e106691
    • Liu, B.1    Xu, J.2    Lan, X.3    Xu, R.4    Zhou, J.5    Wang, X.6    Chou, K.-C.7
  • 61
    • 84926631457 scopus 로고    scopus 로고
    • Identification of real microRNA precursors with a pseudo structure status composition approach
    • PID: 25821974
    • Liu B, Fang L, Liu F, Wang X, Chen J, Chou K-C (2015a) Identification of real microRNA precursors with a pseudo structure status composition approach. PLoS One 10:e0121501
    • (2015) PLoS One , vol.10 , pp. e0121501
    • Liu, B.1    Fang, L.2    Liu, F.3    Wang, X.4    Chen, J.5    Chou, K.-C.6
  • 62
    • 84942244470 scopus 로고    scopus 로고
    • Identification of microRNA precursor with the degenerate K-tuple or Kmer strategy
    • COI: 1:CAS:528:DC%2BC2MXhsFSiu7jL, PID: 26362104
    • Liu B, Fang L, Wang S, Wang X, Li H, Chou K-C (2015b) Identification of microRNA precursor with the degenerate K-tuple or Kmer strategy. J Theor Biol 385:153–159
    • (2015) J Theor Biol , vol.385 , pp. 153-159
    • Liu, B.1    Fang, L.2    Wang, S.3    Wang, X.4    Li, H.5    Chou, K.-C.6
  • 63
    • 84923361176 scopus 로고    scopus 로고
    • iDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition
    • COI: 1:CAS:528:DC%2BC2MXhsFaltb4%3D, PID: 25596338
    • Liu Z, Xiao X, Qiu W-R, Chou K-C (2015c) iDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition. Anal Biochem 474:69–77
    • (2015) Anal Biochem , vol.474 , pp. 69-77
    • Liu, Z.1    Xiao, X.2    Qiu, W.-R.3    Chou, K.-C.4
  • 64
    • 84874826659 scopus 로고    scopus 로고
    • Protein interactions in genome maintenance as novel antibacterial targets
    • COI: 1:CAS:528:DC%2BC3sXksFGhs7s%3D, PID: 23536821
    • Marceau AH, Bernstein DA, Walsh BW, Shapiro W, Simmons LA, Keck JL (2013) Protein interactions in genome maintenance as novel antibacterial targets. PLoS One 8(3):e58765
    • (2013) PLoS One , vol.8 , Issue.3 , pp. e58765
    • Marceau, A.H.1    Bernstein, D.A.2    Walsh, B.W.3    Shapiro, W.4    Simmons, L.A.5    Keck, J.L.6
  • 66
    • 77955036815 scopus 로고    scopus 로고
    • Applying the Naïve Bayes classifier with kernel density estimation to the prediction of protein–protein interaction sites
    • COI: 1:CAS:528:DC%2BC3cXptV2iu7g%3D, PID: 20529890
    • Murakami Y, Mizuguchi K (2010a) Applying the Naïve Bayes classifier with kernel density estimation to the prediction of protein–protein interaction sites. Bioinformatics 26:1841–1848
    • (2010) Bioinformatics , vol.26 , pp. 1841-1848
    • Murakami, Y.1    Mizuguchi, K.2
  • 67
    • 77955036815 scopus 로고    scopus 로고
    • Applying the Naive Bayes classifier with kernel density estimation to the prediction of protein-protein interaction sites
    • COI: 1:CAS:528:DC%2BC3cXptV2iu7g%3D, PID: 20529890
    • Murakami Y, Mizuguchi K (2010b) Applying the Naive Bayes classifier with kernel density estimation to the prediction of protein-protein interaction sites. Bioinformatics 26:1841–1848
    • (2010) Bioinformatics , vol.26 , pp. 1841-1848
    • Murakami, Y.1    Mizuguchi, K.2
  • 68
    • 0038356582 scopus 로고    scopus 로고
    • Predicted protein–protein interaction sites from local sequence information
    • COI: 1:CAS:528:DC%2BD3sXktFWksro%3D, PID: 12782323
    • Ofran Y, Rost B (2003) Predicted protein–protein interaction sites from local sequence information. FEBS Lett 544:236–239
    • (2003) FEBS Lett , vol.544 , pp. 236-239
    • Ofran, Y.1    Rost, B.2
  • 69
    • 33846662784 scopus 로고    scopus 로고
    • ISIS: interaction sites identified from sequence
    • COI: 1:CAS:528:DC%2BD2sXotFGitg%3D%3D, PID: 17237081
    • Ofran Y, Rost B (2007) ISIS: interaction sites identified from sequence. Bioinformatics 23:e13–e16
    • (2007) Bioinformatics , vol.23 , pp. e13-e16
    • Ofran, Y.1    Rost, B.2
  • 70
    • 33846200437 scopus 로고    scopus 로고
    • Prediction-based fingerprints of protein–protein interactions
    • COI: 1:CAS:528:DC%2BD2sXpt1enuw%3D%3D
    • Porollo A, Meller J (2007) Prediction-based fingerprints of protein–protein interactions. Proteins Struct Function Bioinform 66:630–645
    • (2007) Proteins Struct Function Bioinform , vol.66 , pp. 630-645
    • Porollo, A.1    Meller, J.2
  • 71
    • 54249117223 scopus 로고    scopus 로고
    • Targeting and tinkering with interaction networks
    • COI: 1:CAS:528:DC%2BD1cXht1Kgs7fP, PID: 18936751
    • Russell RB, Aloy P (2008) Targeting and tinkering with interaction networks. Nat Chem Biol 4:666–673
    • (2008) Nat Chem Biol , vol.4 , pp. 666-673
    • Russell, R.B.1    Aloy, P.2
  • 73
    • 84964591634 scopus 로고    scopus 로고
    • Studying protein–protein interactions by combining native mass spectrometry and chemical cross-linking
    • Sharon M, Sinz A (2015). Studying protein–protein interactions by combining native mass spectrometry and chemical cross-linking. Analyzing biomolecular interactions by mass spectrometry, pp 55–79
    • (2015) Analyzing biomolecular interactions by mass spectrometry , pp. 55-79
    • Sharon, M.1    Sinz, A.2
  • 74
    • 59149087824 scopus 로고    scopus 로고
    • Prediction of protein-protein interaction sites in sequences and 3D structures by random forests
    • PID: 19180183
    • Šikić M, Tomić S, Vlahoviček K (2009) Prediction of protein-protein interaction sites in sequences and 3D structures by random forests. PLoS Comput Biol 5:e1000278
    • (2009) PLoS Comput Biol , vol.5 , pp. e1000278
    • Šikić, M.1    Tomić, S.2    Vlahoviček, K.3
  • 75
    • 84945969870 scopus 로고    scopus 로고
    • SPRINGS: prediction of protein-protein interaction sites using artificial neural networks
    • Singh G, Dhole K, Pai PP, Mondal S (2014) SPRINGS: prediction of protein-protein interaction sites using artificial neural networks. PeerJ 1:7
    • (2014) PeerJ , vol.1 , pp. 7
    • Singh, G.1    Dhole, K.2    Pai, P.P.3    Mondal, S.4
  • 76
    • 38949138554 scopus 로고    scopus 로고
    • Computational prediction of protein–protein interactions
    • COI: 1:CAS:528:DC%2BD1cXmtFGjuw%3D%3D, PID: 18095187
    • Skrabanek L, Saini HK, Bader GD, Enright AJ (2008) Computational prediction of protein–protein interactions. Mol Biotechnol 38:1–17
    • (2008) Mol Biotechnol , vol.38 , pp. 1-17
    • Skrabanek, L.1    Saini, H.K.2    Bader, G.D.3    Enright, A.J.4
  • 77
    • 84924077519 scopus 로고    scopus 로고
    • An overview of recent advances in structural bioinformatics of protein–protein interactions and a guide to their principles
    • COI: 1:CAS:528:DC%2BC2cXhtlaku7jN, PID: 25077409
    • Sudha G, Nussinov R, Srinivasan N (2014) An overview of recent advances in structural bioinformatics of protein–protein interactions and a guide to their principles. Prog Biophys Mol Biol 116:141–150
    • (2014) Prog Biophys Mol Biol , vol.116 , pp. 141-150
    • Sudha, G.1    Nussinov, R.2    Srinivasan, N.3
  • 78
    • 0036565589 scopus 로고    scopus 로고
    • An instance-weighting method to induce cost-sensitive trees
    • Ting KM (2002) An instance-weighting method to induce cost-sensitive trees. IEEE Trans Knowl Data Eng 14:659–665
    • (2002) IEEE Trans Knowl Data Eng , vol.14 , pp. 659-665
    • Ting, K.M.1
  • 79
  • 80
    • 77957583037 scopus 로고    scopus 로고
    • Boosting support vector machines for imbalanced data sets
    • Wang BX, Japkowicz N (2010) Boosting support vector machines for imbalanced data sets. Knowl Inf Syst 25:1–20
    • (2010) Knowl Inf Syst , vol.25 , pp. 1-20
    • Wang, B.X.1    Japkowicz, N.2
  • 81
    • 30644470508 scopus 로고    scopus 로고
    • Predicting protein interaction sites from residue spatial sequence profile and evolution rate
    • COI: 1:CAS:528:DC%2BD28XmslWntg%3D%3D, PID: 16376878
    • Wang B, Chen P, Huang D-S, J-j Li, Lok T-M, Lyu MR (2006) Predicting protein interaction sites from residue spatial sequence profile and evolution rate. FEBS Lett 580:380–384
    • (2006) FEBS Lett , vol.580 , pp. 380-384
    • Wang, B.1    Chen, P.2    Huang, D.-S.3    J-j, L.4    Lok, T.-M.5    Lyu, M.R.6
  • 82
    • 20844441675 scopus 로고    scopus 로고
    • KBA: kernel boundary alignment considering imbalanced data distribution
    • Wu G, Chang EY (2005) KBA: kernel boundary alignment considering imbalanced data distribution. IEEE Trans Knowl Data Eng 17:786–795
    • (2005) IEEE Trans Knowl Data Eng , vol.17 , pp. 786-795
    • Wu, G.1    Chang, E.Y.2
  • 83
    • 84875074764 scopus 로고    scopus 로고
    • iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types
    • COI: 1:CAS:528:DC%2BC3sXlsFehtrs%3D, PID: 23395824
    • Xiao X, Wang P, Lin WZ, Jia JH, Chou KC (2013) iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal Biochem 436:168–177
    • (2013) Anal Biochem , vol.436 , pp. 168-177
    • Xiao, X.1    Wang, P.2    Lin, W.Z.3    Jia, J.H.4    Chou, K.C.5
  • 84
    • 84938953300 scopus 로고    scopus 로고
    • iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach
    • COI: 1:CAS:528:DC%2BC2MXptVShug%3D%3D, PID: 25513722
    • Xiao X, Min J-L, Lin W-Z, Liu Z, Cheng X, Chou K-C (2015a) iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach. J Biomol Struct Dyn 33(10):2221–2233
    • (2015) J Biomol Struct Dyn , vol.33 , Issue.10 , pp. 2221-2233
    • Xiao, X.1    Min, J.-L.2    Lin, W.-Z.3    Liu, Z.4    Cheng, X.5    Chou, K.-C.6
  • 85
    • 84938977142 scopus 로고    scopus 로고
    • iMem-Seq: a multi-label learning classifier for predicting membrane proteins types
    • COI: 1:CAS:528:DC%2BC2MXkvFGgs78%3D, PID: 25796484
    • Xiao X, Zou H-L, Lin W-Z (2015b) iMem-Seq: a multi-label learning classifier for predicting membrane proteins types. J Membr Biol 248:745–752
    • (2015) J Membr Biol , vol.248 , pp. 745-752
    • Xiao, X.1    Zou, H.-L.2    Lin, W.-Z.3
  • 86
    • 84905982402 scopus 로고    scopus 로고
    • iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition
    • PID: 25121969
    • Xu Y, Wen X, Wen L-S, Wu L-Y, Deng N-Y, Chou K-C (2014) iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One 9:e105018
    • (2014) PLoS One , vol.9 , pp. e105018
    • Xu, Y.1    Wen, X.2    Wen, L.-S.3    Wu, L.-Y.4    Deng, N.-Y.5    Chou, K.-C.6
  • 88
    • 13244292990 scopus 로고    scopus 로고
    • A two-stage classifier for identification of protein–protein interface residues
    • COI: 1:CAS:528:DC%2BD2cXlvF2nsrY%3D, PID: 15262822
    • Yan C, Dobbs D, Honavar V (2004) A two-stage classifier for identification of protein–protein interface residues. Bioinformatics 20:i371–i378
    • (2004) Bioinformatics , vol.20 , pp. i371-i378
    • Yan, C.1    Dobbs, D.2    Honavar, V.3
  • 89
    • 80051723070 scopus 로고    scopus 로고
    • SOMRuler: a novel interpretable transmembrane helices predictor
    • Yu D-J, Shen H-B, Yang J-Y (2011) SOMRuler: a novel interpretable transmembrane helices predictor. IEEE Trans NanoBiosci 10:121–129
    • (2011) IEEE Trans NanoBiosci , vol.10 , pp. 121-129
    • Yu, D.-J.1    Shen, H.-B.2    Yang, J.-Y.3
  • 91
    • 84875365172 scopus 로고    scopus 로고
    • TargetATPsite: a template-free method for ATP-binding sites prediction with residue evolution image sparse representation and classifier ensemble
    • PID: 23288787
    • Yu DJ, Hu J, Huang Y, Shen HB, Qi Y, Tang ZM, Yang JY (2013b) TargetATPsite: a template-free method for ATP-binding sites prediction with residue evolution image sparse representation and classifier ensemble. J Comput Chem 34:974–985
    • (2013) J Comput Chem , vol.34 , pp. 974-985
    • Yu, D.J.1    Hu, J.2    Huang, Y.3    Shen, H.B.4    Qi, Y.5    Tang, Z.M.6    Yang, J.Y.7
  • 92
    • 84873719744 scopus 로고    scopus 로고
    • Improving protein-ATP binding residues prediction by boosting SVMs with random under-sampling
    • Yu DJ, Hu J, Tang ZM, Shen HB, Yang J, Yang JY (2013c) Improving protein-ATP binding residues prediction by boosting SVMs with random under-sampling. Neurocomputing 104:180–190
    • (2013) Neurocomputing , vol.104 , pp. 180-190
    • Yu, D.J.1    Hu, J.2    Tang, Z.M.3    Shen, H.B.4    Yang, J.5    Yang, J.Y.6
  • 93
    • 84906310378 scopus 로고    scopus 로고
    • Feature selection and classification of protein–protein complexes based on their binding affinities using machine learning approaches
    • COI: 1:CAS:528:DC%2BC2cXmt1ahtbo%3D
    • Yugandhar K, Gromiha MM (2014a) Feature selection and classification of protein–protein complexes based on their binding affinities using machine learning approaches. Proteins Struct Funct Bioinform 82:2088–2096
    • (2014) Proteins Struct Funct Bioinform , vol.82 , pp. 2088-2096
    • Yugandhar, K.1    Gromiha, M.M.2
  • 94
    • 84922750198 scopus 로고    scopus 로고
    • Protein-protein binding affinity prediction from amino acid sequence
    • COI: 1:CAS:528:DC%2BC2MXisFalt70%3D, PID: 25172924
    • Yugandhar K, Gromiha MM (2014b) Protein-protein binding affinity prediction from amino acid sequence. Bioinformatics 30(24):3583–3589
    • (2014) Bioinformatics , vol.30 , Issue.24 , pp. 3583-3589
    • Yugandhar, K.1    Gromiha, M.M.2
  • 95
    • 77955034751 scopus 로고    scopus 로고
    • On multi-class cost-sensitive learning
    • COI: 1:CAS:528:DC%2BC3cXhtVOrsr3I
    • Zhou ZH, Liu XY (2010) On multi-class cost-sensitive learning. Comput Intell 26:232–257
    • (2010) Comput Intell , vol.26 , pp. 232-257
    • Zhou, Z.H.1    Liu, X.Y.2
  • 96
    • 0035882570 scopus 로고    scopus 로고
    • Prediction of protein interaction sites from sequence profile and residue neighbor list
    • COI: 1:CAS:528:DC%2BD3MXlslSgu7k%3D
    • Zhou H-X, Shan Y-B (2001) Prediction of protein interaction sites from sequence profile and residue neighbor list. Proteins Struct Funct Bioinform 44:336–343
    • (2001) Proteins Struct Funct Bioinform , vol.44 , pp. 336-343
    • Zhou, H.-X.1    Shan, Y.-B.2
  • 97
    • 84939962383 scopus 로고    scopus 로고
    • A new multi-label classifier in identifying the functional types of human membrane proteins
    • COI: 1:CAS:528:DC%2BC2cXitVSitb%2FM, PID: 25433431
    • Zou H-L, Xiao X (2015) A new multi-label classifier in identifying the functional types of human membrane proteins. J Membr Biol 248:179–186
    • (2015) J Membr Biol , vol.248 , pp. 179-186
    • Zou, H.-L.1    Xiao, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.