메뉴 건너뛰기




Volumn 199, Issue , 2016, Pages 154-162

Identification of DNA binding proteins using evolutionary profiles position specific scoring matrix

Author keywords

DNA binding; DPC; KNN; PSSM; SAAC; SVM

Indexed keywords

BENCHMARKING; BINS; CLASSIFICATION (OF INFORMATION); DECISION TREES; DNA; DNA SEQUENCES; GENE EXPRESSION; GENE EXPRESSION REGULATION; NEAREST NEIGHBOR SEARCH; NEURAL NETWORKS; SUPPORT VECTOR MACHINES; TRANSCRIPTION;

EID: 84981765491     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2016.03.025     Document Type: Article
Times cited : (69)

References (72)
  • 1
    • 38149007012 scopus 로고    scopus 로고
    • Predicting DNA-binding proteins: approached from Chou's pseudo amino acid composition and other specific sequence features
    • Fang Y., et al. Predicting DNA-binding proteins: approached from Chou's pseudo amino acid composition and other specific sequence features. Amino Acids 2008, 34(1):103-109.
    • (2008) Amino Acids , vol.34 , Issue.1 , pp. 103-109
    • Fang, Y.1
  • 2
    • 0033647653 scopus 로고    scopus 로고
    • An overview of the structures of protein-DNA complexes
    • Luscombe N.M., et al. An overview of the structures of protein-DNA complexes. Genome Biol. 2000, 1(1):1-37.
    • (2000) Genome Biol. , vol.1 , Issue.1 , pp. 1-37
    • Luscombe, N.M.1
  • 3
    • 0037470573 scopus 로고    scopus 로고
    • Annotating nucleic acid-binding function based on protein structure
    • Stawiski E.W., Gregoret L.M., Mandel-Gutfreund Y. Annotating nucleic acid-binding function based on protein structure. J. Mol. Biol. 2003, 326(4):1065-1079.
    • (2003) J. Mol. Biol. , vol.326 , Issue.4 , pp. 1065-1079
    • Stawiski, E.W.1    Gregoret, L.M.2    Mandel-Gutfreund, Y.3
  • 4
    • 84874690054 scopus 로고    scopus 로고
    • An improved sequence based prediction protocol for DNA-binding proteins using SVM and comprehensive feature analysis
    • Zou C., Gong J., Li H. An improved sequence based prediction protocol for DNA-binding proteins using SVM and comprehensive feature analysis. BMC Bioinform. 2013, 14(1):90.
    • (2013) BMC Bioinform. , vol.14 , Issue.1 , pp. 90
    • Zou, C.1    Gong, J.2    Li, H.3
  • 5
    • 80052855771 scopus 로고    scopus 로고
    • IDNA-Prot: identification of DNA binding proteins using random forest with grey model
    • Lin W.Z., et al. iDNA-Prot: identification of DNA binding proteins using random forest with grey model. PLoS One 2011, 6(9).
    • (2011) PLoS One , vol.6 , Issue.9
    • Lin, W.Z.1
  • 6
    • 0141853954 scopus 로고    scopus 로고
    • Assessment of genome-wide protein function classification for Drosophila melanogaster
    • Mi H., et al. Assessment of genome-wide protein function classification for Drosophila melanogaster. Genome Res. 2003, 13(9):2118-2128.
    • (2003) Genome Res. , vol.13 , Issue.9 , pp. 2118-2128
    • Mi, H.1
  • 7
    • 0030801002 scopus 로고    scopus 로고
    • Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    • Altschul S.F., et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25(17):3389-3402.
    • (1997) Nucleic Acids Res. , vol.25 , Issue.17 , pp. 3389-3402
    • Altschul, S.F.1
  • 8
    • 78649756877 scopus 로고    scopus 로고
    • Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition
    • Hayat M., Khan A. Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition. J. Theor. Biol. 2011, 271(1):10-17.
    • (2011) J. Theor. Biol. , vol.271 , Issue.1 , pp. 10-17
    • Hayat, M.1    Khan, A.2
  • 9
    • 77649339280 scopus 로고    scopus 로고
    • Review: recent advances in developing web-servers for predicting protein attributes
    • Chou K.C., Shen H.B. Review: recent advances in developing web-servers for predicting protein attributes. Nat. Sci. 2009, 1(02):63.
    • (2009) Nat. Sci. , vol.1 , Issue.2 , pp. 63
    • Chou, K.C.1    Shen, H.B.2
  • 10
    • 84883658706 scopus 로고    scopus 로고
    • Theoretical and experimental biology in one-a symposium in honour of Professor Kuo-Chen Chou[U+05F3]s 50th anniversary and Professor Richard Giegé's 40th anniversary of their scientific careers
    • Lin S.X., Lapointe J. Theoretical and experimental biology in one-a symposium in honour of Professor Kuo-Chen Chou[U+05F3]s 50th anniversary and Professor Richard Giegé's 40th anniversary of their scientific careers. J. Biomed. Sci. Eng. 2013, 6(04):435.
    • (2013) J. Biomed. Sci. Eng. , vol.6 , Issue.4 , pp. 435
    • Lin, S.X.1    Lapointe, J.2
  • 11
    • 59649123088 scopus 로고    scopus 로고
    • Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou[U+05F3]s pseudo amino acid composition
    • Georgiou D., et al. Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou[U+05F3]s pseudo amino acid composition. J. Theor. Biol. 2009, 257(1):17-26.
    • (2009) J. Theor. Biol. , vol.257 , Issue.1 , pp. 17-26
    • Georgiou, D.1
  • 12
    • 84930573967 scopus 로고    scopus 로고
    • Identification of DNA-binding proteins by incorporating evolutionary information into pseudo amino acid composition via the top-n-gram approach
    • Xu R., et al. Identification of DNA-binding proteins by incorporating evolutionary information into pseudo amino acid composition via the top-n-gram approach. J. Biomol. Struct. Dyn. 2014, 33:1720-1730.
    • (2014) J. Biomol. Struct. Dyn. , vol.33 , pp. 1720-1730
    • Xu, R.1
  • 13
    • 84906975785 scopus 로고    scopus 로고
    • IDNA-Prot|dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition
    • Liu B., et al. iDNA-Prot|dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition. PLoS One 2014, 9(9).
    • (2014) PLoS One , vol.9 , Issue.9
    • Liu, B.1
  • 14
    • 84921023793 scopus 로고    scopus 로고
    • PseDNA-Pro: DNA-binding protein identification by combining Chou[U+05F3]s PseAAC and physicochemical distance transformation
    • Liu B., et al. PseDNA-Pro: DNA-binding protein identification by combining Chou[U+05F3]s PseAAC and physicochemical distance transformation. Mol. Inform. 2015, 34(1):8-17.
    • (2015) Mol. Inform. , vol.34 , Issue.1 , pp. 8-17
    • Liu, B.1
  • 15
    • 84944886528 scopus 로고    scopus 로고
    • DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation
    • Liu B., Wang S., Wang X. DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation. Sci. Rep. 2015, 5:15479.
    • (2015) Sci. Rep. , vol.5 , pp. 15479
    • Liu, B.1    Wang, S.2    Wang, X.3
  • 16
    • 84921500317 scopus 로고    scopus 로고
    • ITIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition
    • Chen W., et al. iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition. Anal. Biochem. 2014, 462:76-83.
    • (2014) Anal. Biochem. , vol.462 , pp. 76-83
    • Chen, W.1
  • 17
    • 84903592187 scopus 로고    scopus 로고
    • ICTX-Type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels
    • Ding H., et al. iCTX-Type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels. BioMed Res. Int. 2014, 2014:10.
    • (2014) BioMed Res. Int. , vol.2014 , pp. 10
    • Ding, H.1
  • 18
    • 84941040066 scopus 로고    scopus 로고
    • IPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition
    • Lin H., et al. iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res. 2014, 42(21):12961-12972.
    • (2014) Nucleic Acids Res. , vol.42 , Issue.21 , pp. 12961-12972
    • Lin, H.1
  • 19
    • 84926631457 scopus 로고    scopus 로고
    • Identification of real microRNA precursors with a pseudo structure status composition approach
    • Liu B., et al. Identification of real microRNA precursors with a pseudo structure status composition approach. PloS One 2015, 10.
    • (2015) PloS One , vol.10
    • Liu, B.1
  • 20
    • 84905982402 scopus 로고    scopus 로고
    • INitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition
    • Xu Y., et al. iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One 2014, 9.
    • (2014) PLoS One , vol.9
    • Xu, Y.1
  • 21
    • 79951518208 scopus 로고    scopus 로고
    • Some remarks on protein attribute prediction and pseudo amino acid composition
    • Chou K.C. Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol. 2011, 273(1):236-247.
    • (2011) J. Theor. Biol. , vol.273 , Issue.1 , pp. 236-247
    • Chou, K.C.1
  • 22
    • 0033954256 scopus 로고    scopus 로고
    • The protein data bank
    • Berman H.M., et al. The protein data bank. Nucleic Acids Res. 2000, 28(1):235-242.
    • (2000) Nucleic Acids Res. , vol.28 , Issue.1 , pp. 235-242
    • Berman, H.M.1
  • 23
    • 34548606295 scopus 로고    scopus 로고
    • Recent progress in protein subcellular location prediction
    • Chou K.C., Shen H.B. Recent progress in protein subcellular location prediction. Anal. Biochem. 2007, 370(1):1-16.
    • (2007) Anal. Biochem. , vol.370 , Issue.1 , pp. 1-16
    • Chou, K.C.1    Shen, H.B.2
  • 24
    • 84926619444 scopus 로고    scopus 로고
    • Impacts of bioinformatics to medicinal chemistry
    • Chou K.-C. Impacts of bioinformatics to medicinal chemistry. Med. Chem. 2015, 11(3):218-234.
    • (2015) Med. Chem. , vol.11 , Issue.3 , pp. 218-234
    • Chou, K.-C.1
  • 25
    • 0035874091 scopus 로고    scopus 로고
    • Prediction of protein cellular attributes using pseudo-amino acid composition
    • Chou K.C. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins: Struct. Funct. Bioinform. 2001, 43(3):246-255.
    • (2001) Proteins: Struct. Funct. Bioinform. , vol.43 , Issue.3 , pp. 246-255
    • Chou, K.C.1
  • 26
    • 65349165718 scopus 로고    scopus 로고
    • Prediction of cell wall lytic enzymes using Chou[U+05F3]s amphiphilic pseudo amino acid composition
    • Ding H., Luo L., Lin H. Prediction of cell wall lytic enzymes using Chou[U+05F3]s amphiphilic pseudo amino acid composition. Protein Pept. Lett. 2009, 16(5):351-355.
    • (2009) Protein Pept. Lett. , vol.16 , Issue.5 , pp. 351-355
    • Ding, H.1    Luo, L.2    Lin, H.3
  • 27
    • 84908072570 scopus 로고    scopus 로고
    • Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou[U+05F3] s general PseAAC
    • Dehzangi A., et al. Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou[U+05F3] s general PseAAC. J. Theor. Biol. 2015, 364:284-294.
    • (2015) J. Theor. Biol. , vol.364 , pp. 284-294
    • Dehzangi, A.1
  • 28
    • 70350437815 scopus 로고    scopus 로고
    • Prediction of subcellular localization of apoptosis protein using Chou[U+05F3]s pseudo amino acid composition
    • Lin H., et al. Prediction of subcellular localization of apoptosis protein using Chou[U+05F3]s pseudo amino acid composition. Acta Biotheor. 2009, 57(3):321-330.
    • (2009) Acta Biotheor. , vol.57 , Issue.3 , pp. 321-330
    • Lin, H.1
  • 29
    • 84904606183 scopus 로고    scopus 로고
    • Identifying the subfamilies of voltage-gated potassium channels using feature selection technique
    • Liu W.X., et al. Identifying the subfamilies of voltage-gated potassium channels using feature selection technique. Int. J. Mol. Sci. 2014, 15(7):12940-12951.
    • (2014) Int. J. Mol. Sci. , vol.15 , Issue.7 , pp. 12940-12951
    • Liu, W.X.1
  • 30
    • 84928722799 scopus 로고    scopus 로고
    • IPPI-Esml: an ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC
    • Jia J., et al. iPPI-Esml: an ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. J. Theor. Biol. 2015, 377:47-56.
    • (2015) J. Theor. Biol. , vol.377 , pp. 47-56
    • Jia, J.1
  • 31
    • 84940523358 scopus 로고    scopus 로고
    • PSOFuzzySVM-TMH: identification of transmembrane helix segments using ensemble feature space by incorporated fuzzy support vector machine
    • Hayat M., Tahir M. PSOFuzzySVM-TMH: identification of transmembrane helix segments using ensemble feature space by incorporated fuzzy support vector machine. Mol. BioSyst. 2015, 10.1039/C5MB00196J.
    • (2015) Mol. BioSyst.
    • Hayat, M.1    Tahir, M.2
  • 32
    • 84908628104 scopus 로고    scopus 로고
    • Prediction of β-lactamase and its class by Chou[U+05F3]s pseudo-amino acid composition and support vector machine
    • Kumar R., et al. Prediction of β-lactamase and its class by Chou[U+05F3]s pseudo-amino acid composition and support vector machine. J. Theor. Biol. 2015, 365:96-103.
    • (2015) J. Theor. Biol. , vol.365 , pp. 96-103
    • Kumar, R.1
  • 33
    • 84939476364 scopus 로고    scopus 로고
    • MultiP-SChlo: multi-label protein subchloroplast localization prediction with Chou[U+05F3]s pseudo amino acid composition and a novel multi-label classifier
    • btv212
    • Wang X., et al. MultiP-SChlo: multi-label protein subchloroplast localization prediction with Chou[U+05F3]s pseudo amino acid composition and a novel multi-label classifier. Bioinformatics 2015, btv212.
    • (2015) Bioinformatics
    • Wang, X.1
  • 34
    • 84876678050 scopus 로고    scopus 로고
    • WRF-TMH: predicting transmembrane helix by fusing composition index and physicochemical properties of amino acids
    • Hayat M., Khan A. WRF-TMH: predicting transmembrane helix by fusing composition index and physicochemical properties of amino acids. Amino Acids 2013, 44(5):1317-1328.
    • (2013) Amino Acids , vol.44 , Issue.5 , pp. 1317-1328
    • Hayat, M.1    Khan, A.2
  • 35
    • 84979865452 scopus 로고    scopus 로고
    • Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences
    • gkv458
    • Liu B., et al. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res. 2015, gkv458.
    • (2015) Nucleic Acids Res.
    • Liu, B.1
  • 36
    • 84911366139 scopus 로고    scopus 로고
    • Prediction of membrane protein types by using dipeptide and pseudo amino acid composition-based composite features
    • Hayat M., Khan A. Prediction of membrane protein types by using dipeptide and pseudo amino acid composition-based composite features. IET Commun. 2012, 6(18):3257-3264.
    • (2012) IET Commun. , vol.6 , Issue.18 , pp. 3257-3264
    • Hayat, M.1    Khan, A.2
  • 37
    • 84862763732 scopus 로고    scopus 로고
    • Prediction of membrane proteins using split amino acid and ensemble classification
    • Hayat M., Khan A., Yeasin M. Prediction of membrane proteins using split amino acid and ensemble classification. Amino Acids 2012, 42(6):2447-2460.
    • (2012) Amino Acids , vol.42 , Issue.6 , pp. 2447-2460
    • Hayat, M.1    Khan, A.2    Yeasin, M.3
  • 38
    • 33745759451 scopus 로고    scopus 로고
    • Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization
    • Chou K.C., Shen H.B. Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization. Biochem. Biophys. Res. Commun. 2006, 347(1):150-157.
    • (2006) Biochem. Biophys. Res. Commun. , vol.347 , Issue.1 , pp. 150-157
    • Chou, K.C.1    Shen, H.B.2
  • 39
    • 0031793928 scopus 로고    scopus 로고
    • Iterated profile searches with PSI-BLAST-a tool for discovery in protein databases
    • Altschul S.F., Koonin E.V. Iterated profile searches with PSI-BLAST-a tool for discovery in protein databases. Trends Biochem. Sci. 1998, 23(11):444-447.
    • (1998) Trends Biochem. Sci. , vol.23 , Issue.11 , pp. 444-447
    • Altschul, S.F.1    Koonin, E.V.2
  • 40
    • 80054071147 scopus 로고    scopus 로고
    • MemHyb: predicting membrane protein types by hybridizing SAAC and PSSM
    • Hayat M., Khan A. MemHyb: predicting membrane protein types by hybridizing SAAC and PSSM. J. Theor. Biol. 2012, 292:93-102.
    • (2012) J. Theor. Biol. , vol.292 , pp. 93-102
    • Hayat, M.1    Khan, A.2
  • 41
    • 77957124553 scopus 로고    scopus 로고
    • Prediction of protein structural class for low-similarity sequences using support vector machine and PSI-BLAST profile
    • Liu T., Zheng X., Wang J. Prediction of protein structural class for low-similarity sequences using support vector machine and PSI-BLAST profile. Biochimie 2010, 92(10):1330-1334.
    • (2010) Biochimie , vol.92 , Issue.10 , pp. 1330-1334
    • Liu, T.1    Zheng, X.2    Wang, J.3
  • 42
    • 0035878724 scopus 로고    scopus 로고
    • Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements
    • Schäffer A.A., et al. Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res. 2001, 29(14):2994-3005.
    • (2001) Nucleic Acids Res. , vol.29 , Issue.14 , pp. 2994-3005
    • Schäffer, A.A.1
  • 43
    • 33646780174 scopus 로고    scopus 로고
    • Discrimination of outer membrane proteins using machine learning algorithms
    • Gromiha M.M., Suwa M. Discrimination of outer membrane proteins using machine learning algorithms. Proteins: Struct. Funct. Bioinform. 2006, 63(4):1031-1037.
    • (2006) Proteins: Struct. Funct. Bioinform. , vol.63 , Issue.4 , pp. 1031-1037
    • Gromiha, M.M.1    Suwa, M.2
  • 44
    • 0035812599 scopus 로고    scopus 로고
    • Energetics, stability, and prediction of transmembrane helices
    • Jayasinghe S., Hristova K., White S.H. Energetics, stability, and prediction of transmembrane helices. J. Mol. Biol. 2001, 312(5):927-934.
    • (2001) J. Mol. Biol. , vol.312 , Issue.5 , pp. 927-934
    • Jayasinghe, S.1    Hristova, K.2    White, S.H.3
  • 45
    • 84885112194 scopus 로고    scopus 로고
    • AcalPred: a sequence-based tool for discriminating between acidic and alkaline enzymes
    • Lin H., Chen W., Ding H. AcalPred: a sequence-based tool for discriminating between acidic and alkaline enzymes. PLoS One 2013, 8(10). e75726.
    • (2013) PLoS One , vol.8 , Issue.10
    • Lin, H.1    Chen, W.2    Ding, H.3
  • 46
    • 79957915328 scopus 로고    scopus 로고
    • Addressing data complexity for imbalanced data sets: analysis of SMOTE-based oversampling and evolutionary undersampling
    • Luengo J., et al. Addressing data complexity for imbalanced data sets: analysis of SMOTE-based oversampling and evolutionary undersampling. Soft Comput. 2011, 15(10):1909-1936.
    • (2011) Soft Comput. , vol.15 , Issue.10 , pp. 1909-1936
    • Luengo, J.1
  • 48
    • 84938953300 scopus 로고    scopus 로고
    • IDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach
    • Xiao X., et al. iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach. J. Biomol. Struct. Dyn. 2015, 33:2221-2233.
    • (2015) J. Biomol. Struct. Dyn. , vol.33 , pp. 2221-2233
    • Xiao, X.1
  • 49
    • 84923361176 scopus 로고    scopus 로고
    • IDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition
    • Liu Z., et al. iDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition. Anal. Biochem. 2015, 474:69-77.
    • (2015) Anal. Biochem. , vol.474 , pp. 69-77
    • Liu, Z.1
  • 51
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht D.F. Probabilistic neural networks. Neural Netw. 1990, 3(1):109-118.
    • (1990) Neural Netw. , vol.3 , Issue.1 , pp. 109-118
    • Specht, D.F.1
  • 52
    • 33746261915 scopus 로고    scopus 로고
    • Optimizing the performance of probabilistic neural networks in a bioinformatics task
    • V. Georgiou, et al., Optimizing the performance of probabilistic neural networks in a bioinformatics task, in: Proceedings of the EUNITE Conference, 2004.
    • (2004) Proceedings of the EUNITE Conference
    • Georgiou, V.1
  • 53
    • 84911416290 scopus 로고    scopus 로고
    • Discrimination of acidic and alkaline enzyme using Chou[U+05F3]s pseudo amino acid composition in conjunction with probabilistic neural network model
    • Khan Z.U., Hayat M., Khan M.A. Discrimination of acidic and alkaline enzyme using Chou[U+05F3]s pseudo amino acid composition in conjunction with probabilistic neural network model. Journal of theoretical biology 2015, 365:197-203.
    • (2015) Journal of theoretical biology , vol.365 , pp. 197-203
    • Khan, Z.U.1    Hayat, M.2    Khan, M.A.3
  • 54
    • 0003450542 scopus 로고    scopus 로고
    • The nature of statistical learning theory
    • There is no corresponding record for this reference.
    • V. Vapnik, The nature of statistical learning theory, 2000. There is no corresponding record for this reference.
    • (2000)
    • Vapnik, V.1
  • 55
    • 65649105512 scopus 로고    scopus 로고
    • Prediction of G-protein-coupled receptor classes based on the concept of Chou[U+05F3]s pseudo amino acid composition: an approach from discrete wavelet transform
    • Qiu J.-D., et al. Prediction of G-protein-coupled receptor classes based on the concept of Chou[U+05F3]s pseudo amino acid composition: an approach from discrete wavelet transform. Anal. Biochem. 2009, 390(1):68-73.
    • (2009) Anal. Biochem. , vol.390 , Issue.1 , pp. 68-73
    • Qiu, J.-D.1
  • 56
    • 77951992931 scopus 로고    scopus 로고
    • Prediction of G-protein-coupled receptor classes in low homology using Chou[U+05F3]s pseudo amino acid composition with approximate entropy and hydrophobicity patterns
    • Gu Q., Ding Y.S., Zhang T.L. Prediction of G-protein-coupled receptor classes in low homology using Chou[U+05F3]s pseudo amino acid composition with approximate entropy and hydrophobicity patterns. Protein Pept. Lett. 2010, 17(5):559-567.
    • (2010) Protein Pept. Lett. , vol.17 , Issue.5 , pp. 559-567
    • Gu, Q.1    Ding, Y.S.2    Zhang, T.L.3
  • 57
    • 84902186435 scopus 로고    scopus 로고
    • ISS-PseDNC: identifying splicing sites using pseudo dinucleotide composition
    • Chen W., et al. iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition. BioMed Res. Int. 2014, 12.
    • (2014) BioMed Res. Int. , pp. 12
    • Chen, W.1
  • 58
    • 84892958175 scopus 로고    scopus 로고
    • IRSpot-TNCPseAAC: Identify recombination spots with trinucleotide composition and pseudo amino acid components
    • Qiu W.R., Xiao X., Chou K.C. iRSpot-TNCPseAAC: Identify recombination spots with trinucleotide composition and pseudo amino acid components. Int. J. Mol. Sci. 2014, 15(2):1746-1766.
    • (2014) Int. J. Mol. Sci. , vol.15 , Issue.2 , pp. 1746-1766
    • Qiu, W.R.1    Xiao, X.2    Chou, K.C.3
  • 59
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45(1):5-32.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 60
    • 84899864030 scopus 로고    scopus 로고
    • Sequence based prediction of DNA-binding proteins based on hybrid feature selection using random forest and Gaussian naïve Bayes
    • Lou W., et al. Sequence based prediction of DNA-binding proteins based on hybrid feature selection using random forest and Gaussian naïve Bayes. PloS One 2014, 9(1).
    • (2014) PloS One , vol.9 , Issue.1
    • Lou, W.1
  • 61
    • 67249090413 scopus 로고    scopus 로고
    • DNA-Prot: identification of DNA binding proteins from protein sequence information using random forest
    • Kumar K.K., Pugalenthi G., Suganthan P. DNA-Prot: identification of DNA binding proteins from protein sequence information using random forest. J. Biomol. Struct. Dyn. 2009, 26(6):679-686.
    • (2009) J. Biomol. Struct. Dyn. , vol.26 , Issue.6 , pp. 679-686
    • Kumar, K.K.1    Pugalenthi, G.2    Suganthan, P.3
  • 62
    • 84855641685 scopus 로고    scopus 로고
    • ILoc-Hum: using the accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites
    • Chou K.C., Wu Z.C., Xiao X. iLoc-Hum: using the accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites. Mol. Biosyst. 2012, 8(2):629-641.
    • (2012) Mol. Biosyst. , vol.8 , Issue.2 , pp. 629-641
    • Chou, K.C.1    Wu, Z.C.2    Xiao, X.3
  • 63
    • 84896463976 scopus 로고    scopus 로고
    • INuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition
    • Guo S.H., et al. iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Bioinformatics 2014, 2014:btu083.
    • (2014) Bioinformatics , vol.2014
    • Guo, S.H.1
  • 64
    • 0035030201 scopus 로고    scopus 로고
    • Using subsite coupling to predict signal peptides
    • Chou K.C. Using subsite coupling to predict signal peptides. Protein Eng. 2001, 14(2):75-79.
    • (2001) Protein Eng. , vol.14 , Issue.2 , pp. 75-79
    • Chou, K.C.1
  • 65
    • 84874928986 scopus 로고    scopus 로고
    • ILoc-Animal: a multi-label learning classifier for predicting subcellular localization of animal proteins
    • Lin W.Z., et al. iLoc-Animal: a multi-label learning classifier for predicting subcellular localization of animal proteins. Mol. BioSyst. 2013, 9(4):634-644.
    • (2013) Mol. BioSyst. , vol.9 , Issue.4 , pp. 634-644
    • Lin, W.Z.1
  • 66
    • 84875074764 scopus 로고    scopus 로고
    • IAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types
    • Xiao X., et al. iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal. Biochem. 2013, 436(2):168-177.
    • (2013) Anal. Biochem. , vol.436 , Issue.2 , pp. 168-177
    • Xiao, X.1
  • 67
    • 84877758233 scopus 로고    scopus 로고
    • Some remarks on predicting multi-label attributes in molecular biosystems
    • Chou K.C. Some remarks on predicting multi-label attributes in molecular biosystems. Mol. BioSyst. 2013, 9(6):1092-1100.
    • (2013) Mol. BioSyst. , vol.9 , Issue.6 , pp. 1092-1100
    • Chou, K.C.1
  • 68
    • 0029157083 scopus 로고
    • Prediction of protein structural classes
    • Chou K.C., Zhang C.T. Prediction of protein structural classes. Crit. Rev. Biochem. Mol. Biol. 1995, 30(4):275-349.
    • (1995) Crit. Rev. Biochem. Mol. Biol. , vol.30 , Issue.4 , pp. 275-349
    • Chou, K.C.1    Zhang, C.T.2
  • 69
    • 84892457142 scopus 로고    scopus 로고
    • Prediction of protein structure classes using hybrid space of multi-Bayes profiles and Bi-gram probability feature spaces
    • Hayat M., Tahir M., Khan S.A. Prediction of protein structure classes using hybrid space of multi-Bayes profiles and Bi-gram probability feature spaces. J. Theor. Biol. 2013, 346C:8-15.
    • (2013) J. Theor. Biol. , vol.346C , pp. 8-15
    • Hayat, M.1    Tahir, M.2    Khan, S.A.3
  • 70
    • 38649127567 scopus 로고    scopus 로고
    • Identification of DNA-binding proteins using support vector machines and evolutionary profiles
    • Kumar M., Gromiha M.M., Raghava G.P. Identification of DNA-binding proteins using support vector machines and evolutionary profiles. BMC Bioinform. 2007, 8(1):463.
    • (2007) BMC Bioinform. , vol.8 , Issue.1 , pp. 463
    • Kumar, M.1    Gromiha, M.M.2    Raghava, G.P.3
  • 71
    • 84961566800 scopus 로고    scopus 로고
    • Identifying DNA-binding proteins by combining support vector machine and PSSM distance transformation
    • Xu R., et al. Identifying DNA-binding proteins by combining support vector machine and PSSM distance transformation. BMC Syst. Biol. 2015, 9:1-12.
    • (2015) BMC Syst. Biol. , vol.9 , pp. 1-12
    • Xu, R.1
  • 72
    • 84900463301 scopus 로고    scopus 로고
    • PseKNC: a flexible web server for generating pseudo K-tuple nucleotide composition
    • Chen W., et al. PseKNC: a flexible web server for generating pseudo K-tuple nucleotide composition. Anal. Biochem. 2014, 456:53-60.
    • (2014) Anal. Biochem. , vol.456 , pp. 53-60
    • Chen, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.