-
1
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
[1] Saeys, Y., Inza, I., Larranaga, P., A review of feature selection techniques in bioinformatics. Bioinformatics 23 (2007), 2507–2517.
-
(2007)
Bioinformatics
, vol.23
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larranaga, P.3
-
2
-
-
78449286773
-
Genetic networks and soft computing
-
[2] Mitra, S., Das, R., Hayashi, Y., Genetic networks and soft computing. IEEE/ACM Trans. Comput. Biol. Bioinf. 8:1 (2011), 94–107, 10.1109/TCBB.2009.39.
-
(2011)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.8
, Issue.1
, pp. 94-107
-
-
Mitra, S.1
Das, R.2
Hayashi, Y.3
-
3
-
-
84866618603
-
Cardiovascular genomics: a biomarker identification pipeline
-
[3] Phan, J.H., Quo, C.F., Wang, M.D., Cardiovascular genomics: a biomarker identification pipeline. IEEE Trans. Inf. Technol. Biomed. 16:5 (2012), 809–822, 10.1109/TITB.2012.2199570.
-
(2012)
IEEE Trans. Inf. Technol. Biomed.
, vol.16
, Issue.5
, pp. 809-822
-
-
Phan, J.H.1
Quo, C.F.2
Wang, M.D.3
-
4
-
-
80052880887
-
Methods for identifying SNP interactions: a review on variations of logic regression, random forest and bayesian logistic regression
-
[4] Chen, C.C.M., Schwender, H., Keith, J., Nunkesser, R., Mengersen, K., Macrossan, P., Methods for identifying SNP interactions: a review on variations of logic regression, random forest and bayesian logistic regression. IEEE/ACM Trans. Comput. Biol. Bioinf. 8:6 (2011), 1580–1591, 10.1109/TCBB.2011.46.
-
(2011)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.8
, Issue.6
, pp. 1580-1591
-
-
Chen, C.C.M.1
Schwender, H.2
Keith, J.3
Nunkesser, R.4
Mengersen, K.5
Macrossan, P.6
-
5
-
-
84942612935
-
Machine learning applications in cancer prognosis and prediction
-
URL
-
[5] Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., Fotiadis, D.I., Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13 (2015), 8–17, 10.1016/j.csbj.2014.11.005 URL http://www.sciencedirect.com/science/article/pii/S2001037014000464.
-
(2015)
Comput. Struct. Biotechnol. J.
, vol.13
, pp. 8-17
-
-
Kourou, K.1
Exarchos, T.P.2
Exarchos, K.P.3
Karamouzis, M.V.4
Fotiadis, D.I.5
-
6
-
-
85032751958
-
Fads and fallacies in the name of small-sample microarray classification – a highlight of misunderstanding and erroneous usage in the applications of genomic signal processing
-
[6] Neto, U.B., Fads and fallacies in the name of small-sample microarray classification – a highlight of misunderstanding and erroneous usage in the applications of genomic signal processing. IEEE Signal Process. Mag. 24:1 (2007), 91–99, 10.1109/MSP.2007.273062.
-
(2007)
IEEE Signal Process. Mag.
, vol.24
, Issue.1
, pp. 91-99
-
-
Neto, U.B.1
-
7
-
-
85032752105
-
Computational functional genomics
-
[7] Liang, M.P., Troyanskaya, O.G., Laederach, A., Brutlag, D.L., Altman, R.B., Computational functional genomics. IEEE Signal Process. Mag. 21:6 (2004), 62–69, 10.1109/MSP.2004.1359143.
-
(2004)
IEEE Signal Process. Mag.
, vol.21
, Issue.6
, pp. 62-69
-
-
Liang, M.P.1
Troyanskaya, O.G.2
Laederach, A.3
Brutlag, D.L.4
Altman, R.B.5
-
8
-
-
84999077422
-
-
3-d data management: Controlling data volume, velocity and variety, Application Delivery Strategies, META Group 6 February. doi:.
-
[8] D. Laney, 3-d data management: Controlling data volume, velocity and variety, Application Delivery Strategies, META Group 6 February. doi: http://goo.gl/wH3qG.
-
-
-
Laney, D.1
-
9
-
-
84902589952
-
-
Big biological impacts from big data, Science. doi:.
-
[9] M. May, Big biological impacts from big data, Science. doi: 10.1126/science.opms.p1400086.
-
-
-
May, M.1
-
10
-
-
84999238237
-
-
Beyond volume, variety and velocity is the issue of big data veracity, Inside Big Data. doi:.
-
[10] K. Normandeau, Beyond volume, variety and velocity is the issue of big data veracity, Inside Big Data. doi: http://insidebigdata.com/2013/09/12/beyond-volume-variety-velocity-issue-big-data-veracity/.
-
-
-
Normandeau, K.1
-
11
-
-
84938709678
-
Big data: astronomical or genomical?
-
[11] Stephens, Z.D., Lee, S.Y., Faghri, F., Campbell, R.H., Zhai, C., Efron, M.J., Iyer, R., Schatz, M.C., Sinha, S., Robinson, G.E., Big data: astronomical or genomical?. PLoS Biol., 13(7), 2015, e1002195, 10.1371/journal.pbio.1002195.
-
(2015)
PLoS Biol.
, vol.13
, Issue.7
, pp. e1002195
-
-
Stephens, Z.D.1
Lee, S.Y.2
Faghri, F.3
Campbell, R.H.4
Zhai, C.5
Efron, M.J.6
Iyer, R.7
Schatz, M.C.8
Sinha, S.9
Robinson, G.E.10
-
13
-
-
0003914835
-
Elements of Machine Learning
-
Morgan Kaufmann
-
[13] Langley, P., Elements of Machine Learning. 1996, Morgan Kaufmann.
-
(1996)
-
-
Langley, P.1
-
15
-
-
84999131733
-
Enhancing Learning using Feature and Example Selection
-
(Master thesis) Department of Computer Science, Texas A&M University
-
[15] George John, H., Enhancing Learning using Feature and Example Selection. (Master thesis), 2003, Department of Computer Science, Texas A&M University.
-
(2003)
-
-
George John, H.1
-
16
-
-
0037983742
-
Data dimensionality reduction with application to simplifying RBF network structure and improving classification performance
-
[16] Fu, X.J., Wang, L.P., Data dimensionality reduction with application to simplifying RBF network structure and improving classification performance. IEEE Trans. Syst. Man Cybern. Part B Cybern 33 (2003), 399–400.
-
(2003)
IEEE Trans. Syst. Man Cybern. Part B Cybern
, vol.33
, pp. 399-400
-
-
Fu, X.J.1
Wang, L.P.2
-
17
-
-
24944434066
-
Data Mining with Computational Intelligence
-
Springer-Verlag
-
[17] Wang, L.P., Fu, X.J., Data Mining with Computational Intelligence. 2005, Springer-Verlag.
-
(2005)
-
-
Wang, L.P.1
Fu, X.J.2
-
20
-
-
0029373066
-
An adoptive learning algorithm for principle component analysis
-
[20] Chen, L.H., Chang, S., An adoptive learning algorithm for principle component analysis. IEEE Trans. Neural Networks 6 (1995), 1255–1263.
-
(1995)
IEEE Trans. Neural Networks
, vol.6
, pp. 1255-1263
-
-
Chen, L.H.1
Chang, S.2
-
22
-
-
0033337021
-
Fisher discriminant analysis with kernels
-
S.B., in:
-
[22] S. Mika, G. Ratsch, J. Weston, S.B., K.R. Mullers, Fisher discriminant analysis with kernels, in: Neural Networks Signal Processing IX 1999, 1999, pp. 41–48.
-
(1999)
Neural Networks Signal Processing IX
, pp. 41-48
-
-
Mika, S.1
Ratsch, G.2
Weston, J.3
Mullers, K.R.4
-
23
-
-
0034227313
-
Dimensionality reduction using genetic algorithms
-
[23] Raymer, M.L., Punch, W.F., Goodman, E.D., Kuhn, L.A., Jain, A.K., Dimensionality reduction using genetic algorithms. IEEE Trans. Evol. Comput. 4 (2000), 164–171.
-
(2000)
IEEE Trans. Evol. Comput.
, vol.4
, pp. 164-171
-
-
Raymer, M.L.1
Punch, W.F.2
Goodman, E.D.3
Kuhn, L.A.4
Jain, A.K.5
-
24
-
-
84864144566
-
Conjunctive patches subspace learning with side information for collaborative image retrieval
-
[24] Zhang, L., Wang, L.P., Lin, W., Conjunctive patches subspace learning with side information for collaborative image retrieval. IEEE Trans. Image Process. 21 (2012), 3707–3720.
-
(2012)
IEEE Trans. Image Process.
, vol.21
, pp. 3707-3720
-
-
Zhang, L.1
Wang, L.P.2
Lin, W.3
-
25
-
-
84859068530
-
Semi-supervised biased maximum margin analysis for interactive image retrieval
-
[25] Zhang, L., Wang, L.P., Lin, W., Semi-supervised biased maximum margin analysis for interactive image retrieval. IEEE Trans. Image Process. 21 (2012), 2294–2308.
-
(2012)
IEEE Trans. Image Process.
, vol.21
, pp. 2294-2308
-
-
Zhang, L.1
Wang, L.P.2
Lin, W.3
-
26
-
-
84856275694
-
Generalized biased discriminant analysis for content-based image retrieval
-
[26] Zhang, L., Wang, L.P., Lin, W., Generalized biased discriminant analysis for content-based image retrieval. IEEE Trans. Syst Man Cybern. Part B: Cybern. 42 (2012), 282–290.
-
(2012)
IEEE Trans. Syst Man Cybern. Part B: Cybern.
, vol.42
, pp. 282-290
-
-
Zhang, L.1
Wang, L.P.2
Lin, W.3
-
27
-
-
84894562735
-
Geometric optimum experimental design for collaborative image retrieval
-
[27] Zhang, L., Wang, L.P., Lin, W., Yan, S., Geometric optimum experimental design for collaborative image retrieval. IEEE Trans. Circuits Syst. Video Technol. 24 (2014), 346–359.
-
(2014)
IEEE Trans. Circuits Syst. Video Technol.
, vol.24
, pp. 346-359
-
-
Zhang, L.1
Wang, L.P.2
Lin, W.3
Yan, S.4
-
28
-
-
84861510685
-
A survey on filter techniques for feature selection in gene expression microarray analysis
-
[28] Lazar, C., Taminau, J., Meganck, S., Steenhoff, D., Coletta, A., Molter, C., de Schaetzen, V., Duque, R., Bersini, H., Nowe, A., A survey on filter techniques for feature selection in gene expression microarray analysis. Bioinformatics 9 (2012), 1106–1119.
-
(2012)
Bioinformatics
, vol.9
, pp. 1106-1119
-
-
Lazar, C.1
Taminau, J.2
Meganck, S.3
Steenhoff, D.4
Coletta, A.5
Molter, C.6
de Schaetzen, V.7
Duque, R.8
Bersini, H.9
Nowe, A.10
-
29
-
-
0035478854
-
Random forests
-
[29] Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32.
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
30
-
-
34249753618
-
Support-vector networks
-
[30] Cortes, C., Vapnik, V., Support-vector networks. Mach. Learn., 20, 1995, 273, 10.1007/BF00994018.
-
(1995)
Mach. Learn.
, vol.20
, pp. 273
-
-
Cortes, C.1
Vapnik, V.2
-
31
-
-
33845315541
-
-
Classification using support vector machines with graded resolution, IEEE International Conference on Granular Computing 2
-
[31] L.P. Wang, B. Liu, C. Wan, Classification using support vector machines with graded resolution, IEEE International Conference on Granular Computing 2, 2005, pp. 666–670.
-
(2005)
, pp. 666-670
-
-
Wang, L.P.1
Liu, B.2
Wan, C.3
-
32
-
-
84887018720
-
A distributed SVM ensemble for large scale image classification and annotation
-
[32] Alham, N.K., Li, M., Liu, Y., Qi, M., A distributed SVM ensemble for large scale image classification and annotation. Comput. Math. Appl. 66 (2013), 1920–1934, 10.1007/BF00994018.
-
(2013)
Comput. Math. Appl.
, vol.66
, pp. 1920-1934
-
-
Alham, N.K.1
Li, M.2
Liu, Y.3
Qi, M.4
-
33
-
-
84857719327
-
Cluster-oriented ensemble classifier: impact of multicluster characterization on ensemble classifier learning
-
[33] Verma, B., Rahman, A., Cluster-oriented ensemble classifier: impact of multicluster characterization on ensemble classifier learning. IEEE Trans. Knowl. Data Eng. 24:4 (2012), 605–618, 10.1109/TKDE.2011.28.
-
(2012)
IEEE Trans. Knowl. Data Eng.
, vol.24
, Issue.4
, pp. 605-618
-
-
Verma, B.1
Rahman, A.2
-
34
-
-
0028420218
-
Learning and generalization characteristics of random vector functional-link net
-
[34] Pao, Y., Park, G.H., Sobajic, D.J., Learning and generalization characteristics of random vector functional-link net. Neurocomputing 6 (1994), 163–180.
-
(1994)
Neurocomputing
, vol.6
, pp. 163-180
-
-
Pao, Y.1
Park, G.H.2
Sobajic, D.J.3
-
35
-
-
0000621802
-
Multivariable functional interpolation and adaptive networks
-
[35] Broomhead, D.S., Lowe, D., Multivariable functional interpolation and adaptive networks. Complex Syst. 2 (1988), 321–355.
-
(1988)
Complex Syst.
, vol.2
, pp. 321-355
-
-
Broomhead, D.S.1
Lowe, D.2
-
36
-
-
0035610559
-
Linguistic rule extraction from a simplified RBF neural network
-
[36] Fu, X., Wang, L.P., Linguistic rule extraction from a simplified RBF neural network. Comput. Stat. 16:3 (2001), 361–372.
-
(2001)
Comput. Stat.
, vol.16
, Issue.3
, pp. 361-372
-
-
Fu, X.1
Wang, L.P.2
-
37
-
-
24944522071
-
A simple rule extraction method using a compact RBF neural network, 2nd International Symposium on Neural Networks (ISNN 2005)
-
[37] Wang, L.P., Fu, X., A simple rule extraction method using a compact RBF neural network, 2nd International Symposium on Neural Networks (ISNN 2005). LNCS 3496 (2005), 682–687.
-
(2005)
LNCS
, vol.3496
, pp. 682-687
-
-
Wang, L.P.1
Fu, X.2
-
39
-
-
26444479778
-
Optimization by simulated annealing
-
[39] Kirkpatrick, S., Gelatt, C.D. Jr., Vecchi, M.P., Optimization by simulated annealing. Science 220:4598 (1983), 671–680.
-
(1983)
Science
, vol.220
, Issue.4598
, pp. 671-680
-
-
Kirkpatrick, S.1
Gelatt, C.D.2
Vecchi, M.P.3
-
40
-
-
84999122038
-
-
Solving channel assignment problems using local search methods and simulated annealing, Independent Component Analyses, Wavelets, Neural Networks, Biosystems, and Nanoengineering IX, a part of SPIE Defense, Security, and Sensing 8058.
-
[40] L.P. Wang, N.S.L. Sally, W.Y. Hing, Solving channel assignment problems using local search methods and simulated annealing, Independent Component Analyses, Wavelets, Neural Networks, Biosystems, and Nanoengineering IX, a part of SPIE Defense, Security, and Sensing 8058.
-
-
-
Wang, L.P.1
Sally, N.S.L.2
Hing, W.Y.3
-
41
-
-
58049180144
-
Adaptation in Natural and Artificial Systems
-
MIT Press Cambridge, MA
-
[41] Holland, J., Adaptation in Natural and Artificial Systems. 1992, MIT Press, Cambridge, MA.
-
(1992)
-
-
Holland, J.1
-
42
-
-
0036968991
-
Genetic algorithms for optimal channel assignments in mobile communications
-
[42] Wang, L.P., Li, S., Lay, S.C., Yu, W.H., Wan, C., Genetic algorithms for optimal channel assignments in mobile communications. Neural Network World 12:6 (2002), 599–619.
-
(2002)
Neural Network World
, vol.12
, Issue.6
, pp. 599-619
-
-
Wang, L.P.1
Li, S.2
Lay, S.C.3
Yu, W.H.4
Wan, C.5
-
43
-
-
85180619384
-
-
Intelligent trading using support vector regression and multilayer perceptrons optimized with genetic algorithms, The 2010 International Joint Conference on Neural Networks (IJCNN 2010)
-
[43] M. Zhu, L.P. Wang, Intelligent trading using support vector regression and multilayer perceptrons optimized with genetic algorithms, The 2010 International Joint Conference on Neural Networks (IJCNN 2010), 2010, pp. 1–5.
-
(2010)
, pp. 1-5
-
-
Zhu, M.1
Wang, L.P.2
-
44
-
-
27144467749
-
FPGA segmented channel routing using genetic algorithms
-
[44] Wang, L.P., Zhou, L., Liu, W., FPGA segmented channel routing using genetic algorithms. IEEE Congr. Evol. Comput. (CEC 2005) 3 (2005), 2161–2165.
-
(2005)
IEEE Congr. Evol. Comput. (CEC 2005)
, vol.3
, pp. 2161-2165
-
-
Wang, L.P.1
Zhou, L.2
Liu, W.3
-
45
-
-
84999212818
-
-
Optimization, learning and natural algorithms, PhD thesis, Politecnico di Milano, Italy.
-
[45] M. Dorigo, Optimization, learning and natural algorithms, PhD thesis, Politecnico di Milano, Italy.
-
-
-
Dorigo, M.1
-
46
-
-
57649200797
-
Ant colony optimization for the travelling salesman problem based on ants with memory
-
[46] B. Li, L.P. Wang, S. Wu, Ant colony optimization for the travelling salesman problem based on ants with memory, in: Proc. 4th International Conference on Natural Computation (ICNC 2008) 7, 2008, pp. 496–501.
-
(2008)
Proc. 4th International Conference on Natural Computation (ICNC 2008)
, vol.7
, pp. 496-501
-
-
Li, B.1
Wang, L.P.2
Wu, S.3
-
49
-
-
67650486657
-
-
IEEE Swarm Intelligence Symposium (SIS).
-
[49] X. Fu, S. Lim, L.P. Wang, G. Lee, S. Ma, L. Wong, G. Xiao, Key node selection for containing infectious disease spread using particle swarm optimization, IEEE Swarm Intelligence Symposium (SIS 2009).
-
(2009)
Key node selection for containing infectious disease spread using particle swarm optimization
-
-
Fu, X.1
Lim, S.2
Wang, L.P.3
Lee, G.4
Ma, S.5
Wong, L.6
Xiao, G.7
-
50
-
-
0000842164
-
A neural-network model as a globally coupled map and applications based on chaos
-
[50] Nozawa, H., A neural-network model as a globally coupled map and applications based on chaos. Chaos 2:3 (1992), 377–386.
-
(1992)
Chaos
, vol.2
, Issue.3
, pp. 377-386
-
-
Nozawa, H.1
-
51
-
-
0028824103
-
Chaotic simulated annealing by a neural network model with transient chaos
-
[51] Chen, L., Aihara, K., Chaotic simulated annealing by a neural network model with transient chaos. Neural Networks 8:6 (1995), 915–930.
-
(1995)
Neural Networks
, vol.8
, Issue.6
, pp. 915-930
-
-
Chen, L.1
Aihara, K.2
-
52
-
-
0022865373
-
Future paths for integer programming and links to artificial intelligence
-
[52] Glover, F., Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13:5 (1986), 533–549.
-
(1986)
Comput. Oper. Res.
, vol.13
, Issue.5
, pp. 533-549
-
-
Glover, F.1
-
53
-
-
1842843748
-
Broadcast scheduling in packet radio networks using mixed tabu-greedy algorithm
-
[53] Peng, Y., Soong, B.H., Wang, L.P., Broadcast scheduling in packet radio networks using mixed tabu-greedy algorithm. Electron. Lett. 40:6 (2004), 375–376.
-
(2004)
Electron. Lett.
, vol.40
, Issue.6
, pp. 375-376
-
-
Peng, Y.1
Soong, B.H.2
Wang, L.P.3
-
54
-
-
4844223110
-
A noisy chaotic neural network for solving combinatorial optimization problems: stochastic chaotic simulated annealing
-
[54] Wang, L.P., Li, S., Tian, F., Fu, X., A noisy chaotic neural network for solving combinatorial optimization problems: stochastic chaotic simulated annealing. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34:5 (2004), 2119–2125.
-
(2004)
IEEE Trans. Syst. Man Cybern. Part B Cybern.
, vol.34
, Issue.5
, pp. 2119-2125
-
-
Wang, L.P.1
Li, S.2
Tian, F.3
Fu, X.4
-
55
-
-
40949105299
-
Noisy chaotic neural networks with variable thresholds for the frequency assignment problem in satellite communications
-
[55] Wang, L.P., Liu, W., Shi, H., Noisy chaotic neural networks with variable thresholds for the frequency assignment problem in satellite communications. IEEE Trans. Syst. Man Cybern. Part B Cybern. 38:2 (2008), 209–217.
-
(2008)
IEEE Trans. Syst. Man Cybern. Part B Cybern.
, vol.38
, Issue.2
, pp. 209-217
-
-
Wang, L.P.1
Liu, W.2
Shi, H.3
-
56
-
-
0032121571
-
On chaotic simulated annealing
-
[56] Wang, L.P., Smith, K., On chaotic simulated annealing. IEEE Trans. Neural Networks 9:4 (1998), 716–718.
-
(1998)
IEEE Trans. Neural Networks
, vol.9
, Issue.4
, pp. 716-718
-
-
Wang, L.P.1
Smith, K.2
-
57
-
-
0001173632
-
An automatic method of solving discrete programming problems
-
[57] Land, A.H., Doig, A.G., An automatic method of solving discrete programming problems. Econometrica 28:3 (1960), 497–520.
-
(1960)
Econometrica
, vol.28
, Issue.3
, pp. 497-520
-
-
Land, A.H.1
Doig, A.G.2
-
59
-
-
0024895461
-
A note on genetic algorithms for large-scale feature selection
-
[59] Siedlecki, W., Sklansky, J., A note on genetic algorithms for large-scale feature selection. Pattern Recogn. Lett. 10 (1989), 335–347.
-
(1989)
Pattern Recogn. Lett.
, vol.10
, pp. 335-347
-
-
Siedlecki, W.1
Sklansky, J.2
-
60
-
-
0036665658
-
A hybrid approach to input selection for complex processes
-
[60] Xiong, N., A hybrid approach to input selection for complex processes. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 32:4 (2002), 532–536, 10.1109/TSMCA.2002.804786.
-
(2002)
IEEE Trans. Syst. Man Cybern. Part A Syst. Hum.
, vol.32
, Issue.4
, pp. 532-536
-
-
Xiong, N.1
-
61
-
-
0034878156
-
Rule extraction by genetic algorithms based on a simplified RBF neural network
-
(CEC 2001).
-
[61] X. Fu, L.P. Wang, Rule extraction by genetic algorithms based on a simplified RBF neural network, in: Proceedings of the 2001 Congress on Evolutionary Computation (CEC 2001), 2001, 753–758.
-
(2001)
Proceedings of the 2001 Congress on Evolutionary Computation
, pp. 753-758
-
-
Fu, X.1
Wang, L.P.2
-
64
-
-
84875379330
-
Classifying subtypes of acute lymphoblastic leukemia using silhouette statistics and genetic algorithms
-
doi: URL
-
[64] Lin, T.-C., Liu, R.-S., Chao, Y.-T., Chen, S.-Y., Classifying subtypes of acute lymphoblastic leukemia using silhouette statistics and genetic algorithms. Gene 518:1 (2013), 159–163 doi: 10.1016/j.gene.2012.11.046. URL http://www.sciencedirect.com/science/article/pii/S0378111912014679.
-
(2013)
Gene
, vol.518
, Issue.1
, pp. 159-163
-
-
Lin, T.-C.1
Liu, R.-S.2
Chao, Y.-T.3
Chen, S.-Y.4
-
65
-
-
84951911221
-
Yamipred: a novel evolutionary method for predicting pre-mirnas and selecting relevant features
-
[65] Kleftogiannis, D., Theofilatos, K., Likothanassis, S., Mavroudi, S., Yamipred: a novel evolutionary method for predicting pre-mirnas and selecting relevant features. IEEE/ACM Trans. Comput. Biol. Bioinf. 12:5 (2015), 1183–1192, 10.1109/TCBB.2014.2388227.
-
(2015)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.12
, Issue.5
, pp. 1183-1192
-
-
Kleftogiannis, D.1
Theofilatos, K.2
Likothanassis, S.3
Mavroudi, S.4
-
66
-
-
79957588056
-
Peak tree: a new tool for multiscale hierarchical representation and peak detection of mass spectrometry data
-
[66] Zhang, P., Li, H., Wang, H., Stephen, W., Zhou, X., Peak tree: a new tool for multiscale hierarchical representation and peak detection of mass spectrometry data. IEEE/ACM Trans. Comput. Biol. Bioinf. 8:4 (2011), 1054–1066, 10.1109/TCBB.2009.56.
-
(2011)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.8
, Issue.4
, pp. 1054-1066
-
-
Zhang, P.1
Li, H.2
Wang, H.3
Stephen, W.4
Zhou, X.5
-
67
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
[67] Guyon, I., Weston, J., Barnhill, S., Vapnik, V., Gene selection for cancer classification using support vector machines. Mach. Learn. 46 (2002), 389–422.
-
(2002)
Mach. Learn.
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
68
-
-
84944888932
-
A feature selection method for prediction essential protein
-
[68] Zhong, J., Wang, J., Peng, W., Zhang, Z., Li, M., A feature selection method for prediction essential protein. Tsinghua Sci. Technol. 20:5 (2015), 491–499, 10.1109/TST.2015.7297748.
-
(2015)
Tsinghua Sci. Technol.
, vol.20
, Issue.5
, pp. 491-499
-
-
Zhong, J.1
Wang, J.2
Peng, W.3
Zhang, Z.4
Li, M.5
-
69
-
-
22944485061
-
Semisupervised learning for molecular profiling
-
[69] Furlanello, C., Serafini, M., Merler, S., Jurman, G., Semisupervised learning for molecular profiling. IEEE/ACM Trans. Comput. Biol. Bioinf. 2:2 (2005), 110–118, 10.1109/TCBB.2005.28.
-
(2005)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.2
, Issue.2
, pp. 110-118
-
-
Furlanello, C.1
Serafini, M.2
Merler, S.3
Jurman, G.4
-
70
-
-
26644466101
-
Multiple SVM-RFE for gene selection in cancer classification with expression data
-
[70] Duan, K.-B., Rajapakse, J.C., Wang, H., Azuaje, F., Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE Trans. Nanobiosci. 4:3 (2005), 228–234, 10.1109/TNB.2005.853657.
-
(2005)
IEEE Trans. Nanobiosci.
, vol.4
, Issue.3
, pp. 228-234
-
-
Duan, K.-B.1
Rajapakse, J.C.2
Wang, H.3
Azuaje, F.4
-
71
-
-
85030413794
-
Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis
-
[71] Tang, Y., Zhang, Y.Q., Huang, Z., Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis. IEEE/ACM Trans. Comput. Biol. Bioinf. 4:3 (2007), 365–381, 10.1109/TCBB.2007.70224.
-
(2007)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.4
, Issue.3
, pp. 365-381
-
-
Tang, Y.1
Zhang, Y.Q.2
Huang, Z.3
-
72
-
-
34250676530
-
Recursive cluster elimination (RCE) for classification and feature selection from gene expression data
-
[72] Yousef, M., Jung, S., Showe, L., Showe, M., Recursive cluster elimination (RCE) for classification and feature selection from gene expression data. BMC Bioinf., 8, 2007, 144.
-
(2007)
BMC Bioinf.
, vol.8
, pp. 144
-
-
Yousef, M.1
Jung, S.2
Showe, L.3
Showe, M.4
-
73
-
-
78449295269
-
Improving the computational efficiency of recursive cluster elimination for gene selection
-
[73] Luo, L.K., Huang, D.F., Ye, L.J., Zhou, Q.F., Shao, G.F., Peng, H., Improving the computational efficiency of recursive cluster elimination for gene selection. IEEE/ACM Trans. Comput. Biol. Bioinf. 8:1 (2011), 122–129, 10.1109/TCBB.2010.44.
-
(2011)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.8
, Issue.1
, pp. 122-129
-
-
Luo, L.K.1
Huang, D.F.2
Ye, L.J.3
Zhou, Q.F.4
Shao, G.F.5
Peng, H.6
-
74
-
-
80052889367
-
Recipe for uncovering predictive genes using support vector machines based on model population analysis
-
[74] Li, H.D., Liang, Y.Z., Xu, Q.S., Cao, D.S., Tan, B.B., Deng, B.C., Lin, C.C., Recipe for uncovering predictive genes using support vector machines based on model population analysis. IEEE/ACM Trans. Comput. Biol. Bioinf. 8:6 (2011), 1633–1641, 10.1109/TCBB.2011.36.
-
(2011)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.8
, Issue.6
, pp. 1633-1641
-
-
Li, H.D.1
Liang, Y.Z.2
Xu, Q.S.3
Cao, D.S.4
Tan, B.B.5
Deng, B.C.6
Lin, C.C.7
-
75
-
-
84892457142
-
Prediction of protein structure classes using hybrid space of multi-profile bayes and bi-gram probability feature spaces
-
[75] Hayat, M., Tahir, M., Khan, S.A., Prediction of protein structure classes using hybrid space of multi-profile bayes and bi-gram probability feature spaces. J. Theor. Biol. 346 (2014), 8–15, 10.1016/j.jtbi.2013.12.015 URL.http://www.sciencedirect.com/science/article/pii/S0022519313005663.
-
(2014)
J. Theor. Biol.
, vol.346
, pp. 8-15
-
-
Hayat, M.1
Tahir, M.2
Khan, S.A.3
-
76
-
-
34248330399
-
A blocking strategy to improve gene selection for classification of gene expression data
-
[76] Bontempi, G., A blocking strategy to improve gene selection for classification of gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinf. 4:2 (2007), 293–300, 10.1109/TCBB.2007.1014.
-
(2007)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.4
, Issue.2
, pp. 293-300
-
-
Bontempi, G.1
-
77
-
-
79960901512
-
Using kernel alignment to select features of molecular descriptors in a QSAR study
-
[77] Wong, W.W.L., Burkowski, F.J., Using kernel alignment to select features of molecular descriptors in a QSAR study. IEEE/ACM Trans. Comput. Biol. Bioinf. 8:5 (2011), 1373–1384, 10.1109/TCBB.2011.31.
-
(2011)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.8
, Issue.5
, pp. 1373-1384
-
-
Wong, W.W.L.1
Burkowski, F.J.2
-
78
-
-
84880470617
-
Automatic identification and classification of noun argument structures in biomedical literature
-
[78] Ozyurt, I.B., Automatic identification and classification of noun argument structures in biomedical literature. IEEE/ACM Trans. Comput. Biol. Bioinf. 9:6 (2012), 1639–1648, 10.1109/TCBB.2012.111.
-
(2012)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.9
, Issue.6
, pp. 1639-1648
-
-
Ozyurt, I.B.1
-
79
-
-
79952826133
-
Cancer classification from gene expression data by NPPC ensemble
-
[79] Ghorai, S., Mukherjee, A., Sengupta, S., Dutta, P.K., Cancer classification from gene expression data by NPPC ensemble. IEEE/ACM Trans. Comput. Biol. Bioinf. 8:3 (2011), 659–671, 10.1109/TCBB.2010.36.
-
(2011)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.8
, Issue.3
, pp. 659-671
-
-
Ghorai, S.1
Mukherjee, A.2
Sengupta, S.3
Dutta, P.K.4
-
80
-
-
84906265689
-
Feature selection in life science classification: metaheuristic swarm search
-
[80] Fong, S., Deb, S., Yang, X.S., Li, J., Feature selection in life science classification: metaheuristic swarm search. IT Prof. 16:4 (2014), 24–29, 10.1109/MITP.2014.50.
-
(2014)
IT Prof.
, vol.16
, Issue.4
, pp. 24-29
-
-
Fong, S.1
Deb, S.2
Yang, X.S.3
Li, J.4
-
81
-
-
80052871516
-
Combined feature selection and cancer prognosis using support vector machine regression
-
[81] Sun, B.Y., Zhu, Z.H., Li, J., Linghu, B., Combined feature selection and cancer prognosis using support vector machine regression. IEEE/ACM Trans. Comput. Biol. Bioinf. 8:6 (2011), 1671–1677, 10.1109/TCBB.2010.119.
-
(2011)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.8
, Issue.6
, pp. 1671-1677
-
-
Sun, B.Y.1
Zhu, Z.H.2
Li, J.3
Linghu, B.4
-
82
-
-
30044438683
-
Combined SVM-based feature selection and classification
-
[82] Neumann, J., Schnorr, C., Steidl, G., Combined SVM-based feature selection and classification. Mach. Learn. 61:1–3 (2005), 129–150.
-
(2005)
Mach. Learn.
, vol.61
, Issue.1-3
, pp. 129-150
-
-
Neumann, J.1
Schnorr, C.2
Steidl, G.3
-
83
-
-
38849091390
-
Hybrid huberized support vector machines for microarray classification and gene selection
-
[83] Wang, L., Zhu, J., Zou, H., Hybrid huberized support vector machines for microarray classification and gene selection. Bioinformatics 24:3 (2008), 412–419.
-
(2008)
Bioinformatics
, vol.24
, Issue.3
, pp. 412-419
-
-
Wang, L.1
Zhu, J.2
Zou, H.3
-
84
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
[84] Zou, H., Hastie, T., Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67 (2005), 301–320.
-
(2005)
J. R. Stat. Soc. B
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
85
-
-
76849090053
-
Sparse support vector machines with LP penalty for biomarker identification
-
[85] Liu, Z., Lin, S., Tan, M., Sparse support vector machines with LP penalty for biomarker identification. IEEE/ACM Trans. Comput. Biol. Bioinf. 7:1 (2010), 100–107, 10.1109/TCBB.2008.17.
-
(2010)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.7
, Issue.1
, pp. 100-107
-
-
Liu, Z.1
Lin, S.2
Tan, M.3
-
86
-
-
84877838529
-
The support feature machine: classification with the least number of features and application to neuroimaging data
-
[86] Klement, S., Anders, S., Martinetz, T., The support feature machine: classification with the least number of features and application to neuroimaging data. Neural Comput. 25:6 (2013), 1548–1584, 10.1162/NECOa00447.
-
(2013)
Neural Comput.
, vol.25
, Issue.6
, pp. 1548-1584
-
-
Klement, S.1
Anders, S.2
Martinetz, T.3
-
87
-
-
84961148293
-
Microarray medical data classification using kernel ridge regression and modified cat swarm optimization based gene selection system
-
URL
-
[87] Mohapatra, P., Chakravarty, S., Dash, P., Microarray medical data classification using kernel ridge regression and modified cat swarm optimization based gene selection system. Swarm Evol. Comput. 28 (2016), 144–160, 10.1016/j.swevo.2016.02.002 URL http://www.sciencedirect.com/science/article/pii/S2210650216000195.
-
(2016)
Swarm Evol. Comput.
, vol.28
, pp. 144-160
-
-
Mohapatra, P.1
Chakravarty, S.2
Dash, P.3
-
88
-
-
0002619965
-
Ridge regression learning algorithm in dual variables
-
[88] C. Saunders, A. Gammerman, V. Vovk, Ridge regression learning algorithm in dual variables, in: Proceedings of the 15th International Conference on Machine Learning, ICML 98, 5, 1998, pp. 242–249.
-
(1998)
Proceedings of the 15th International Conference on Machine Learning, ICML 98
, vol.5
, pp. 242-249
-
-
Saunders, C.1
Gammerman, A.2
Vovk, V.3
-
89
-
-
34147111649
-
Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression
-
[89] An, S., Liu, W., Venkatesh, S., Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression. Pattern Recogn. 40:8 (2007), 2154–2162.
-
(2007)
Pattern Recogn.
, vol.40
, Issue.8
, pp. 2154-2162
-
-
An, S.1
Liu, W.2
Venkatesh, S.3
-
90
-
-
85136354327
-
Ridge regression and other kernels for genomic selection with r package rrBLUP
-
[90] Endelman, J.B., Ridge regression and other kernels for genomic selection with r package rrBLUP. Plant Genome 4:3 (2001), 250–255, 10.3835/plantgenome2011.08.0024.
-
(2001)
Plant Genome
, vol.4
, Issue.3
, pp. 250-255
-
-
Endelman, J.B.1
-
91
-
-
34247554394
-
Rough-fuzzy c-medoids algorithm and selection of bio-basis for amino acid sequence analysis
-
[91] Maji, P., Pal, S.K., Rough-fuzzy c-medoids algorithm and selection of bio-basis for amino acid sequence analysis. IEEE Trans. Knowl. Data Eng. 19:6 (2007), 859–872, 10.1109/TKDE.2007.190609.
-
(2007)
IEEE Trans. Knowl. Data Eng.
, vol.19
, Issue.6
, pp. 859-872
-
-
Maji, P.1
Pal, S.K.2
-
93
-
-
57049180269
-
Feature selection based on the rough set theory and expectation-maximization clustering algorithm
-
[93] Fazayeli, F., Wang, L.P., Mandziuk, J., Feature selection based on the rough set theory and expectation-maximization clustering algorithm. Rough Sets Curr. Trends Comput. LNCS 5306 (2008), 272–282.
-
(2008)
Rough Sets Curr. Trends Comput. LNCS
, vol.5306
, pp. 272-282
-
-
Fazayeli, F.1
Wang, L.P.2
Mandziuk, J.3
-
94
-
-
84884417982
-
On fuzzy-rough attribute selection: criteria of max-dependency, max-relevance, min-redundancy, and max-significance
-
URL
-
[94] Maji, P., Garai, P., On fuzzy-rough attribute selection: criteria of max-dependency, max-relevance, min-redundancy, and max-significance. Appl. Soft Comput. 13:9 (2013), 3968–3980, 10.1016/j.asoc.2012.09.006 URL http://www.sciencedirect.com/science/article/pii/S156849461200422X.
-
(2013)
Appl. Soft Comput.
, vol.13
, Issue.9
, pp. 3968-3980
-
-
Maji, P.1
Garai, P.2
-
95
-
-
84902009869
-
Fuzzy preference based feature selection and semisupervised svm for cancer classification
-
[95] Maulik, U., Chakraborty, D., Fuzzy preference based feature selection and semisupervised svm for cancer classification. IEEE Trans. Nanobiosci. 13:2 (2014), 152–160, 10.1109/TNB.2014.2312132.
-
(2014)
IEEE Trans. Nanobiosci.
, vol.13
, Issue.2
, pp. 152-160
-
-
Maulik, U.1
Chakraborty, D.2
-
96
-
-
84864947491
-
Gene selection using iterative feature elimination random forests for survival outcomes
-
[96] Pang, H., George, S.L., Hui, K., Tong, T., Gene selection using iterative feature elimination random forests for survival outcomes. IEEE/ACM Trans. Comput. Biol. Bioinf. 9:5 (2012), 1422–1431, 10.1109/TCBB.2012.63.
-
(2012)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.9
, Issue.5
, pp. 1422-1431
-
-
Pang, H.1
George, S.L.2
Hui, K.3
Tong, T.4
-
97
-
-
84879173899
-
Biomarker identification and cancer classification based on microarray data using laplace naive bayes model with mean shrinkage
-
[97] Wu, M.Y., Dai, D.Q., Shi, Y., Yan, H., Zhang, X.F., Biomarker identification and cancer classification based on microarray data using laplace naive bayes model with mean shrinkage. IEEE/ACM Trans. Comput. Biol. Bioinf. 9:6 (2012), 1649–1662, 10.1109/TCBB.2012.105.
-
(2012)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.9
, Issue.6
, pp. 1649-1662
-
-
Wu, M.Y.1
Dai, D.Q.2
Shi, Y.3
Yan, H.4
Zhang, X.F.5
-
98
-
-
84901378845
-
Dna copy number selection using robust structured sparsity-inducing norms
-
[98] Metsis, V., Makedon, F., Shen, D., Huang, H., Dna copy number selection using robust structured sparsity-inducing norms. IEEE/ACM Trans. Comput. Biol. Bioinf. 11:1 (2014), 168–181, 10.1109/TCBB.2013.141.
-
(2014)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.11
, Issue.1
, pp. 168-181
-
-
Metsis, V.1
Makedon, F.2
Shen, D.3
Huang, H.4
-
99
-
-
84940397274
-
Supervised variational relevance learning, an analytic geometric feature selection with applications to omic datasets
-
[99] Boareto, M., Cesar, J., Leite, V.B.P., Caticha, N., Supervised variational relevance learning, an analytic geometric feature selection with applications to omic datasets. IEEE/ACM Trans. Comput. Biol. Bioinf. 12:3 (2015), 705–711, 10.1109/TCBB.2014.2377750.
-
(2015)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.12
, Issue.3
, pp. 705-711
-
-
Boareto, M.1
Cesar, J.2
Leite, V.B.P.3
Caticha, N.4
-
100
-
-
84885171377
-
Minimax sparse logistic regression for very high-dimensional feature selection
-
[100] Tan, M., Tsang, I.W., Wang, L., Minimax sparse logistic regression for very high-dimensional feature selection. IEEE Trans. Neural Networks Learn. Syst. 24:10 (2013), 1609–1622, 10.1109/TNNLS.2013.2263427.
-
(2013)
IEEE Trans. Neural Networks Learn. Syst.
, vol.24
, Issue.10
, pp. 1609-1622
-
-
Tan, M.1
Tsang, I.W.2
Wang, L.3
-
101
-
-
84890219380
-
Feature selection and multi-kernel learning for sparse representation on a manifold
-
URL
-
[101] Wang, J.J.-Y., Bensmail, H., Gao, X., Feature selection and multi-kernel learning for sparse representation on a manifold. Neural Networks 51 (2014), 9–16, 10.1016/j.neunet.2013.11.009 URL http://www.sciencedirect.com/science/article/pii/S0893608013002736.
-
(2014)
Neural Networks
, vol.51
, pp. 9-16
-
-
Wang, J.J.-Y.1
Bensmail, H.2
Gao, X.3
-
102
-
-
84873123590
-
A scalable approach to simultaneous evolutionary instance and feature selection
-
URL
-
[102] Garcia-Pedrajas, N., de Haro-Garcia, A., Perez-Rodriguez, J., A scalable approach to simultaneous evolutionary instance and feature selection. Inf. Sci. 228 (2013), 150–174, 10.1016/j.ins.2012.10.006 URL http://www.sciencedirect.com/science/article/pii/S0020025512006718.
-
(2013)
Inf. Sci.
, vol.228
, pp. 150-174
-
-
Garcia-Pedrajas, N.1
de Haro-Garcia, A.2
Perez-Rodriguez, J.3
-
103
-
-
84861510685
-
A survey on filter techniques for feature selection in gene expression microarray analysis
-
[103] Lazar, C., Taminau, J., Meganck, S., Steenhoff, D., Coletta, A., Molter, C., de Schaetzen, V., Duque, R., Bersini, H., Nowe, A., A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Trans. Comput. Biol. Bioinf. 9:4 (2012), 1106–1119, 10.1109/TCBB.2012.33.
-
(2012)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.9
, Issue.4
, pp. 1106-1119
-
-
Lazar, C.1
Taminau, J.2
Meganck, S.3
Steenhoff, D.4
Coletta, A.5
Molter, C.6
de Schaetzen, V.7
Duque, R.8
Bersini, H.9
Nowe, A.10
-
104
-
-
84914813506
-
On the effectiveness of receptors in recognition systems
-
[104] Marill, T., Green, D., On the effectiveness of receptors in recognition systems. IEEE Trans. Inf. Theory 9 (1963), 11–17.
-
(1963)
IEEE Trans. Inf. Theory
, vol.9
, pp. 11-17
-
-
Marill, T.1
Green, D.2
-
105
-
-
0015125457
-
A direct method of nonparametric measurement selection
-
[105] Whitney, A., A direct method of nonparametric measurement selection. IEEE Trans. Comput. 20 (1971), 1100–1103.
-
(1971)
IEEE Trans. Comput.
, vol.20
, pp. 1100-1103
-
-
Whitney, A.1
-
106
-
-
0033569406
-
Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
-
[106] Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H., Loh, M., Downing, J., Caligiuri, M., Bloomfield, C., Lander, E., Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286 (1999), 531–537.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.1
Slonim, D.2
Tamayo, P.3
Huard, C.4
Gaasenbeek, M.5
Mesirov, J.6
Coller, H.7
Loh, M.8
Downing, J.9
Caligiuri, M.10
Bloomfield, C.11
Lander, E.12
-
107
-
-
0035942271
-
Significance analysis of microarrays applied to the ionizing radiation response
-
[107] Tusher, V., Tibshirani, R., Chu, G., Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. U.S.A. 98 (2001), 5116–5121.
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 5116-5121
-
-
Tusher, V.1
Tibshirani, R.2
Chu, G.3
-
108
-
-
0034927555
-
Analysis of variance for gene expression microarray data
-
[108] Kerr, M., Martin, M., Churchill, G., Analysis of variance for gene expression microarray data. J. Comput. Biol. 7 (2000), 819–837.
-
(2000)
J. Comput. Biol.
, vol.7
, pp. 819-837
-
-
Kerr, M.1
Martin, M.2
Churchill, G.3
-
109
-
-
0034911875
-
An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles
-
[109] Thomas, J.G., Olson, J.M., Tapscott, S.J., Zhao, L.P., An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Res. 11 (2001), 1227–1236.
-
(2001)
Genome Res.
, vol.11
, pp. 1227-1236
-
-
Thomas, J.G.1
Olson, J.M.2
Tapscott, S.J.3
Zhao, L.P.4
-
110
-
-
18244409687
-
Gene expression profiling predicts clinical outcome of breast cancer
-
[110] vant Veer, L.J., Dai, H., van de Vijver, M.J., He, Y.D., Hart, A.A.M., Mao, M., Peterse, H.L., van der Kooy, K., Marton, M.J., Witteveen, A.T., Schreiber, G.J., Kerkhoven, R.M., Roberts, C., Linsley, P.S., Bernards, R., Friend, S.H., Gene expression profiling predicts clinical outcome of breast cancer. Nature 415 (2002), 530–536.
-
(2002)
Nature
, vol.415
, pp. 530-536
-
-
vant Veer, L.J.1
Dai, H.2
van de Vijver, M.J.3
He, Y.D.4
Hart, A.A.M.5
Mao, M.6
Peterse, H.L.7
van der Kooy, K.8
Marton, M.J.9
Witteveen, A.T.10
Schreiber, G.J.11
Kerkhoven, R.M.12
Roberts, C.13
Linsley, P.S.14
Bernards, R.15
Friend, S.H.16
-
111
-
-
15244346245
-
Detecting differentially expressed genes by relative entropy
-
[111] Yan, X., Deng, M., Fung, W.K., Qian, M., Detecting differentially expressed genes by relative entropy. J. Theory Biol. 234 (2005), 395–402.
-
(2005)
J. Theory Biol.
, vol.234
, pp. 395-402
-
-
Yan, X.1
Deng, M.2
Fung, W.K.3
Qian, M.4
-
112
-
-
0042526388
-
The mutual information: detecting and evaluating dependencies between variables
-
[112] Steuer, R., Kurths, J., Daub, C.O., Weise, J., Selbig, J., The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18 (2002), S23–S240.
-
(2002)
Bioinformatics
, vol.18
, pp. S23-S240
-
-
Steuer, R.1
Kurths, J.2
Daub, C.O.3
Weise, J.4
Selbig, J.5
-
113
-
-
25444528240
-
An entropy-based gene selection method for cancer classification using microarray data
-
article 76
-
[113] Liu, X., Krishnan, A., Mondry, A., An entropy-based gene selection method for cancer classification using microarray data. BMC Bioinf., 6, 2005 article 76.
-
(2005)
BMC Bioinf.
, vol.6
-
-
Liu, X.1
Krishnan, A.2
Mondry, A.3
-
115
-
-
84992726552
-
Estimating attributes: Analysis and extensions of relief
-
[115] I. Kononenko, Estimating attributes: Analysis and extensions of relief, in: ECML-94, 1994, pp. 171–182.
-
(1994)
ECML-94
, pp. 171-182
-
-
Kononenko, I.1
-
116
-
-
34548108870
-
SOAP: efficient feature selection of numeric attributes
-
[116] Ruiz, R., Aguilar-Ruiz, J.S., Riquelme, J.C., SOAP: efficient feature selection of numeric attributes. IBERAMIA, 2002, 233–242.
-
(2002)
IBERAMIA
, pp. 233-242
-
-
Ruiz, R.1
Aguilar-Ruiz, J.S.2
Riquelme, J.C.3
-
117
-
-
64549099411
-
A two-stage feature selection method for gene expression data, OMICS
-
[117] Chuang, L.-Y., Ke, C.-H., Chang, H.-W., Yang, C.-H., A two-stage feature selection method for gene expression data, OMICS. J. Integr. Biol. 13 (2009), 127–137.
-
(2009)
J. Integr. Biol.
, vol.13
, pp. 127-137
-
-
Chuang, L.-Y.1
Ke, C.-H.2
Chang, H.-W.3
Yang, C.-H.4
-
118
-
-
33644875477
-
Applications of support vector machines to cancer classification with microarray data
-
[118] Chu, F., Wang, L.P., Applications of support vector machines to cancer classification with microarray data. Int. J. Neural Syst. 15:6 (2005), 475–484.
-
(2005)
Int. J. Neural Syst.
, vol.15
, Issue.6
, pp. 475-484
-
-
Chu, F.1
Wang, L.P.2
-
119
-
-
0141522834
-
Gene expression data analysis using support vector machines
-
[119] Chu, F., Wang, L.P., Gene expression data analysis using support vector machines. Proc. Int. Joint Conf. Neural Networks 2003:1 (2003), 2268–2271.
-
(2003)
Proc. Int. Joint Conf. Neural Networks
, vol.2003
, Issue.1
, pp. 2268-2271
-
-
Chu, F.1
Wang, L.P.2
-
120
-
-
84908347124
-
Comparison of feature selection methods for cross-laboratory microarray analysis
-
[120] Liu, H.C., Peng, P.C., Hsieh, T.C., Yeh, T.C., Lin, C.J., Chen, C.Y., Hou, J.Y., Shih, L.Y., Liang, D.C., Comparison of feature selection methods for cross-laboratory microarray analysis. IEEE/ACM Trans. Comput. Biol. Bioinf. 10:3 (2013), 593–604, 10.1109/TCBB.2013.70.
-
(2013)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.10
, Issue.3
, pp. 593-604
-
-
Liu, H.C.1
Peng, P.C.2
Hsieh, T.C.3
Yeh, T.C.4
Lin, C.J.5
Chen, C.Y.6
Hou, J.Y.7
Shih, L.Y.8
Liang, D.C.9
-
121
-
-
39449089088
-
Effective selection of informative SNPs and classification on the HapMap genotype data
-
[121] Zhou, N., Wang, L.P., Effective selection of informative SNPs and classification on the HapMap genotype data. BMC Bioinf., 8, 2007, 484.
-
(2007)
BMC Bioinf.
, vol.8
, pp. 484
-
-
Zhou, N.1
Wang, L.P.2
-
122
-
-
38949156621
-
A modified t-test feature selection method and its application on the HapMap genotype
-
[122] Zhou, N., Wang, L.P., A modified t-test feature selection method and its application on the HapMap genotype. Genomics Proteomics Bioinf. 5 (2007), 242–249.
-
(2007)
Genomics Proteomics Bioinf.
, vol.5
, pp. 242-249
-
-
Zhou, N.1
Wang, L.P.2
-
123
-
-
81455132651
-
Stable gene selection from microarray data via sample weighting
-
[123] Yu, L., Han, Y., Berens, M.E., Stable gene selection from microarray data via sample weighting. IEEE/ACM Trans. Comput. Biol. Bioinf. 9:1 (2012), 262–272, 10.1109/TCBB.2011.47.
-
(2012)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.9
, Issue.1
, pp. 262-272
-
-
Yu, L.1
Han, Y.2
Berens, M.E.3
-
124
-
-
79957605568
-
Two-step cross-entropy feature selection for microarrays
-
[124] Peters, T., Bulger, D.W., Loi, T.H., Yang, J.Y.H., Ma, D., Two-step cross-entropy feature selection for microarrays. IEEE/ACM Trans. Comput. Biol. Bioinf. 8:4 (2011), 1148–1151, 10.1109/TCBB.2011.30.
-
(2011)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.8
, Issue.4
, pp. 1148-1151
-
-
Peters, T.1
Bulger, D.W.2
Loi, T.H.3
Yang, J.Y.H.4
Ma, D.5
-
125
-
-
84920982609
-
Exploring robust diagnostic signatures for cutaneous melanoma utilizing genetic and imaging data
-
[125] Valavanis, I., Maglogiannis, I., Chatziioannou, A.A., Exploring robust diagnostic signatures for cutaneous melanoma utilizing genetic and imaging data. IEEE J. Biomed. Health Inf. 19:1 (2015), 190–198, 10.1109/JBHI.2014.2336617.
-
(2015)
IEEE J. Biomed. Health Inf.
, vol.19
, Issue.1
, pp. 190-198
-
-
Valavanis, I.1
Maglogiannis, I.2
Chatziioannou, A.A.3
-
126
-
-
84872371833
-
Multi objective SNP selection using pareto optimality
-
URL
-
[126] Gumus, E., Gormez, Z., Kursun, O., Multi objective SNP selection using pareto optimality. Comput. Biol. Chem. 43 (2013), 23–28, 10.1016/j.compbiolchem.2012.12.006 URL http://www.sciencedirect.com/science/article/pii/S1476927112001156.
-
(2013)
Comput. Biol. Chem.
, vol.43
, pp. 23-28
-
-
Gumus, E.1
Gormez, Z.2
Kursun, O.3
-
127
-
-
84940462014
-
Feature selection using joint mutual information maximisation
-
URL
-
[127] Bennasar, M., Hicks, Y., Setchi, R., Feature selection using joint mutual information maximisation. Expert Syst. Appl. 42:22 (2015), 8520–8532, 10.1016/j.eswa.2015.07.007 URL http://www.sciencedirect.com/science/article/pii/S0957417415004674.
-
(2015)
Expert Syst. Appl.
, vol.42
, Issue.22
, pp. 8520-8532
-
-
Bennasar, M.1
Hicks, Y.2
Setchi, R.3
-
128
-
-
84875679383
-
f -information measures for efficient selection of discriminative genes from microarray data
-
[128] Maji, P., f -information measures for efficient selection of discriminative genes from microarray data. IEEE Trans. Biomed. Eng. 56:4 (2009), 1063–1069, 10.1109/TBME.2008.2004502.
-
(2009)
IEEE Trans. Biomed. Eng.
, vol.56
, Issue.4
, pp. 1063-1069
-
-
Maji, P.1
-
129
-
-
84962028276
-
Identification of glucose-binding pockets in human serum albumin using support vector machine and molecular dynamics simulations
-
[129] Ranganarayanan, P., Thanigesan, N., Ananth, V., Jayaraman, V.K., Ramakrishnan, V., Identification of glucose-binding pockets in human serum albumin using support vector machine and molecular dynamics simulations. IEEE/ACM Trans. Comput. Biol. Bioinf. 13:1 (2016), 148–157, 10.1109/TCBB.2015.2415806.
-
(2016)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.13
, Issue.1
, pp. 148-157
-
-
Ranganarayanan, P.1
Thanigesan, N.2
Ananth, V.3
Jayaraman, V.K.4
Ramakrishnan, V.5
-
130
-
-
79551658300
-
Data mining on dna sequences of hepatitis B virus
-
[130] Leung, K., Lee, K., Wang, J., Ng, E.Y., Chan, H.L., Tsui, S.K., Mok, T.S., Tse, P.C.H., Sung, J.J., Data mining on dna sequences of hepatitis B virus. IEEE/ACM Trans. Comput. Biol. Bioinf. 8:2 (2011), 428–440, 10.1109/TCBB.2009.6.
-
(2011)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.8
, Issue.2
, pp. 428-440
-
-
Leung, K.1
Lee, K.2
Wang, J.3
Ng, E.Y.4
Chan, H.L.5
Tsui, S.K.6
Mok, T.S.7
Tse, P.C.H.8
Sung, J.J.9
-
131
-
-
84938695243
-
Prediction of human disease-associated phosphorylation sites with combined feature selection approach and support vector machine
-
[131] Xu, X., Li, A., Wang, M., Prediction of human disease-associated phosphorylation sites with combined feature selection approach and support vector machine. IET Syst. Biol. 9:4 (2015), 155–163, 10.1049/iet-syb.2014.0051.
-
(2015)
IET Syst. Biol.
, vol.9
, Issue.4
, pp. 155-163
-
-
Xu, X.1
Li, A.2
Wang, M.3
-
132
-
-
17644384367
-
Minimum redundancy feature selection from microarray gene expression data
-
[132] Zhou, N., Wang, L.P., Minimum redundancy feature selection from microarray gene expression data. J. Bioinf. Comput. Biol. 3:2 (2005), 185–205.
-
(2005)
J. Bioinf. Comput. Biol.
, vol.3
, Issue.2
, pp. 185-205
-
-
Zhou, N.1
Wang, L.P.2
-
133
-
-
79955564229
-
Prediction of GABAA receptor proteins using the concept of chou's pseudo-amino acid composition and support vector machine
-
URL
-
[133] Mohabatkar, H., Beigi, M.M., Esmaeili, A., Prediction of GABAA receptor proteins using the concept of chou's pseudo-amino acid composition and support vector machine. J. Theory Biol. 281:1 (2011), 18–23, 10.1016/j.jtbi.2011.04.017 URL http://www.sciencedirect.com/science/article/pii/S0022519311002177.
-
(2011)
J. Theory Biol.
, vol.281
, Issue.1
, pp. 18-23
-
-
Mohabatkar, H.1
Beigi, M.M.2
Esmaeili, A.3
-
134
-
-
84941563168
-
Feature selection via global redundancy minimization
-
[134] Wang, D., Nie, F., Huang, H., Feature selection via global redundancy minimization. IEEE Trans. Knowl. Data Eng. 27:10 (2015), 2743–2755, 10.1109/TKDE.2015.2426703.
-
(2015)
IEEE Trans. Knowl. Data Eng.
, vol.27
, Issue.10
, pp. 2743-2755
-
-
Wang, D.1
Nie, F.2
Huang, H.3
-
135
-
-
34249989677
-
Feature selection and combination criteria for improving accuracy in protein structure prediction
-
[135] Lin, K.L., Lin, C.Y., Huang, C.D., Chang, H.M., Yang, C.Y., Lin, C.T., Tang, C.Y., Hsu, D.F., Feature selection and combination criteria for improving accuracy in protein structure prediction. IEEE Trans. Nanobiosci. 6:2 (2007), 186–196, 10.1109/TNB.2007.897482.
-
(2007)
IEEE Trans. Nanobiosci.
, vol.6
, Issue.2
, pp. 186-196
-
-
Lin, K.L.1
Lin, C.Y.2
Huang, C.D.3
Chang, H.M.4
Yang, C.Y.5
Lin, C.T.6
Tang, C.Y.7
Hsu, D.F.8
-
136
-
-
33744476702
-
Combining feature selection and DTW for time-varying functional genomics
-
[136] Furlanello, C., Merler, S., Jurman, G., Combining feature selection and DTW for time-varying functional genomics. IEEE Trans. Signal Process. 54:6 (2006), 2436–2443, 10.1109/TSP.2006.873715.
-
(2006)
IEEE Trans. Signal Process.
, vol.54
, Issue.6
, pp. 2436-2443
-
-
Furlanello, C.1
Merler, S.2
Jurman, G.3
-
137
-
-
84958050471
-
Robust and stable gene selection via maximum-minimum correntropy criterion
-
URL
-
[137] Mohammadi, M., Noghabi, H.S., Hodtani, G.A., Mashhadi, H.R., Robust and stable gene selection via maximum-minimum correntropy criterion. Genomics 107:2-3 (2016), 83–87, 10.1016/j.ygeno.2015.12.006 URL http://www.sciencedirect.com/science/article/pii/S0888754315300495.
-
(2016)
Genomics
, vol.107
, Issue.2-3
, pp. 83-87
-
-
Mohammadi, M.1
Noghabi, H.S.2
Hodtani, G.A.3
Mashhadi, H.R.4
-
138
-
-
84899479205
-
A feature selection technique for inference of graphs from their known topological properties: revealing scale-free gene regulatory networks
-
URL
-
[138] Lopes, F.M., Martins, D.C. Jr., Barrera, J., Cesar, R.M. Jr., A feature selection technique for inference of graphs from their known topological properties: revealing scale-free gene regulatory networks. Inf. Sci. 272 (2014), 1–15, 10.1016/j.ins.2014.02.096 URL http://www.sciencedirect.com/science/article/pii/S0020025514002023.
-
(2014)
Inf. Sci.
, vol.272
, pp. 1-15
-
-
Lopes, F.M.1
Martins, D.C.2
Barrera, J.3
Cesar, R.M.4
-
139
-
-
84861507613
-
A new unsupervised feature ranking method for gene expression data based on consensus affinity
-
[139] Zhang, S., Wong, H.S., Shen, Y., Xie, D., A new unsupervised feature ranking method for gene expression data based on consensus affinity. IEEE/ACM Trans. Comput. Biol. Bioinf. 9:4 (2012), 1257–1263, 10.1109/TCBB.2012.34.
-
(2012)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.9
, Issue.4
, pp. 1257-1263
-
-
Zhang, S.1
Wong, H.S.2
Shen, Y.3
Xie, D.4
-
140
-
-
33847753038
-
Accurate cancer classification using expressions of very few genes
-
[140] Wang, L.P., Chu, F., Xie, W., Accurate cancer classification using expressions of very few genes. IEEE-ACM Trans. Comput. Biol. Bioinf. 4 (2007), 40–53.
-
(2007)
IEEE-ACM Trans. Comput. Biol. Bioinf.
, vol.4
, pp. 40-53
-
-
Wang, L.P.1
Chu, F.2
Xie, W.3
-
141
-
-
84892415597
-
Multiobjective binary biogeography based optimization for feature selection using gene expression data
-
[141] Li, X., Yin, M., Multiobjective binary biogeography based optimization for feature selection using gene expression data. IEEE Trans. Nanobiosci. 12:4 (2013), 343–353, 10.1109/TNB.2013.2294716.
-
(2013)
IEEE Trans. Nanobiosci.
, vol.12
, Issue.4
, pp. 343-353
-
-
Li, X.1
Yin, M.2
-
142
-
-
84866484354
-
SNP selection and classification of genome-wide SNP data using stratified sampling random forests
-
[142] Wu, Q., Ye, Y., Liu, Y., Ng, M.K., SNP selection and classification of genome-wide SNP data using stratified sampling random forests. IEEE Trans. Nanobiosci. 11:3 (2012), 216–227, 10.1109/TNB.2012.2214232.
-
(2012)
IEEE Trans. Nanobiosci.
, vol.11
, Issue.3
, pp. 216-227
-
-
Wu, Q.1
Ye, Y.2
Liu, Y.3
Ng, M.K.4
-
143
-
-
84962006762
-
Hybrid framework using multiple-filters and an embedded approach for an efficient selection and classification of microarray data
-
[143] Bonilla-Huerta, E., Hernandez-Montiel, A., Morales-Caporal, R., Arjona-Lopez, M., Hybrid framework using multiple-filters and an embedded approach for an efficient selection and classification of microarray data. IEEE/ACM Trans. Comput. Biol. Bioinf. 13:1 (2016), 12–26, 10.1109/TCBB.2015.2474384.
-
(2016)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.13
, Issue.1
, pp. 12-26
-
-
Bonilla-Huerta, E.1
Hernandez-Montiel, A.2
Morales-Caporal, R.3
Arjona-Lopez, M.4
-
144
-
-
84919480554
-
Network-based methods to identify highly discriminating subsets of biomarkers
-
[144] Sajjadi, S.J., Qian, X., Zeng, B., Adl, A.A., Network-based methods to identify highly discriminating subsets of biomarkers. IEEE/ACM Trans. Comput. Biol. Bioinf. 11:6 (2014), 1029–1037, 10.1109/TCBB.2014.2325014.
-
(2014)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.11
, Issue.6
, pp. 1029-1037
-
-
Sajjadi, S.J.1
Qian, X.2
Zeng, B.3
Adl, A.A.4
-
145
-
-
33746600352
-
An efficient semi-unsupervised gene selection method via spectral biclustering
-
[145] Liu, B., Wan, C., Wang, L.P., An efficient semi-unsupervised gene selection method via spectral biclustering. IEEE Trans. Nano Biosci. 5 (2006), 110–114.
-
(2006)
IEEE Trans. Nano Biosci.
, vol.5
, pp. 110-114
-
-
Liu, B.1
Wan, C.2
Wang, L.P.3
-
146
-
-
84963811950
-
A class-information-based sparse component analysis method to identify differentially expressed genes on RNA-Seq data
-
[146] Liu, J.X., Xu, Y., Gao, Y.L., Zheng, C.H., Wang, D., Zhu, Q., A class-information-based sparse component analysis method to identify differentially expressed genes on RNA-Seq data. IEEE/ACM Trans. Comput. Biol. Bioinf. 13:2 (2016), 392–398, 10.1109/TCBB.2015.2440265.
-
(2016)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.13
, Issue.2
, pp. 392-398
-
-
Liu, J.X.1
Xu, Y.2
Gao, Y.L.3
Zheng, C.H.4
Wang, D.5
Zhu, Q.6
-
147
-
-
78449275826
-
A weighted principal component analysis and its application to gene expression data
-
[147] da Costa, J.F.P., Alonso, H., Roque, L., A weighted principal component analysis and its application to gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinf. 8:1 (2011), 246–252, 10.1109/TCBB.2009.61.
-
(2011)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.8
, Issue.1
, pp. 246-252
-
-
da Costa, J.F.P.1
Alonso, H.2
Roque, L.3
-
148
-
-
84939152479
-
RPCA-based tumor classification using gene expression data
-
[148] Liu, J.X., Xu, Y., Zheng, C.H., Kong, H., Lai, Z.H., RPCA-based tumor classification using gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinf. 12:4 (2015), 964–970, 10.1109/TCBB.2014.2383375.
-
(2015)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.12
, Issue.4
, pp. 964-970
-
-
Liu, J.X.1
Xu, Y.2
Zheng, C.H.3
Kong, H.4
Lai, Z.H.5
-
149
-
-
75449099314
-
Laplacian linear discriminant analysis approach to unsupervised feature selection
-
[149] Niijima, S., Okuno, Y., Laplacian linear discriminant analysis approach to unsupervised feature selection. IEEE/ACM Trans. Comput. Biol. Bioinf. 6:4 (2009), 605–614, 10.1109/TCBB.2007.70257.
-
(2009)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.6
, Issue.4
, pp. 605-614
-
-
Niijima, S.1
Okuno, Y.2
-
150
-
-
80051776578
-
Tumor classification based on non-negative matrix factorization using gene expression data
-
[150] Zheng, C.H., Ng, T.Y., Zhang, L., Shiu, C.K., Wang, H.Q., Tumor classification based on non-negative matrix factorization using gene expression data. IEEE Trans. Nanobiosci. 10:2 (2011), 86–93, 10.1109/TNB.2011.2144998.
-
(2011)
IEEE Trans. Nanobiosci.
, vol.10
, Issue.2
, pp. 86-93
-
-
Zheng, C.H.1
Ng, T.Y.2
Zhang, L.3
Shiu, C.K.4
Wang, H.Q.5
-
151
-
-
84924749862
-
Nonnegative matrix factorization for the identification of emg finger movements: evaluation using matrix analysis
-
[151] Naik, G.R., Nguyen, H.T., Nonnegative matrix factorization for the identification of emg finger movements: evaluation using matrix analysis. IEEE J. Biomed. Health Inf. 19:2 (2015), 478–485, 10.1109/JBHI.2014.2326660.
-
(2015)
IEEE J. Biomed. Health Inf.
, vol.19
, Issue.2
, pp. 478-485
-
-
Naik, G.R.1
Nguyen, H.T.2
-
152
-
-
15944419638
-
Efficient quadratic regularization for expression arrays
-
[152] Hastie, T., Tibshirani, R., Efficient quadratic regularization for expression arrays. Biostatistics 5 (2004), 329–340.
-
(2004)
Biostatistics
, vol.5
, pp. 329-340
-
-
Hastie, T.1
Tibshirani, R.2
-
153
-
-
25444463295
-
Feature selection and nearest centroid classification for protein mass spectrometry
-
[153] Levner, I., Feature selection and nearest centroid classification for protein mass spectrometry. BMC Bioinf., 6, 2005, 68.
-
(2005)
BMC Bioinf.
, vol.6
, pp. 68
-
-
Levner, I.1
-
154
-
-
0036139278
-
Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GAKNN method
-
[154] Li, L., Weinberg, C., Darden, T., Pedersen, L., Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GAKNN method. Bioinformatics 17 (2001), 1131–1142.
-
(2001)
Bioinformatics
, vol.17
, pp. 1131-1142
-
-
Li, L.1
Weinberg, C.2
Darden, T.3
Pedersen, L.4
-
155
-
-
1942515279
-
Cost-sensitive learning with neural networks, ECAI 98
-
[155] M. Kukar, I. Kononenko, Cost-sensitive learning with neural networks, ECAI 98, in: 13th European Conference on Artificial Intelligence, 1998, 445–449.
-
(1998)
13th European Conference on Artificial Intelligence
, pp. 445-449
-
-
Kukar, M.1
Kononenko, I.2
-
156
-
-
37249007886
-
Introducing cost-sensitive neural networks
-
1B2.8.
-
[156] C. Wan, L.P. Wang, K.M. Ting, Introducing cost-sensitive neural networks, in: Proc. The Second International Conference on information, Communications, and Signal Processing (ICICS 99), 1999, 1B2.8.
-
(1999)
Proc. The Second International Conference on information, Communications, and Signal Processing (ICICS 99)
-
-
Wan, C.1
Wang, L.P.2
Ting, K.M.3
-
157
-
-
84964461238
-
Training rbf neural networks on unbalanced data
-
[157] X. Fu, L.P. Wang, K.S. Chua, F. Chu, Training rbf neural networks on unbalanced data, in: Proceedings of the 9th International Conference on Neural Information Processing (ICONIP 2002), 2, 2002, 1016–1020.
-
(2002)
Proceedings of the 9th International Conference on Neural Information Processing (ICONIP 2002)
, vol.2
, pp. 1016-1020
-
-
Fu, X.1
Wang, L.P.2
Chua, K.S.3
Chu, F.4
-
158
-
-
77956023732
-
Combating the small sample class imbalance problem using feature selection
-
[158] Wasikowski, M., Chen, X.W., Combating the small sample class imbalance problem using feature selection. IEEE Trans. Knowl. Data Eng. 22:10 (2010), 1388–1400, 10.1109/TKDE.2009.187.
-
(2010)
IEEE Trans. Knowl. Data Eng.
, vol.22
, Issue.10
, pp. 1388-1400
-
-
Wasikowski, M.1
Chen, X.W.2
-
159
-
-
76849086406
-
Feature selection for gene expression using model-based entropy
-
[159] Zhu, S., Wang, D., Yu, K., Li, T., Gong, Y., Feature selection for gene expression using model-based entropy. IEEE/ACM Trans. Comput. Biol. Bioinf. 7:1 (2010), 25–36, 10.1109/TCBB.2008.35.
-
(2010)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.7
, Issue.1
, pp. 25-36
-
-
Zhu, S.1
Wang, D.2
Yu, K.3
Li, T.4
Gong, Y.5
-
160
-
-
0033211104
-
Analysis of class separation and combination of class-dependent features for handwriting recognition
-
[160] Oh, I.S., Lee, J.S., Suen, C.Y., Analysis of class separation and combination of class-dependent features for handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 21 (1999), 1089–1094.
-
(1999)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.21
, pp. 1089-1094
-
-
Oh, I.S.1
Lee, J.S.2
Suen, C.Y.3
-
161
-
-
34548112057
-
Using class separation for feature analysis and combination of class-dependent features
-
[161] I.S. Oh, J.S. Lee, C.Y. Suen, Using class separation for feature analysis and combination of class-dependent features, in: Fourteenth International Conference on Pattern Recognition, vol. 1, 1998, pp. 453–455.
-
(1998)
Fourteenth International Conference on Pattern Recognition
, vol.1
, pp. 453-455
-
-
Oh, I.S.1
Lee, J.S.2
Suen, C.Y.3
-
162
-
-
84901425408
-
A GA-based novel RBF classifier with class-dependent features
-
[162] X.J. Fu, L.P. Wang, A GA-based novel RBF classifier with class-dependent features, in: 2002 Congress on Evolutionary Computation, vol. 2, 2002, pp. 1890–1894.
-
(2002)
2002 Congress on Evolutionary Computation
, vol.2
, pp. 1890-1894
-
-
Fu, X.J.1
Wang, L.P.2
-
163
-
-
0033328818
-
Class-specific features in classification
-
[163] Baggenstoss, P.M., Class-specific features in classification. IEEE Trans. Signal Process., 2002, 3428–3432.
-
(2002)
IEEE Trans. Signal Process.
, pp. 3428-3432
-
-
Baggenstoss, P.M.1
-
164
-
-
0037334364
-
The projection theorem and the class-specific method
-
[164] Baggenstoss, P.M., The projection theorem and the class-specific method. IEEE Trans. Signal Process., 2003, 672–685.
-
(2003)
IEEE Trans. Signal Process.
, pp. 672-685
-
-
Baggenstoss, P.M.1
-
165
-
-
32044432796
-
Class-specific feature polynomial classifier for pattern classification and its application to handwritten numerical recognition
-
[165] Liu, C.L., Sako, H., Class-specific feature polynomial classifier for pattern classification and its application to handwritten numerical recognition. Pattern Recogn. 39:4 (2006), 669–681.
-
(2006)
Pattern Recogn.
, vol.39
, Issue.4
, pp. 669-681
-
-
Liu, C.L.1
Sako, H.2
-
166
-
-
48949116216
-
A general wrapper approach to selection of class-dependent features
-
[166] Wang, L.P., Zhou, N., Chu, F., A general wrapper approach to selection of class-dependent features. IEEE Trans. Neural Networks 19 (2008), 1267–1278.
-
(2008)
IEEE Trans. Neural Networks
, vol.19
, pp. 1267-1278
-
-
Wang, L.P.1
Zhou, N.2
Chu, F.3
-
167
-
-
77952236398
-
Identification of full and partial class relevant genes
-
[167] Zhu, Z., Ong, Y.S., Zurada, J.M., Identification of full and partial class relevant genes. IEEE/ACM Trans. Comput. Biol. Bioinf. 7:2 (2010), 263–277, 10.1109/TCBB.2008.105.
-
(2010)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.7
, Issue.2
, pp. 263-277
-
-
Zhu, Z.1
Ong, Y.S.2
Zurada, J.M.3
-
168
-
-
84878298642
-
Multiclass gene selection using pareto-fronts
-
[168] Rajapakse, J.C., Mundra, P.A., Multiclass gene selection using pareto-fronts. IEEE/ACM Trans. Comput. Biol. Bioinf. 10:1 (2013), 87–97, 10.1109/TCBB.2013.1.
-
(2013)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.10
, Issue.1
, pp. 87-97
-
-
Rajapakse, J.C.1
Mundra, P.A.2
-
169
-
-
84890023439
-
Feature-selected tree-based classification
-
[169] Freeman, C., Kulic, D., Basir, O., Feature-selected tree-based classification. IEEE Trans. Cybern. 43:6 (2013), 1990–2004, 10.1109/TSMCB.2012.2237394.
-
(2013)
IEEE Trans. Cybern.
, vol.43
, Issue.6
, pp. 1990-2004
-
-
Freeman, C.1
Kulic, D.2
Basir, O.3
|