메뉴 건너뛰기




Volumn 111, Issue , 2016, Pages 21-31

Feature selection methods for big data bioinformatics: A survey from the search perspective

Author keywords

Biomarkers; Classification; Clustering; Computational biology; Computational intelligence; Data mining; Evolutionary algorithms; Evolutionary computation; Fuzzy logic; Genetic algorithms; Machine learning; Microarray; Neural networks; Particle swarm optimization; Pattern recognition; Random forests; Rough sets; Soft computing; Support vector machines; Swarm intelligence

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BIOINFORMATICS; CLASS INFORMATION BASED SPARSE COMPONENT ANALYSIS; CLUSTER ORIENTED ENSEMBLE CLASSIFIER; COMPARATIVE GENOMIC HYBRIDIZATION; FEATURE SELECTION METHOD; FUZZY SYSTEM; GENE REGULATORY NETWORK; GENETIC ALGORITHM; INFORMATION PROCESSING; LEAVE ONE OUT CROSS VALIDATION METHOD; LINEAR DISCRIMINANT ANALYSIS; MACHINE LEARNING; METHODOLOGY; MICROARRAY ANALYSIS; MULTI OBJECTIVE BINARY BIOGEOGRAPHY BASED BIOGEOGRAPHY; PRIORITY JOURNAL; PROCESS OPTIMIZATION; QUANTITATIVE STRUCTURE ACTIVITY RELATION; RADIAL BASIS FUNCTION; RADIAL BASIS KERNEL RIDGE REGRESSION; RANDOM FOREST; RANDOM VECTOR FUNCTIONAL LINK; REVIEW; ROBUST PRINCIPAL COMPONENT ANALYSIS; SUPPORT FEATURE MACHINE; SUPPORT VECTOR MACHINE; WAVELET KERNEL RIDGE REGRESSION; ALGORITHM; ARTIFICIAL INTELLIGENCE; BIOLOGY; DATA MINING; HUMAN; PROCEDURES; SOFTWARE; TRENDS;

EID: 84995537924     PISSN: 10462023     EISSN: 10959130     Source Type: Journal    
DOI: 10.1016/j.ymeth.2016.08.014     Document Type: Review
Times cited : (263)

References (169)
  • 1
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • [1] Saeys, Y., Inza, I., Larranaga, P., A review of feature selection techniques in bioinformatics. Bioinformatics 23 (2007), 2507–2517.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 3
    • 84866618603 scopus 로고    scopus 로고
    • Cardiovascular genomics: a biomarker identification pipeline
    • [3] Phan, J.H., Quo, C.F., Wang, M.D., Cardiovascular genomics: a biomarker identification pipeline. IEEE Trans. Inf. Technol. Biomed. 16:5 (2012), 809–822, 10.1109/TITB.2012.2199570.
    • (2012) IEEE Trans. Inf. Technol. Biomed. , vol.16 , Issue.5 , pp. 809-822
    • Phan, J.H.1    Quo, C.F.2    Wang, M.D.3
  • 4
    • 80052880887 scopus 로고    scopus 로고
    • Methods for identifying SNP interactions: a review on variations of logic regression, random forest and bayesian logistic regression
    • [4] Chen, C.C.M., Schwender, H., Keith, J., Nunkesser, R., Mengersen, K., Macrossan, P., Methods for identifying SNP interactions: a review on variations of logic regression, random forest and bayesian logistic regression. IEEE/ACM Trans. Comput. Biol. Bioinf. 8:6 (2011), 1580–1591, 10.1109/TCBB.2011.46.
    • (2011) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.8 , Issue.6 , pp. 1580-1591
    • Chen, C.C.M.1    Schwender, H.2    Keith, J.3    Nunkesser, R.4    Mengersen, K.5    Macrossan, P.6
  • 5
    • 84942612935 scopus 로고    scopus 로고
    • Machine learning applications in cancer prognosis and prediction
    • URL
    • [5] Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., Fotiadis, D.I., Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13 (2015), 8–17, 10.1016/j.csbj.2014.11.005 URL http://www.sciencedirect.com/science/article/pii/S2001037014000464.
    • (2015) Comput. Struct. Biotechnol. J. , vol.13 , pp. 8-17
    • Kourou, K.1    Exarchos, T.P.2    Exarchos, K.P.3    Karamouzis, M.V.4    Fotiadis, D.I.5
  • 6
    • 85032751958 scopus 로고    scopus 로고
    • Fads and fallacies in the name of small-sample microarray classification – a highlight of misunderstanding and erroneous usage in the applications of genomic signal processing
    • [6] Neto, U.B., Fads and fallacies in the name of small-sample microarray classification – a highlight of misunderstanding and erroneous usage in the applications of genomic signal processing. IEEE Signal Process. Mag. 24:1 (2007), 91–99, 10.1109/MSP.2007.273062.
    • (2007) IEEE Signal Process. Mag. , vol.24 , Issue.1 , pp. 91-99
    • Neto, U.B.1
  • 8
    • 84999077422 scopus 로고    scopus 로고
    • 3-d data management: Controlling data volume, velocity and variety, Application Delivery Strategies, META Group 6 February. doi:.
    • [8] D. Laney, 3-d data management: Controlling data volume, velocity and variety, Application Delivery Strategies, META Group 6 February. doi: http://goo.gl/wH3qG.
    • Laney, D.1
  • 9
    • 84902589952 scopus 로고    scopus 로고
    • Big biological impacts from big data, Science. doi:.
    • [9] M. May, Big biological impacts from big data, Science. doi: 10.1126/science.opms.p1400086.
    • May, M.1
  • 10
    • 84999238237 scopus 로고    scopus 로고
    • Beyond volume, variety and velocity is the issue of big data veracity, Inside Big Data. doi:.
    • [10] K. Normandeau, Beyond volume, variety and velocity is the issue of big data veracity, Inside Big Data. doi: http://insidebigdata.com/2013/09/12/beyond-volume-variety-velocity-issue-big-data-veracity/.
    • Normandeau, K.1
  • 13
    • 0003914835 scopus 로고    scopus 로고
    • Elements of Machine Learning
    • Morgan Kaufmann
    • [13] Langley, P., Elements of Machine Learning. 1996, Morgan Kaufmann.
    • (1996)
    • Langley, P.1
  • 15
    • 84999131733 scopus 로고    scopus 로고
    • Enhancing Learning using Feature and Example Selection
    • (Master thesis) Department of Computer Science, Texas A&M University
    • [15] George John, H., Enhancing Learning using Feature and Example Selection. (Master thesis), 2003, Department of Computer Science, Texas A&M University.
    • (2003)
    • George John, H.1
  • 16
    • 0037983742 scopus 로고    scopus 로고
    • Data dimensionality reduction with application to simplifying RBF network structure and improving classification performance
    • [16] Fu, X.J., Wang, L.P., Data dimensionality reduction with application to simplifying RBF network structure and improving classification performance. IEEE Trans. Syst. Man Cybern. Part B Cybern 33 (2003), 399–400.
    • (2003) IEEE Trans. Syst. Man Cybern. Part B Cybern , vol.33 , pp. 399-400
    • Fu, X.J.1    Wang, L.P.2
  • 17
    • 24944434066 scopus 로고    scopus 로고
    • Data Mining with Computational Intelligence
    • Springer-Verlag
    • [17] Wang, L.P., Fu, X.J., Data Mining with Computational Intelligence. 2005, Springer-Verlag.
    • (2005)
    • Wang, L.P.1    Fu, X.J.2
  • 20
    • 0029373066 scopus 로고
    • An adoptive learning algorithm for principle component analysis
    • [20] Chen, L.H., Chang, S., An adoptive learning algorithm for principle component analysis. IEEE Trans. Neural Networks 6 (1995), 1255–1263.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 1255-1263
    • Chen, L.H.1    Chang, S.2
  • 24
    • 84864144566 scopus 로고    scopus 로고
    • Conjunctive patches subspace learning with side information for collaborative image retrieval
    • [24] Zhang, L., Wang, L.P., Lin, W., Conjunctive patches subspace learning with side information for collaborative image retrieval. IEEE Trans. Image Process. 21 (2012), 3707–3720.
    • (2012) IEEE Trans. Image Process. , vol.21 , pp. 3707-3720
    • Zhang, L.1    Wang, L.P.2    Lin, W.3
  • 25
    • 84859068530 scopus 로고    scopus 로고
    • Semi-supervised biased maximum margin analysis for interactive image retrieval
    • [25] Zhang, L., Wang, L.P., Lin, W., Semi-supervised biased maximum margin analysis for interactive image retrieval. IEEE Trans. Image Process. 21 (2012), 2294–2308.
    • (2012) IEEE Trans. Image Process. , vol.21 , pp. 2294-2308
    • Zhang, L.1    Wang, L.P.2    Lin, W.3
  • 26
    • 84856275694 scopus 로고    scopus 로고
    • Generalized biased discriminant analysis for content-based image retrieval
    • [26] Zhang, L., Wang, L.P., Lin, W., Generalized biased discriminant analysis for content-based image retrieval. IEEE Trans. Syst Man Cybern. Part B: Cybern. 42 (2012), 282–290.
    • (2012) IEEE Trans. Syst Man Cybern. Part B: Cybern. , vol.42 , pp. 282-290
    • Zhang, L.1    Wang, L.P.2    Lin, W.3
  • 27
    • 84894562735 scopus 로고    scopus 로고
    • Geometric optimum experimental design for collaborative image retrieval
    • [27] Zhang, L., Wang, L.P., Lin, W., Yan, S., Geometric optimum experimental design for collaborative image retrieval. IEEE Trans. Circuits Syst. Video Technol. 24 (2014), 346–359.
    • (2014) IEEE Trans. Circuits Syst. Video Technol. , vol.24 , pp. 346-359
    • Zhang, L.1    Wang, L.P.2    Lin, W.3    Yan, S.4
  • 29
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • [29] Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 30
    • 34249753618 scopus 로고
    • Support-vector networks
    • [30] Cortes, C., Vapnik, V., Support-vector networks. Mach. Learn., 20, 1995, 273, 10.1007/BF00994018.
    • (1995) Mach. Learn. , vol.20 , pp. 273
    • Cortes, C.1    Vapnik, V.2
  • 31
    • 33845315541 scopus 로고    scopus 로고
    • Classification using support vector machines with graded resolution, IEEE International Conference on Granular Computing 2
    • [31] L.P. Wang, B. Liu, C. Wan, Classification using support vector machines with graded resolution, IEEE International Conference on Granular Computing 2, 2005, pp. 666–670.
    • (2005) , pp. 666-670
    • Wang, L.P.1    Liu, B.2    Wan, C.3
  • 32
    • 84887018720 scopus 로고    scopus 로고
    • A distributed SVM ensemble for large scale image classification and annotation
    • [32] Alham, N.K., Li, M., Liu, Y., Qi, M., A distributed SVM ensemble for large scale image classification and annotation. Comput. Math. Appl. 66 (2013), 1920–1934, 10.1007/BF00994018.
    • (2013) Comput. Math. Appl. , vol.66 , pp. 1920-1934
    • Alham, N.K.1    Li, M.2    Liu, Y.3    Qi, M.4
  • 33
    • 84857719327 scopus 로고    scopus 로고
    • Cluster-oriented ensemble classifier: impact of multicluster characterization on ensemble classifier learning
    • [33] Verma, B., Rahman, A., Cluster-oriented ensemble classifier: impact of multicluster characterization on ensemble classifier learning. IEEE Trans. Knowl. Data Eng. 24:4 (2012), 605–618, 10.1109/TKDE.2011.28.
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , Issue.4 , pp. 605-618
    • Verma, B.1    Rahman, A.2
  • 34
    • 0028420218 scopus 로고
    • Learning and generalization characteristics of random vector functional-link net
    • [34] Pao, Y., Park, G.H., Sobajic, D.J., Learning and generalization characteristics of random vector functional-link net. Neurocomputing 6 (1994), 163–180.
    • (1994) Neurocomputing , vol.6 , pp. 163-180
    • Pao, Y.1    Park, G.H.2    Sobajic, D.J.3
  • 35
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • [35] Broomhead, D.S., Lowe, D., Multivariable functional interpolation and adaptive networks. Complex Syst. 2 (1988), 321–355.
    • (1988) Complex Syst. , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 36
    • 0035610559 scopus 로고    scopus 로고
    • Linguistic rule extraction from a simplified RBF neural network
    • [36] Fu, X., Wang, L.P., Linguistic rule extraction from a simplified RBF neural network. Comput. Stat. 16:3 (2001), 361–372.
    • (2001) Comput. Stat. , vol.16 , Issue.3 , pp. 361-372
    • Fu, X.1    Wang, L.P.2
  • 37
    • 24944522071 scopus 로고    scopus 로고
    • A simple rule extraction method using a compact RBF neural network, 2nd International Symposium on Neural Networks (ISNN 2005)
    • [37] Wang, L.P., Fu, X., A simple rule extraction method using a compact RBF neural network, 2nd International Symposium on Neural Networks (ISNN 2005). LNCS 3496 (2005), 682–687.
    • (2005) LNCS , vol.3496 , pp. 682-687
    • Wang, L.P.1    Fu, X.2
  • 39
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • [39] Kirkpatrick, S., Gelatt, C.D. Jr., Vecchi, M.P., Optimization by simulated annealing. Science 220:4598 (1983), 671–680.
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 40
    • 84999122038 scopus 로고    scopus 로고
    • Solving channel assignment problems using local search methods and simulated annealing, Independent Component Analyses, Wavelets, Neural Networks, Biosystems, and Nanoengineering IX, a part of SPIE Defense, Security, and Sensing 8058.
    • [40] L.P. Wang, N.S.L. Sally, W.Y. Hing, Solving channel assignment problems using local search methods and simulated annealing, Independent Component Analyses, Wavelets, Neural Networks, Biosystems, and Nanoengineering IX, a part of SPIE Defense, Security, and Sensing 8058.
    • Wang, L.P.1    Sally, N.S.L.2    Hing, W.Y.3
  • 41
    • 58049180144 scopus 로고
    • Adaptation in Natural and Artificial Systems
    • MIT Press Cambridge, MA
    • [41] Holland, J., Adaptation in Natural and Artificial Systems. 1992, MIT Press, Cambridge, MA.
    • (1992)
    • Holland, J.1
  • 42
    • 0036968991 scopus 로고    scopus 로고
    • Genetic algorithms for optimal channel assignments in mobile communications
    • [42] Wang, L.P., Li, S., Lay, S.C., Yu, W.H., Wan, C., Genetic algorithms for optimal channel assignments in mobile communications. Neural Network World 12:6 (2002), 599–619.
    • (2002) Neural Network World , vol.12 , Issue.6 , pp. 599-619
    • Wang, L.P.1    Li, S.2    Lay, S.C.3    Yu, W.H.4    Wan, C.5
  • 43
    • 85180619384 scopus 로고    scopus 로고
    • Intelligent trading using support vector regression and multilayer perceptrons optimized with genetic algorithms, The 2010 International Joint Conference on Neural Networks (IJCNN 2010)
    • [43] M. Zhu, L.P. Wang, Intelligent trading using support vector regression and multilayer perceptrons optimized with genetic algorithms, The 2010 International Joint Conference on Neural Networks (IJCNN 2010), 2010, pp. 1–5.
    • (2010) , pp. 1-5
    • Zhu, M.1    Wang, L.P.2
  • 44
    • 27144467749 scopus 로고    scopus 로고
    • FPGA segmented channel routing using genetic algorithms
    • [44] Wang, L.P., Zhou, L., Liu, W., FPGA segmented channel routing using genetic algorithms. IEEE Congr. Evol. Comput. (CEC 2005) 3 (2005), 2161–2165.
    • (2005) IEEE Congr. Evol. Comput. (CEC 2005) , vol.3 , pp. 2161-2165
    • Wang, L.P.1    Zhou, L.2    Liu, W.3
  • 45
    • 84999212818 scopus 로고    scopus 로고
    • Optimization, learning and natural algorithms, PhD thesis, Politecnico di Milano, Italy.
    • [45] M. Dorigo, Optimization, learning and natural algorithms, PhD thesis, Politecnico di Milano, Italy.
    • Dorigo, M.1
  • 50
    • 0000842164 scopus 로고
    • A neural-network model as a globally coupled map and applications based on chaos
    • [50] Nozawa, H., A neural-network model as a globally coupled map and applications based on chaos. Chaos 2:3 (1992), 377–386.
    • (1992) Chaos , vol.2 , Issue.3 , pp. 377-386
    • Nozawa, H.1
  • 51
    • 0028824103 scopus 로고
    • Chaotic simulated annealing by a neural network model with transient chaos
    • [51] Chen, L., Aihara, K., Chaotic simulated annealing by a neural network model with transient chaos. Neural Networks 8:6 (1995), 915–930.
    • (1995) Neural Networks , vol.8 , Issue.6 , pp. 915-930
    • Chen, L.1    Aihara, K.2
  • 52
    • 0022865373 scopus 로고
    • Future paths for integer programming and links to artificial intelligence
    • [52] Glover, F., Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13:5 (1986), 533–549.
    • (1986) Comput. Oper. Res. , vol.13 , Issue.5 , pp. 533-549
    • Glover, F.1
  • 53
    • 1842843748 scopus 로고    scopus 로고
    • Broadcast scheduling in packet radio networks using mixed tabu-greedy algorithm
    • [53] Peng, Y., Soong, B.H., Wang, L.P., Broadcast scheduling in packet radio networks using mixed tabu-greedy algorithm. Electron. Lett. 40:6 (2004), 375–376.
    • (2004) Electron. Lett. , vol.40 , Issue.6 , pp. 375-376
    • Peng, Y.1    Soong, B.H.2    Wang, L.P.3
  • 54
    • 4844223110 scopus 로고    scopus 로고
    • A noisy chaotic neural network for solving combinatorial optimization problems: stochastic chaotic simulated annealing
    • [54] Wang, L.P., Li, S., Tian, F., Fu, X., A noisy chaotic neural network for solving combinatorial optimization problems: stochastic chaotic simulated annealing. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34:5 (2004), 2119–2125.
    • (2004) IEEE Trans. Syst. Man Cybern. Part B Cybern. , vol.34 , Issue.5 , pp. 2119-2125
    • Wang, L.P.1    Li, S.2    Tian, F.3    Fu, X.4
  • 55
    • 40949105299 scopus 로고    scopus 로고
    • Noisy chaotic neural networks with variable thresholds for the frequency assignment problem in satellite communications
    • [55] Wang, L.P., Liu, W., Shi, H., Noisy chaotic neural networks with variable thresholds for the frequency assignment problem in satellite communications. IEEE Trans. Syst. Man Cybern. Part B Cybern. 38:2 (2008), 209–217.
    • (2008) IEEE Trans. Syst. Man Cybern. Part B Cybern. , vol.38 , Issue.2 , pp. 209-217
    • Wang, L.P.1    Liu, W.2    Shi, H.3
  • 56
    • 0032121571 scopus 로고    scopus 로고
    • On chaotic simulated annealing
    • [56] Wang, L.P., Smith, K., On chaotic simulated annealing. IEEE Trans. Neural Networks 9:4 (1998), 716–718.
    • (1998) IEEE Trans. Neural Networks , vol.9 , Issue.4 , pp. 716-718
    • Wang, L.P.1    Smith, K.2
  • 57
    • 0001173632 scopus 로고
    • An automatic method of solving discrete programming problems
    • [57] Land, A.H., Doig, A.G., An automatic method of solving discrete programming problems. Econometrica 28:3 (1960), 497–520.
    • (1960) Econometrica , vol.28 , Issue.3 , pp. 497-520
    • Land, A.H.1    Doig, A.G.2
  • 59
    • 0024895461 scopus 로고
    • A note on genetic algorithms for large-scale feature selection
    • [59] Siedlecki, W., Sklansky, J., A note on genetic algorithms for large-scale feature selection. Pattern Recogn. Lett. 10 (1989), 335–347.
    • (1989) Pattern Recogn. Lett. , vol.10 , pp. 335-347
    • Siedlecki, W.1    Sklansky, J.2
  • 60
    • 0036665658 scopus 로고    scopus 로고
    • A hybrid approach to input selection for complex processes
    • [60] Xiong, N., A hybrid approach to input selection for complex processes. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 32:4 (2002), 532–536, 10.1109/TSMCA.2002.804786.
    • (2002) IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. , vol.32 , Issue.4 , pp. 532-536
    • Xiong, N.1
  • 61
    • 0034878156 scopus 로고    scopus 로고
    • Rule extraction by genetic algorithms based on a simplified RBF neural network
    • (CEC 2001).
    • [61] X. Fu, L.P. Wang, Rule extraction by genetic algorithms based on a simplified RBF neural network, in: Proceedings of the 2001 Congress on Evolutionary Computation (CEC 2001), 2001, 753–758.
    • (2001) Proceedings of the 2001 Congress on Evolutionary Computation , pp. 753-758
    • Fu, X.1    Wang, L.P.2
  • 64
    • 84875379330 scopus 로고    scopus 로고
    • Classifying subtypes of acute lymphoblastic leukemia using silhouette statistics and genetic algorithms
    • doi: URL
    • [64] Lin, T.-C., Liu, R.-S., Chao, Y.-T., Chen, S.-Y., Classifying subtypes of acute lymphoblastic leukemia using silhouette statistics and genetic algorithms. Gene 518:1 (2013), 159–163 doi: 10.1016/j.gene.2012.11.046. URL http://www.sciencedirect.com/science/article/pii/S0378111912014679.
    • (2013) Gene , vol.518 , Issue.1 , pp. 159-163
    • Lin, T.-C.1    Liu, R.-S.2    Chao, Y.-T.3    Chen, S.-Y.4
  • 65
    • 84951911221 scopus 로고    scopus 로고
    • Yamipred: a novel evolutionary method for predicting pre-mirnas and selecting relevant features
    • [65] Kleftogiannis, D., Theofilatos, K., Likothanassis, S., Mavroudi, S., Yamipred: a novel evolutionary method for predicting pre-mirnas and selecting relevant features. IEEE/ACM Trans. Comput. Biol. Bioinf. 12:5 (2015), 1183–1192, 10.1109/TCBB.2014.2388227.
    • (2015) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.12 , Issue.5 , pp. 1183-1192
    • Kleftogiannis, D.1    Theofilatos, K.2    Likothanassis, S.3    Mavroudi, S.4
  • 66
    • 79957588056 scopus 로고    scopus 로고
    • Peak tree: a new tool for multiscale hierarchical representation and peak detection of mass spectrometry data
    • [66] Zhang, P., Li, H., Wang, H., Stephen, W., Zhou, X., Peak tree: a new tool for multiscale hierarchical representation and peak detection of mass spectrometry data. IEEE/ACM Trans. Comput. Biol. Bioinf. 8:4 (2011), 1054–1066, 10.1109/TCBB.2009.56.
    • (2011) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.8 , Issue.4 , pp. 1054-1066
    • Zhang, P.1    Li, H.2    Wang, H.3    Stephen, W.4    Zhou, X.5
  • 67
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • [67] Guyon, I., Weston, J., Barnhill, S., Vapnik, V., Gene selection for cancer classification using support vector machines. Mach. Learn. 46 (2002), 389–422.
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 68
    • 84944888932 scopus 로고    scopus 로고
    • A feature selection method for prediction essential protein
    • [68] Zhong, J., Wang, J., Peng, W., Zhang, Z., Li, M., A feature selection method for prediction essential protein. Tsinghua Sci. Technol. 20:5 (2015), 491–499, 10.1109/TST.2015.7297748.
    • (2015) Tsinghua Sci. Technol. , vol.20 , Issue.5 , pp. 491-499
    • Zhong, J.1    Wang, J.2    Peng, W.3    Zhang, Z.4    Li, M.5
  • 70
    • 26644466101 scopus 로고    scopus 로고
    • Multiple SVM-RFE for gene selection in cancer classification with expression data
    • [70] Duan, K.-B., Rajapakse, J.C., Wang, H., Azuaje, F., Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE Trans. Nanobiosci. 4:3 (2005), 228–234, 10.1109/TNB.2005.853657.
    • (2005) IEEE Trans. Nanobiosci. , vol.4 , Issue.3 , pp. 228-234
    • Duan, K.-B.1    Rajapakse, J.C.2    Wang, H.3    Azuaje, F.4
  • 71
    • 85030413794 scopus 로고    scopus 로고
    • Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis
    • [71] Tang, Y., Zhang, Y.Q., Huang, Z., Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis. IEEE/ACM Trans. Comput. Biol. Bioinf. 4:3 (2007), 365–381, 10.1109/TCBB.2007.70224.
    • (2007) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.4 , Issue.3 , pp. 365-381
    • Tang, Y.1    Zhang, Y.Q.2    Huang, Z.3
  • 72
    • 34250676530 scopus 로고    scopus 로고
    • Recursive cluster elimination (RCE) for classification and feature selection from gene expression data
    • [72] Yousef, M., Jung, S., Showe, L., Showe, M., Recursive cluster elimination (RCE) for classification and feature selection from gene expression data. BMC Bioinf., 8, 2007, 144.
    • (2007) BMC Bioinf. , vol.8 , pp. 144
    • Yousef, M.1    Jung, S.2    Showe, L.3    Showe, M.4
  • 73
    • 78449295269 scopus 로고    scopus 로고
    • Improving the computational efficiency of recursive cluster elimination for gene selection
    • [73] Luo, L.K., Huang, D.F., Ye, L.J., Zhou, Q.F., Shao, G.F., Peng, H., Improving the computational efficiency of recursive cluster elimination for gene selection. IEEE/ACM Trans. Comput. Biol. Bioinf. 8:1 (2011), 122–129, 10.1109/TCBB.2010.44.
    • (2011) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.8 , Issue.1 , pp. 122-129
    • Luo, L.K.1    Huang, D.F.2    Ye, L.J.3    Zhou, Q.F.4    Shao, G.F.5    Peng, H.6
  • 74
    • 80052889367 scopus 로고    scopus 로고
    • Recipe for uncovering predictive genes using support vector machines based on model population analysis
    • [74] Li, H.D., Liang, Y.Z., Xu, Q.S., Cao, D.S., Tan, B.B., Deng, B.C., Lin, C.C., Recipe for uncovering predictive genes using support vector machines based on model population analysis. IEEE/ACM Trans. Comput. Biol. Bioinf. 8:6 (2011), 1633–1641, 10.1109/TCBB.2011.36.
    • (2011) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.8 , Issue.6 , pp. 1633-1641
    • Li, H.D.1    Liang, Y.Z.2    Xu, Q.S.3    Cao, D.S.4    Tan, B.B.5    Deng, B.C.6    Lin, C.C.7
  • 75
    • 84892457142 scopus 로고    scopus 로고
    • Prediction of protein structure classes using hybrid space of multi-profile bayes and bi-gram probability feature spaces
    • [75] Hayat, M., Tahir, M., Khan, S.A., Prediction of protein structure classes using hybrid space of multi-profile bayes and bi-gram probability feature spaces. J. Theor. Biol. 346 (2014), 8–15, 10.1016/j.jtbi.2013.12.015 URL.http://www.sciencedirect.com/science/article/pii/S0022519313005663.
    • (2014) J. Theor. Biol. , vol.346 , pp. 8-15
    • Hayat, M.1    Tahir, M.2    Khan, S.A.3
  • 76
    • 34248330399 scopus 로고    scopus 로고
    • A blocking strategy to improve gene selection for classification of gene expression data
    • [76] Bontempi, G., A blocking strategy to improve gene selection for classification of gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinf. 4:2 (2007), 293–300, 10.1109/TCBB.2007.1014.
    • (2007) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.4 , Issue.2 , pp. 293-300
    • Bontempi, G.1
  • 77
    • 79960901512 scopus 로고    scopus 로고
    • Using kernel alignment to select features of molecular descriptors in a QSAR study
    • [77] Wong, W.W.L., Burkowski, F.J., Using kernel alignment to select features of molecular descriptors in a QSAR study. IEEE/ACM Trans. Comput. Biol. Bioinf. 8:5 (2011), 1373–1384, 10.1109/TCBB.2011.31.
    • (2011) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.8 , Issue.5 , pp. 1373-1384
    • Wong, W.W.L.1    Burkowski, F.J.2
  • 78
    • 84880470617 scopus 로고    scopus 로고
    • Automatic identification and classification of noun argument structures in biomedical literature
    • [78] Ozyurt, I.B., Automatic identification and classification of noun argument structures in biomedical literature. IEEE/ACM Trans. Comput. Biol. Bioinf. 9:6 (2012), 1639–1648, 10.1109/TCBB.2012.111.
    • (2012) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.9 , Issue.6 , pp. 1639-1648
    • Ozyurt, I.B.1
  • 80
    • 84906265689 scopus 로고    scopus 로고
    • Feature selection in life science classification: metaheuristic swarm search
    • [80] Fong, S., Deb, S., Yang, X.S., Li, J., Feature selection in life science classification: metaheuristic swarm search. IT Prof. 16:4 (2014), 24–29, 10.1109/MITP.2014.50.
    • (2014) IT Prof. , vol.16 , Issue.4 , pp. 24-29
    • Fong, S.1    Deb, S.2    Yang, X.S.3    Li, J.4
  • 81
    • 80052871516 scopus 로고    scopus 로고
    • Combined feature selection and cancer prognosis using support vector machine regression
    • [81] Sun, B.Y., Zhu, Z.H., Li, J., Linghu, B., Combined feature selection and cancer prognosis using support vector machine regression. IEEE/ACM Trans. Comput. Biol. Bioinf. 8:6 (2011), 1671–1677, 10.1109/TCBB.2010.119.
    • (2011) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.8 , Issue.6 , pp. 1671-1677
    • Sun, B.Y.1    Zhu, Z.H.2    Li, J.3    Linghu, B.4
  • 82
    • 30044438683 scopus 로고    scopus 로고
    • Combined SVM-based feature selection and classification
    • [82] Neumann, J., Schnorr, C., Steidl, G., Combined SVM-based feature selection and classification. Mach. Learn. 61:1–3 (2005), 129–150.
    • (2005) Mach. Learn. , vol.61 , Issue.1-3 , pp. 129-150
    • Neumann, J.1    Schnorr, C.2    Steidl, G.3
  • 83
    • 38849091390 scopus 로고    scopus 로고
    • Hybrid huberized support vector machines for microarray classification and gene selection
    • [83] Wang, L., Zhu, J., Zou, H., Hybrid huberized support vector machines for microarray classification and gene selection. Bioinformatics 24:3 (2008), 412–419.
    • (2008) Bioinformatics , vol.24 , Issue.3 , pp. 412-419
    • Wang, L.1    Zhu, J.2    Zou, H.3
  • 84
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • [84] Zou, H., Hastie, T., Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67 (2005), 301–320.
    • (2005) J. R. Stat. Soc. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 85
    • 76849090053 scopus 로고    scopus 로고
    • Sparse support vector machines with LP penalty for biomarker identification
    • [85] Liu, Z., Lin, S., Tan, M., Sparse support vector machines with LP penalty for biomarker identification. IEEE/ACM Trans. Comput. Biol. Bioinf. 7:1 (2010), 100–107, 10.1109/TCBB.2008.17.
    • (2010) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.7 , Issue.1 , pp. 100-107
    • Liu, Z.1    Lin, S.2    Tan, M.3
  • 86
    • 84877838529 scopus 로고    scopus 로고
    • The support feature machine: classification with the least number of features and application to neuroimaging data
    • [86] Klement, S., Anders, S., Martinetz, T., The support feature machine: classification with the least number of features and application to neuroimaging data. Neural Comput. 25:6 (2013), 1548–1584, 10.1162/NECOa00447.
    • (2013) Neural Comput. , vol.25 , Issue.6 , pp. 1548-1584
    • Klement, S.1    Anders, S.2    Martinetz, T.3
  • 87
    • 84961148293 scopus 로고    scopus 로고
    • Microarray medical data classification using kernel ridge regression and modified cat swarm optimization based gene selection system
    • URL
    • [87] Mohapatra, P., Chakravarty, S., Dash, P., Microarray medical data classification using kernel ridge regression and modified cat swarm optimization based gene selection system. Swarm Evol. Comput. 28 (2016), 144–160, 10.1016/j.swevo.2016.02.002 URL http://www.sciencedirect.com/science/article/pii/S2210650216000195.
    • (2016) Swarm Evol. Comput. , vol.28 , pp. 144-160
    • Mohapatra, P.1    Chakravarty, S.2    Dash, P.3
  • 89
    • 34147111649 scopus 로고    scopus 로고
    • Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression
    • [89] An, S., Liu, W., Venkatesh, S., Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression. Pattern Recogn. 40:8 (2007), 2154–2162.
    • (2007) Pattern Recogn. , vol.40 , Issue.8 , pp. 2154-2162
    • An, S.1    Liu, W.2    Venkatesh, S.3
  • 90
    • 85136354327 scopus 로고    scopus 로고
    • Ridge regression and other kernels for genomic selection with r package rrBLUP
    • [90] Endelman, J.B., Ridge regression and other kernels for genomic selection with r package rrBLUP. Plant Genome 4:3 (2001), 250–255, 10.3835/plantgenome2011.08.0024.
    • (2001) Plant Genome , vol.4 , Issue.3 , pp. 250-255
    • Endelman, J.B.1
  • 91
    • 34247554394 scopus 로고    scopus 로고
    • Rough-fuzzy c-medoids algorithm and selection of bio-basis for amino acid sequence analysis
    • [91] Maji, P., Pal, S.K., Rough-fuzzy c-medoids algorithm and selection of bio-basis for amino acid sequence analysis. IEEE Trans. Knowl. Data Eng. 19:6 (2007), 859–872, 10.1109/TKDE.2007.190609.
    • (2007) IEEE Trans. Knowl. Data Eng. , vol.19 , Issue.6 , pp. 859-872
    • Maji, P.1    Pal, S.K.2
  • 93
    • 57049180269 scopus 로고    scopus 로고
    • Feature selection based on the rough set theory and expectation-maximization clustering algorithm
    • [93] Fazayeli, F., Wang, L.P., Mandziuk, J., Feature selection based on the rough set theory and expectation-maximization clustering algorithm. Rough Sets Curr. Trends Comput. LNCS 5306 (2008), 272–282.
    • (2008) Rough Sets Curr. Trends Comput. LNCS , vol.5306 , pp. 272-282
    • Fazayeli, F.1    Wang, L.P.2    Mandziuk, J.3
  • 94
    • 84884417982 scopus 로고    scopus 로고
    • On fuzzy-rough attribute selection: criteria of max-dependency, max-relevance, min-redundancy, and max-significance
    • URL
    • [94] Maji, P., Garai, P., On fuzzy-rough attribute selection: criteria of max-dependency, max-relevance, min-redundancy, and max-significance. Appl. Soft Comput. 13:9 (2013), 3968–3980, 10.1016/j.asoc.2012.09.006 URL http://www.sciencedirect.com/science/article/pii/S156849461200422X.
    • (2013) Appl. Soft Comput. , vol.13 , Issue.9 , pp. 3968-3980
    • Maji, P.1    Garai, P.2
  • 95
    • 84902009869 scopus 로고    scopus 로고
    • Fuzzy preference based feature selection and semisupervised svm for cancer classification
    • [95] Maulik, U., Chakraborty, D., Fuzzy preference based feature selection and semisupervised svm for cancer classification. IEEE Trans. Nanobiosci. 13:2 (2014), 152–160, 10.1109/TNB.2014.2312132.
    • (2014) IEEE Trans. Nanobiosci. , vol.13 , Issue.2 , pp. 152-160
    • Maulik, U.1    Chakraborty, D.2
  • 96
    • 84864947491 scopus 로고    scopus 로고
    • Gene selection using iterative feature elimination random forests for survival outcomes
    • [96] Pang, H., George, S.L., Hui, K., Tong, T., Gene selection using iterative feature elimination random forests for survival outcomes. IEEE/ACM Trans. Comput. Biol. Bioinf. 9:5 (2012), 1422–1431, 10.1109/TCBB.2012.63.
    • (2012) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.9 , Issue.5 , pp. 1422-1431
    • Pang, H.1    George, S.L.2    Hui, K.3    Tong, T.4
  • 97
    • 84879173899 scopus 로고    scopus 로고
    • Biomarker identification and cancer classification based on microarray data using laplace naive bayes model with mean shrinkage
    • [97] Wu, M.Y., Dai, D.Q., Shi, Y., Yan, H., Zhang, X.F., Biomarker identification and cancer classification based on microarray data using laplace naive bayes model with mean shrinkage. IEEE/ACM Trans. Comput. Biol. Bioinf. 9:6 (2012), 1649–1662, 10.1109/TCBB.2012.105.
    • (2012) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.9 , Issue.6 , pp. 1649-1662
    • Wu, M.Y.1    Dai, D.Q.2    Shi, Y.3    Yan, H.4    Zhang, X.F.5
  • 98
    • 84901378845 scopus 로고    scopus 로고
    • Dna copy number selection using robust structured sparsity-inducing norms
    • [98] Metsis, V., Makedon, F., Shen, D., Huang, H., Dna copy number selection using robust structured sparsity-inducing norms. IEEE/ACM Trans. Comput. Biol. Bioinf. 11:1 (2014), 168–181, 10.1109/TCBB.2013.141.
    • (2014) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.11 , Issue.1 , pp. 168-181
    • Metsis, V.1    Makedon, F.2    Shen, D.3    Huang, H.4
  • 99
    • 84940397274 scopus 로고    scopus 로고
    • Supervised variational relevance learning, an analytic geometric feature selection with applications to omic datasets
    • [99] Boareto, M., Cesar, J., Leite, V.B.P., Caticha, N., Supervised variational relevance learning, an analytic geometric feature selection with applications to omic datasets. IEEE/ACM Trans. Comput. Biol. Bioinf. 12:3 (2015), 705–711, 10.1109/TCBB.2014.2377750.
    • (2015) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.12 , Issue.3 , pp. 705-711
    • Boareto, M.1    Cesar, J.2    Leite, V.B.P.3    Caticha, N.4
  • 100
    • 84885171377 scopus 로고    scopus 로고
    • Minimax sparse logistic regression for very high-dimensional feature selection
    • [100] Tan, M., Tsang, I.W., Wang, L., Minimax sparse logistic regression for very high-dimensional feature selection. IEEE Trans. Neural Networks Learn. Syst. 24:10 (2013), 1609–1622, 10.1109/TNNLS.2013.2263427.
    • (2013) IEEE Trans. Neural Networks Learn. Syst. , vol.24 , Issue.10 , pp. 1609-1622
    • Tan, M.1    Tsang, I.W.2    Wang, L.3
  • 101
    • 84890219380 scopus 로고    scopus 로고
    • Feature selection and multi-kernel learning for sparse representation on a manifold
    • URL
    • [101] Wang, J.J.-Y., Bensmail, H., Gao, X., Feature selection and multi-kernel learning for sparse representation on a manifold. Neural Networks 51 (2014), 9–16, 10.1016/j.neunet.2013.11.009 URL http://www.sciencedirect.com/science/article/pii/S0893608013002736.
    • (2014) Neural Networks , vol.51 , pp. 9-16
    • Wang, J.J.-Y.1    Bensmail, H.2    Gao, X.3
  • 102
    • 84873123590 scopus 로고    scopus 로고
    • A scalable approach to simultaneous evolutionary instance and feature selection
    • URL
    • [102] Garcia-Pedrajas, N., de Haro-Garcia, A., Perez-Rodriguez, J., A scalable approach to simultaneous evolutionary instance and feature selection. Inf. Sci. 228 (2013), 150–174, 10.1016/j.ins.2012.10.006 URL http://www.sciencedirect.com/science/article/pii/S0020025512006718.
    • (2013) Inf. Sci. , vol.228 , pp. 150-174
    • Garcia-Pedrajas, N.1    de Haro-Garcia, A.2    Perez-Rodriguez, J.3
  • 104
    • 84914813506 scopus 로고
    • On the effectiveness of receptors in recognition systems
    • [104] Marill, T., Green, D., On the effectiveness of receptors in recognition systems. IEEE Trans. Inf. Theory 9 (1963), 11–17.
    • (1963) IEEE Trans. Inf. Theory , vol.9 , pp. 11-17
    • Marill, T.1    Green, D.2
  • 105
    • 0015125457 scopus 로고
    • A direct method of nonparametric measurement selection
    • [105] Whitney, A., A direct method of nonparametric measurement selection. IEEE Trans. Comput. 20 (1971), 1100–1103.
    • (1971) IEEE Trans. Comput. , vol.20 , pp. 1100-1103
    • Whitney, A.1
  • 107
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • [107] Tusher, V., Tibshirani, R., Chu, G., Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. U.S.A. 98 (2001), 5116–5121.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 5116-5121
    • Tusher, V.1    Tibshirani, R.2    Chu, G.3
  • 108
    • 0034927555 scopus 로고    scopus 로고
    • Analysis of variance for gene expression microarray data
    • [108] Kerr, M., Martin, M., Churchill, G., Analysis of variance for gene expression microarray data. J. Comput. Biol. 7 (2000), 819–837.
    • (2000) J. Comput. Biol. , vol.7 , pp. 819-837
    • Kerr, M.1    Martin, M.2    Churchill, G.3
  • 109
    • 0034911875 scopus 로고    scopus 로고
    • An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles
    • [109] Thomas, J.G., Olson, J.M., Tapscott, S.J., Zhao, L.P., An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Res. 11 (2001), 1227–1236.
    • (2001) Genome Res. , vol.11 , pp. 1227-1236
    • Thomas, J.G.1    Olson, J.M.2    Tapscott, S.J.3    Zhao, L.P.4
  • 111
    • 15244346245 scopus 로고    scopus 로고
    • Detecting differentially expressed genes by relative entropy
    • [111] Yan, X., Deng, M., Fung, W.K., Qian, M., Detecting differentially expressed genes by relative entropy. J. Theory Biol. 234 (2005), 395–402.
    • (2005) J. Theory Biol. , vol.234 , pp. 395-402
    • Yan, X.1    Deng, M.2    Fung, W.K.3    Qian, M.4
  • 112
    • 0042526388 scopus 로고    scopus 로고
    • The mutual information: detecting and evaluating dependencies between variables
    • [112] Steuer, R., Kurths, J., Daub, C.O., Weise, J., Selbig, J., The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18 (2002), S23–S240.
    • (2002) Bioinformatics , vol.18 , pp. S23-S240
    • Steuer, R.1    Kurths, J.2    Daub, C.O.3    Weise, J.4    Selbig, J.5
  • 113
    • 25444528240 scopus 로고    scopus 로고
    • An entropy-based gene selection method for cancer classification using microarray data
    • article 76
    • [113] Liu, X., Krishnan, A., Mondry, A., An entropy-based gene selection method for cancer classification using microarray data. BMC Bioinf., 6, 2005 article 76.
    • (2005) BMC Bioinf. , vol.6
    • Liu, X.1    Krishnan, A.2    Mondry, A.3
  • 115
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of relief
    • [115] I. Kononenko, Estimating attributes: Analysis and extensions of relief, in: ECML-94, 1994, pp. 171–182.
    • (1994) ECML-94 , pp. 171-182
    • Kononenko, I.1
  • 116
    • 34548108870 scopus 로고    scopus 로고
    • SOAP: efficient feature selection of numeric attributes
    • [116] Ruiz, R., Aguilar-Ruiz, J.S., Riquelme, J.C., SOAP: efficient feature selection of numeric attributes. IBERAMIA, 2002, 233–242.
    • (2002) IBERAMIA , pp. 233-242
    • Ruiz, R.1    Aguilar-Ruiz, J.S.2    Riquelme, J.C.3
  • 117
    • 64549099411 scopus 로고    scopus 로고
    • A two-stage feature selection method for gene expression data, OMICS
    • [117] Chuang, L.-Y., Ke, C.-H., Chang, H.-W., Yang, C.-H., A two-stage feature selection method for gene expression data, OMICS. J. Integr. Biol. 13 (2009), 127–137.
    • (2009) J. Integr. Biol. , vol.13 , pp. 127-137
    • Chuang, L.-Y.1    Ke, C.-H.2    Chang, H.-W.3    Yang, C.-H.4
  • 118
    • 33644875477 scopus 로고    scopus 로고
    • Applications of support vector machines to cancer classification with microarray data
    • [118] Chu, F., Wang, L.P., Applications of support vector machines to cancer classification with microarray data. Int. J. Neural Syst. 15:6 (2005), 475–484.
    • (2005) Int. J. Neural Syst. , vol.15 , Issue.6 , pp. 475-484
    • Chu, F.1    Wang, L.P.2
  • 119
    • 0141522834 scopus 로고    scopus 로고
    • Gene expression data analysis using support vector machines
    • [119] Chu, F., Wang, L.P., Gene expression data analysis using support vector machines. Proc. Int. Joint Conf. Neural Networks 2003:1 (2003), 2268–2271.
    • (2003) Proc. Int. Joint Conf. Neural Networks , vol.2003 , Issue.1 , pp. 2268-2271
    • Chu, F.1    Wang, L.P.2
  • 121
    • 39449089088 scopus 로고    scopus 로고
    • Effective selection of informative SNPs and classification on the HapMap genotype data
    • [121] Zhou, N., Wang, L.P., Effective selection of informative SNPs and classification on the HapMap genotype data. BMC Bioinf., 8, 2007, 484.
    • (2007) BMC Bioinf. , vol.8 , pp. 484
    • Zhou, N.1    Wang, L.P.2
  • 122
    • 38949156621 scopus 로고    scopus 로고
    • A modified t-test feature selection method and its application on the HapMap genotype
    • [122] Zhou, N., Wang, L.P., A modified t-test feature selection method and its application on the HapMap genotype. Genomics Proteomics Bioinf. 5 (2007), 242–249.
    • (2007) Genomics Proteomics Bioinf. , vol.5 , pp. 242-249
    • Zhou, N.1    Wang, L.P.2
  • 123
    • 81455132651 scopus 로고    scopus 로고
    • Stable gene selection from microarray data via sample weighting
    • [123] Yu, L., Han, Y., Berens, M.E., Stable gene selection from microarray data via sample weighting. IEEE/ACM Trans. Comput. Biol. Bioinf. 9:1 (2012), 262–272, 10.1109/TCBB.2011.47.
    • (2012) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.9 , Issue.1 , pp. 262-272
    • Yu, L.1    Han, Y.2    Berens, M.E.3
  • 125
    • 84920982609 scopus 로고    scopus 로고
    • Exploring robust diagnostic signatures for cutaneous melanoma utilizing genetic and imaging data
    • [125] Valavanis, I., Maglogiannis, I., Chatziioannou, A.A., Exploring robust diagnostic signatures for cutaneous melanoma utilizing genetic and imaging data. IEEE J. Biomed. Health Inf. 19:1 (2015), 190–198, 10.1109/JBHI.2014.2336617.
    • (2015) IEEE J. Biomed. Health Inf. , vol.19 , Issue.1 , pp. 190-198
    • Valavanis, I.1    Maglogiannis, I.2    Chatziioannou, A.A.3
  • 126
    • 84872371833 scopus 로고    scopus 로고
    • Multi objective SNP selection using pareto optimality
    • URL
    • [126] Gumus, E., Gormez, Z., Kursun, O., Multi objective SNP selection using pareto optimality. Comput. Biol. Chem. 43 (2013), 23–28, 10.1016/j.compbiolchem.2012.12.006 URL http://www.sciencedirect.com/science/article/pii/S1476927112001156.
    • (2013) Comput. Biol. Chem. , vol.43 , pp. 23-28
    • Gumus, E.1    Gormez, Z.2    Kursun, O.3
  • 127
    • 84940462014 scopus 로고    scopus 로고
    • Feature selection using joint mutual information maximisation
    • URL
    • [127] Bennasar, M., Hicks, Y., Setchi, R., Feature selection using joint mutual information maximisation. Expert Syst. Appl. 42:22 (2015), 8520–8532, 10.1016/j.eswa.2015.07.007 URL http://www.sciencedirect.com/science/article/pii/S0957417415004674.
    • (2015) Expert Syst. Appl. , vol.42 , Issue.22 , pp. 8520-8532
    • Bennasar, M.1    Hicks, Y.2    Setchi, R.3
  • 128
    • 84875679383 scopus 로고    scopus 로고
    • f -information measures for efficient selection of discriminative genes from microarray data
    • [128] Maji, P., f -information measures for efficient selection of discriminative genes from microarray data. IEEE Trans. Biomed. Eng. 56:4 (2009), 1063–1069, 10.1109/TBME.2008.2004502.
    • (2009) IEEE Trans. Biomed. Eng. , vol.56 , Issue.4 , pp. 1063-1069
    • Maji, P.1
  • 129
    • 84962028276 scopus 로고    scopus 로고
    • Identification of glucose-binding pockets in human serum albumin using support vector machine and molecular dynamics simulations
    • [129] Ranganarayanan, P., Thanigesan, N., Ananth, V., Jayaraman, V.K., Ramakrishnan, V., Identification of glucose-binding pockets in human serum albumin using support vector machine and molecular dynamics simulations. IEEE/ACM Trans. Comput. Biol. Bioinf. 13:1 (2016), 148–157, 10.1109/TCBB.2015.2415806.
    • (2016) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.13 , Issue.1 , pp. 148-157
    • Ranganarayanan, P.1    Thanigesan, N.2    Ananth, V.3    Jayaraman, V.K.4    Ramakrishnan, V.5
  • 131
    • 84938695243 scopus 로고    scopus 로고
    • Prediction of human disease-associated phosphorylation sites with combined feature selection approach and support vector machine
    • [131] Xu, X., Li, A., Wang, M., Prediction of human disease-associated phosphorylation sites with combined feature selection approach and support vector machine. IET Syst. Biol. 9:4 (2015), 155–163, 10.1049/iet-syb.2014.0051.
    • (2015) IET Syst. Biol. , vol.9 , Issue.4 , pp. 155-163
    • Xu, X.1    Li, A.2    Wang, M.3
  • 132
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • [132] Zhou, N., Wang, L.P., Minimum redundancy feature selection from microarray gene expression data. J. Bioinf. Comput. Biol. 3:2 (2005), 185–205.
    • (2005) J. Bioinf. Comput. Biol. , vol.3 , Issue.2 , pp. 185-205
    • Zhou, N.1    Wang, L.P.2
  • 133
    • 79955564229 scopus 로고    scopus 로고
    • Prediction of GABAA receptor proteins using the concept of chou's pseudo-amino acid composition and support vector machine
    • URL
    • [133] Mohabatkar, H., Beigi, M.M., Esmaeili, A., Prediction of GABAA receptor proteins using the concept of chou's pseudo-amino acid composition and support vector machine. J. Theory Biol. 281:1 (2011), 18–23, 10.1016/j.jtbi.2011.04.017 URL http://www.sciencedirect.com/science/article/pii/S0022519311002177.
    • (2011) J. Theory Biol. , vol.281 , Issue.1 , pp. 18-23
    • Mohabatkar, H.1    Beigi, M.M.2    Esmaeili, A.3
  • 134
    • 84941563168 scopus 로고    scopus 로고
    • Feature selection via global redundancy minimization
    • [134] Wang, D., Nie, F., Huang, H., Feature selection via global redundancy minimization. IEEE Trans. Knowl. Data Eng. 27:10 (2015), 2743–2755, 10.1109/TKDE.2015.2426703.
    • (2015) IEEE Trans. Knowl. Data Eng. , vol.27 , Issue.10 , pp. 2743-2755
    • Wang, D.1    Nie, F.2    Huang, H.3
  • 135
    • 34249989677 scopus 로고    scopus 로고
    • Feature selection and combination criteria for improving accuracy in protein structure prediction
    • [135] Lin, K.L., Lin, C.Y., Huang, C.D., Chang, H.M., Yang, C.Y., Lin, C.T., Tang, C.Y., Hsu, D.F., Feature selection and combination criteria for improving accuracy in protein structure prediction. IEEE Trans. Nanobiosci. 6:2 (2007), 186–196, 10.1109/TNB.2007.897482.
    • (2007) IEEE Trans. Nanobiosci. , vol.6 , Issue.2 , pp. 186-196
    • Lin, K.L.1    Lin, C.Y.2    Huang, C.D.3    Chang, H.M.4    Yang, C.Y.5    Lin, C.T.6    Tang, C.Y.7    Hsu, D.F.8
  • 136
    • 33744476702 scopus 로고    scopus 로고
    • Combining feature selection and DTW for time-varying functional genomics
    • [136] Furlanello, C., Merler, S., Jurman, G., Combining feature selection and DTW for time-varying functional genomics. IEEE Trans. Signal Process. 54:6 (2006), 2436–2443, 10.1109/TSP.2006.873715.
    • (2006) IEEE Trans. Signal Process. , vol.54 , Issue.6 , pp. 2436-2443
    • Furlanello, C.1    Merler, S.2    Jurman, G.3
  • 137
    • 84958050471 scopus 로고    scopus 로고
    • Robust and stable gene selection via maximum-minimum correntropy criterion
    • URL
    • [137] Mohammadi, M., Noghabi, H.S., Hodtani, G.A., Mashhadi, H.R., Robust and stable gene selection via maximum-minimum correntropy criterion. Genomics 107:2-3 (2016), 83–87, 10.1016/j.ygeno.2015.12.006 URL http://www.sciencedirect.com/science/article/pii/S0888754315300495.
    • (2016) Genomics , vol.107 , Issue.2-3 , pp. 83-87
    • Mohammadi, M.1    Noghabi, H.S.2    Hodtani, G.A.3    Mashhadi, H.R.4
  • 138
    • 84899479205 scopus 로고    scopus 로고
    • A feature selection technique for inference of graphs from their known topological properties: revealing scale-free gene regulatory networks
    • URL
    • [138] Lopes, F.M., Martins, D.C. Jr., Barrera, J., Cesar, R.M. Jr., A feature selection technique for inference of graphs from their known topological properties: revealing scale-free gene regulatory networks. Inf. Sci. 272 (2014), 1–15, 10.1016/j.ins.2014.02.096 URL http://www.sciencedirect.com/science/article/pii/S0020025514002023.
    • (2014) Inf. Sci. , vol.272 , pp. 1-15
    • Lopes, F.M.1    Martins, D.C.2    Barrera, J.3    Cesar, R.M.4
  • 139
    • 84861507613 scopus 로고    scopus 로고
    • A new unsupervised feature ranking method for gene expression data based on consensus affinity
    • [139] Zhang, S., Wong, H.S., Shen, Y., Xie, D., A new unsupervised feature ranking method for gene expression data based on consensus affinity. IEEE/ACM Trans. Comput. Biol. Bioinf. 9:4 (2012), 1257–1263, 10.1109/TCBB.2012.34.
    • (2012) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.9 , Issue.4 , pp. 1257-1263
    • Zhang, S.1    Wong, H.S.2    Shen, Y.3    Xie, D.4
  • 140
    • 33847753038 scopus 로고    scopus 로고
    • Accurate cancer classification using expressions of very few genes
    • [140] Wang, L.P., Chu, F., Xie, W., Accurate cancer classification using expressions of very few genes. IEEE-ACM Trans. Comput. Biol. Bioinf. 4 (2007), 40–53.
    • (2007) IEEE-ACM Trans. Comput. Biol. Bioinf. , vol.4 , pp. 40-53
    • Wang, L.P.1    Chu, F.2    Xie, W.3
  • 141
    • 84892415597 scopus 로고    scopus 로고
    • Multiobjective binary biogeography based optimization for feature selection using gene expression data
    • [141] Li, X., Yin, M., Multiobjective binary biogeography based optimization for feature selection using gene expression data. IEEE Trans. Nanobiosci. 12:4 (2013), 343–353, 10.1109/TNB.2013.2294716.
    • (2013) IEEE Trans. Nanobiosci. , vol.12 , Issue.4 , pp. 343-353
    • Li, X.1    Yin, M.2
  • 142
    • 84866484354 scopus 로고    scopus 로고
    • SNP selection and classification of genome-wide SNP data using stratified sampling random forests
    • [142] Wu, Q., Ye, Y., Liu, Y., Ng, M.K., SNP selection and classification of genome-wide SNP data using stratified sampling random forests. IEEE Trans. Nanobiosci. 11:3 (2012), 216–227, 10.1109/TNB.2012.2214232.
    • (2012) IEEE Trans. Nanobiosci. , vol.11 , Issue.3 , pp. 216-227
    • Wu, Q.1    Ye, Y.2    Liu, Y.3    Ng, M.K.4
  • 143
    • 84962006762 scopus 로고    scopus 로고
    • Hybrid framework using multiple-filters and an embedded approach for an efficient selection and classification of microarray data
    • [143] Bonilla-Huerta, E., Hernandez-Montiel, A., Morales-Caporal, R., Arjona-Lopez, M., Hybrid framework using multiple-filters and an embedded approach for an efficient selection and classification of microarray data. IEEE/ACM Trans. Comput. Biol. Bioinf. 13:1 (2016), 12–26, 10.1109/TCBB.2015.2474384.
    • (2016) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.13 , Issue.1 , pp. 12-26
    • Bonilla-Huerta, E.1    Hernandez-Montiel, A.2    Morales-Caporal, R.3    Arjona-Lopez, M.4
  • 144
    • 84919480554 scopus 로고    scopus 로고
    • Network-based methods to identify highly discriminating subsets of biomarkers
    • [144] Sajjadi, S.J., Qian, X., Zeng, B., Adl, A.A., Network-based methods to identify highly discriminating subsets of biomarkers. IEEE/ACM Trans. Comput. Biol. Bioinf. 11:6 (2014), 1029–1037, 10.1109/TCBB.2014.2325014.
    • (2014) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.11 , Issue.6 , pp. 1029-1037
    • Sajjadi, S.J.1    Qian, X.2    Zeng, B.3    Adl, A.A.4
  • 145
    • 33746600352 scopus 로고    scopus 로고
    • An efficient semi-unsupervised gene selection method via spectral biclustering
    • [145] Liu, B., Wan, C., Wang, L.P., An efficient semi-unsupervised gene selection method via spectral biclustering. IEEE Trans. Nano Biosci. 5 (2006), 110–114.
    • (2006) IEEE Trans. Nano Biosci. , vol.5 , pp. 110-114
    • Liu, B.1    Wan, C.2    Wang, L.P.3
  • 146
    • 84963811950 scopus 로고    scopus 로고
    • A class-information-based sparse component analysis method to identify differentially expressed genes on RNA-Seq data
    • [146] Liu, J.X., Xu, Y., Gao, Y.L., Zheng, C.H., Wang, D., Zhu, Q., A class-information-based sparse component analysis method to identify differentially expressed genes on RNA-Seq data. IEEE/ACM Trans. Comput. Biol. Bioinf. 13:2 (2016), 392–398, 10.1109/TCBB.2015.2440265.
    • (2016) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.13 , Issue.2 , pp. 392-398
    • Liu, J.X.1    Xu, Y.2    Gao, Y.L.3    Zheng, C.H.4    Wang, D.5    Zhu, Q.6
  • 147
    • 78449275826 scopus 로고    scopus 로고
    • A weighted principal component analysis and its application to gene expression data
    • [147] da Costa, J.F.P., Alonso, H., Roque, L., A weighted principal component analysis and its application to gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinf. 8:1 (2011), 246–252, 10.1109/TCBB.2009.61.
    • (2011) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.8 , Issue.1 , pp. 246-252
    • da Costa, J.F.P.1    Alonso, H.2    Roque, L.3
  • 148
    • 84939152479 scopus 로고    scopus 로고
    • RPCA-based tumor classification using gene expression data
    • [148] Liu, J.X., Xu, Y., Zheng, C.H., Kong, H., Lai, Z.H., RPCA-based tumor classification using gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinf. 12:4 (2015), 964–970, 10.1109/TCBB.2014.2383375.
    • (2015) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.12 , Issue.4 , pp. 964-970
    • Liu, J.X.1    Xu, Y.2    Zheng, C.H.3    Kong, H.4    Lai, Z.H.5
  • 149
    • 75449099314 scopus 로고    scopus 로고
    • Laplacian linear discriminant analysis approach to unsupervised feature selection
    • [149] Niijima, S., Okuno, Y., Laplacian linear discriminant analysis approach to unsupervised feature selection. IEEE/ACM Trans. Comput. Biol. Bioinf. 6:4 (2009), 605–614, 10.1109/TCBB.2007.70257.
    • (2009) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.6 , Issue.4 , pp. 605-614
    • Niijima, S.1    Okuno, Y.2
  • 150
    • 80051776578 scopus 로고    scopus 로고
    • Tumor classification based on non-negative matrix factorization using gene expression data
    • [150] Zheng, C.H., Ng, T.Y., Zhang, L., Shiu, C.K., Wang, H.Q., Tumor classification based on non-negative matrix factorization using gene expression data. IEEE Trans. Nanobiosci. 10:2 (2011), 86–93, 10.1109/TNB.2011.2144998.
    • (2011) IEEE Trans. Nanobiosci. , vol.10 , Issue.2 , pp. 86-93
    • Zheng, C.H.1    Ng, T.Y.2    Zhang, L.3    Shiu, C.K.4    Wang, H.Q.5
  • 151
    • 84924749862 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for the identification of emg finger movements: evaluation using matrix analysis
    • [151] Naik, G.R., Nguyen, H.T., Nonnegative matrix factorization for the identification of emg finger movements: evaluation using matrix analysis. IEEE J. Biomed. Health Inf. 19:2 (2015), 478–485, 10.1109/JBHI.2014.2326660.
    • (2015) IEEE J. Biomed. Health Inf. , vol.19 , Issue.2 , pp. 478-485
    • Naik, G.R.1    Nguyen, H.T.2
  • 152
    • 15944419638 scopus 로고    scopus 로고
    • Efficient quadratic regularization for expression arrays
    • [152] Hastie, T., Tibshirani, R., Efficient quadratic regularization for expression arrays. Biostatistics 5 (2004), 329–340.
    • (2004) Biostatistics , vol.5 , pp. 329-340
    • Hastie, T.1    Tibshirani, R.2
  • 153
    • 25444463295 scopus 로고    scopus 로고
    • Feature selection and nearest centroid classification for protein mass spectrometry
    • [153] Levner, I., Feature selection and nearest centroid classification for protein mass spectrometry. BMC Bioinf., 6, 2005, 68.
    • (2005) BMC Bioinf. , vol.6 , pp. 68
    • Levner, I.1
  • 154
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GAKNN method
    • [154] Li, L., Weinberg, C., Darden, T., Pedersen, L., Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GAKNN method. Bioinformatics 17 (2001), 1131–1142.
    • (2001) Bioinformatics , vol.17 , pp. 1131-1142
    • Li, L.1    Weinberg, C.2    Darden, T.3    Pedersen, L.4
  • 158
    • 77956023732 scopus 로고    scopus 로고
    • Combating the small sample class imbalance problem using feature selection
    • [158] Wasikowski, M., Chen, X.W., Combating the small sample class imbalance problem using feature selection. IEEE Trans. Knowl. Data Eng. 22:10 (2010), 1388–1400, 10.1109/TKDE.2009.187.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.10 , pp. 1388-1400
    • Wasikowski, M.1    Chen, X.W.2
  • 159
    • 76849086406 scopus 로고    scopus 로고
    • Feature selection for gene expression using model-based entropy
    • [159] Zhu, S., Wang, D., Yu, K., Li, T., Gong, Y., Feature selection for gene expression using model-based entropy. IEEE/ACM Trans. Comput. Biol. Bioinf. 7:1 (2010), 25–36, 10.1109/TCBB.2008.35.
    • (2010) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.7 , Issue.1 , pp. 25-36
    • Zhu, S.1    Wang, D.2    Yu, K.3    Li, T.4    Gong, Y.5
  • 160
    • 0033211104 scopus 로고    scopus 로고
    • Analysis of class separation and combination of class-dependent features for handwriting recognition
    • [160] Oh, I.S., Lee, J.S., Suen, C.Y., Analysis of class separation and combination of class-dependent features for handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 21 (1999), 1089–1094.
    • (1999) IEEE Trans. Pattern Anal. Mach. Intell. , vol.21 , pp. 1089-1094
    • Oh, I.S.1    Lee, J.S.2    Suen, C.Y.3
  • 161
    • 34548112057 scopus 로고    scopus 로고
    • Using class separation for feature analysis and combination of class-dependent features
    • [161] I.S. Oh, J.S. Lee, C.Y. Suen, Using class separation for feature analysis and combination of class-dependent features, in: Fourteenth International Conference on Pattern Recognition, vol. 1, 1998, pp. 453–455.
    • (1998) Fourteenth International Conference on Pattern Recognition , vol.1 , pp. 453-455
    • Oh, I.S.1    Lee, J.S.2    Suen, C.Y.3
  • 162
    • 84901425408 scopus 로고    scopus 로고
    • A GA-based novel RBF classifier with class-dependent features
    • [162] X.J. Fu, L.P. Wang, A GA-based novel RBF classifier with class-dependent features, in: 2002 Congress on Evolutionary Computation, vol. 2, 2002, pp. 1890–1894.
    • (2002) 2002 Congress on Evolutionary Computation , vol.2 , pp. 1890-1894
    • Fu, X.J.1    Wang, L.P.2
  • 163
    • 0033328818 scopus 로고    scopus 로고
    • Class-specific features in classification
    • [163] Baggenstoss, P.M., Class-specific features in classification. IEEE Trans. Signal Process., 2002, 3428–3432.
    • (2002) IEEE Trans. Signal Process. , pp. 3428-3432
    • Baggenstoss, P.M.1
  • 164
    • 0037334364 scopus 로고    scopus 로고
    • The projection theorem and the class-specific method
    • [164] Baggenstoss, P.M., The projection theorem and the class-specific method. IEEE Trans. Signal Process., 2003, 672–685.
    • (2003) IEEE Trans. Signal Process. , pp. 672-685
    • Baggenstoss, P.M.1
  • 165
    • 32044432796 scopus 로고    scopus 로고
    • Class-specific feature polynomial classifier for pattern classification and its application to handwritten numerical recognition
    • [165] Liu, C.L., Sako, H., Class-specific feature polynomial classifier for pattern classification and its application to handwritten numerical recognition. Pattern Recogn. 39:4 (2006), 669–681.
    • (2006) Pattern Recogn. , vol.39 , Issue.4 , pp. 669-681
    • Liu, C.L.1    Sako, H.2
  • 166
    • 48949116216 scopus 로고    scopus 로고
    • A general wrapper approach to selection of class-dependent features
    • [166] Wang, L.P., Zhou, N., Chu, F., A general wrapper approach to selection of class-dependent features. IEEE Trans. Neural Networks 19 (2008), 1267–1278.
    • (2008) IEEE Trans. Neural Networks , vol.19 , pp. 1267-1278
    • Wang, L.P.1    Zhou, N.2    Chu, F.3
  • 167
    • 77952236398 scopus 로고    scopus 로고
    • Identification of full and partial class relevant genes
    • [167] Zhu, Z., Ong, Y.S., Zurada, J.M., Identification of full and partial class relevant genes. IEEE/ACM Trans. Comput. Biol. Bioinf. 7:2 (2010), 263–277, 10.1109/TCBB.2008.105.
    • (2010) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.7 , Issue.2 , pp. 263-277
    • Zhu, Z.1    Ong, Y.S.2    Zurada, J.M.3
  • 168
    • 84878298642 scopus 로고    scopus 로고
    • Multiclass gene selection using pareto-fronts
    • [168] Rajapakse, J.C., Mundra, P.A., Multiclass gene selection using pareto-fronts. IEEE/ACM Trans. Comput. Biol. Bioinf. 10:1 (2013), 87–97, 10.1109/TCBB.2013.1.
    • (2013) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.10 , Issue.1 , pp. 87-97
    • Rajapakse, J.C.1    Mundra, P.A.2
  • 169
    • 84890023439 scopus 로고    scopus 로고
    • Feature-selected tree-based classification
    • [169] Freeman, C., Kulic, D., Basir, O., Feature-selected tree-based classification. IEEE Trans. Cybern. 43:6 (2013), 1990–2004, 10.1109/TSMCB.2012.2237394.
    • (2013) IEEE Trans. Cybern. , vol.43 , Issue.6 , pp. 1990-2004
    • Freeman, C.1    Kulic, D.2    Basir, O.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.