메뉴 건너뛰기




Volumn 409-410, Issue , 2017, Pages 17-26

Clustering-based undersampling in class-imbalanced data

Author keywords

Class imbalance; Classifier ensembles; Clustering; Imbalanced data; Machine learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA MINING; DECISION TREES; LEARNING ALGORITHMS; LEARNING SYSTEMS; TREES (MATHEMATICS); VIRTUAL REALITY;

EID: 85019061365     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2017.05.008     Document Type: Article
Times cited : (649)

References (40)
  • 1
    • 84961631662 scopus 로고    scopus 로고
    • To combat multi-class imbalanced problems by means of over-sampling techniques
    • Abdi, L., Hashemi, S., To combat multi-class imbalanced problems by means of over-sampling techniques. IEEE Trans. Knowl. Data Eng. 28:1 (2016), 238–251.
    • (2016) IEEE Trans. Knowl. Data Eng. , vol.28 , Issue.1 , pp. 238-251
    • Abdi, L.1    Hashemi, S.2
  • 3
    • 27144531570 scopus 로고    scopus 로고
    • A survey of the behavior of several methods for balancing machine learning training data
    • Batista, G.E.A.P.A., Prati, R.C., Monard, M.C., A survey of the behavior of several methods for balancing machine learning training data. SIGKDD Explor. 6:1 (2004), 20–29.
    • (2004) SIGKDD Explor. , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.A.P.A.1    Prati, R.C.2    Monard, M.C.3
  • 4
    • 84921689324 scopus 로고    scopus 로고
    • Classifying imbalanced data sets using similarity based hierarchical decomposition
    • Bayan, C., Fisher, R., Classifying imbalanced data sets using similarity based hierarchical decomposition. Pattern Recognit. 48 (2015), 1653–1672.
    • (2015) Pattern Recognit. , vol.48 , pp. 1653-1672
    • Bayan, C.1    Fisher, R.2
  • 5
    • 84922643075 scopus 로고    scopus 로고
    • Neighborhood sampling in bagging for imbalanced data
    • Blaszczynski, J., Stefanowski, J., Neighborhood sampling in bagging for imbalanced data. Neurocomputing 150 (2015), 529–542.
    • (2015) Neurocomputing , vol.150 , pp. 529-542
    • Blaszczynski, J.1    Stefanowski, J.2
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L., Bagging predictors. Mach. Learn. 24:2 (1996), 123–140.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 7
    • 37949004300 scopus 로고    scopus 로고
    • Data mining for imbalanced datasets: an overview
    • O. Maimon L. Rokach Springer-Verlag New York
    • Chawla, N.V., Data mining for imbalanced datasets: an overview. Maimon, O., Rokach, L., (eds.) Data Mining and Knowledge Discovery Handbook, 2005, Springer-Verlag, New York, 853–867.
    • (2005) Data Mining and Knowledge Discovery Handbook , pp. 853-867
    • Chawla, N.V.1
  • 11
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett, T., An introduction to ROC analysis. Pattern Recognit. Lett. 27 (2006), 861–874.
    • (2006) Pattern Recognit. Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 12
  • 13
    • 84881072864 scopus 로고    scopus 로고
    • EUSBoost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
    • Galar, M., Fernandez, A., Barrenechea, E., Herrera, F., EUSBoost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling. Pattern Recognit. 46 (2014), 3460–3471.
    • (2014) Pattern Recognit. , vol.46 , pp. 3460-3471
    • Galar, M.1    Fernandez, A.2    Barrenechea, E.3    Herrera, F.4
  • 14
    • 0001138328 scopus 로고
    • Algorithm AS 136: a k-means clustering algorithm
    • Hartigan, J.A., Wong, M.A., Algorithm AS 136: a k-means clustering algorithm. J. R. Stat. Soc., Ser. C 28:1 (1979), 100–108.
    • (1979) J. R. Stat. Soc., Ser. C , vol.28 , Issue.1 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 18
    • 84926158684 scopus 로고    scopus 로고
    • Evolving connectionist systems for adaptive learning and knowledge discovery: trends and directions
    • Kasabov, N., Evolving connectionist systems for adaptive learning and knowledge discovery: trends and directions. Knowl.-Based Syst. 80 (2015), 24–33.
    • (2015) Knowl.-Based Syst. , vol.80 , pp. 24-33
    • Kasabov, N.1
  • 19
    • 84991033007 scopus 로고    scopus 로고
    • Mapping, learning, visualisation, classification and understanding of fMRI data in the NeuCube spatio temporal data machine
    • Manuscript Number: TNNLS-2016-P-6356, 2016
    • Kasabov, N., Doborjeh, M., Doborjeh, Z., Mapping, learning, visualisation, classification and understanding of fMRI data in the NeuCube spatio temporal data machine. IEEE Trans. Neural Netw. Learn. Syst., 2016, 10.1109/TNNLS.2016.2612890 Manuscript Number: TNNLS-2016-P-6356, 2016.
    • (2016) IEEE Trans. Neural Netw. Learn. Syst.
    • Kasabov, N.1    Doborjeh, M.2    Doborjeh, Z.3
  • 20
    • 84896548177 scopus 로고    scopus 로고
    • Evolving spiking neural networks for personalised modelling, classification and prediction of spatio-temporal patterns with a case study on stroke
    • Kasabov, N., Feigin, V., Hou, Z.-G., Chen, Y., Liang, L., Krishnamurthi, R., Parmar, P., Evolving spiking neural networks for personalised modelling, classification and prediction of spatio-temporal patterns with a case study on stroke. Neurocomputing 134 (2014), 269–279.
    • (2014) Neurocomputing , vol.134 , pp. 269-279
    • Kasabov, N.1    Feigin, V.2    Hou, Z.-G.3    Chen, Y.4    Liang, L.5    Krishnamurthi, R.6    Parmar, P.7
  • 21
    • 0001122762 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Kohavi, R., A study of cross-validation and bootstrap for accuracy estimation and model selection. International Joint Conference on Artificial Intelligence, 2, 1995, 1137–1143.
    • (1995) International Joint Conference on Artificial Intelligence , vol.2 , pp. 1137-1143
    • Kohavi, R.1
  • 23
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced training sets: one-sided selection
    • Kubat, M., Matwin, S., Addressing the curse of imbalanced training sets: one-sided selection. International Conference on Machine Learning, 1997, 179–186.
    • (1997) International Conference on Machine Learning , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 25
    • 27944460950 scopus 로고    scopus 로고
    • Total margin based adaptive fuzzy support vector machines for multiview face recognition
    • Liu, Y.-H., Chen, Y.-T., Total margin based adaptive fuzzy support vector machines for multiview face recognition. IEEE International Conference on Systems, Man and Cybernetics, 2, 2005, 1704–1711.
    • (2005) IEEE International Conference on Systems, Man and Cybernetics , vol.2 , pp. 1704-1711
    • Liu, Y.-H.1    Chen, Y.-T.2
  • 27
    • 40649126091 scopus 로고    scopus 로고
    • Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance
    • Mazurowski, M.A., Habas, P.A., Zurada, J.M., Lo, J.Y., Baker, J.A., Tourassi, G.D., Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance. Neural Netw. 21:2-3 (2008), 427–436.
    • (2008) Neural Netw. , vol.21 , Issue.2-3 , pp. 427-436
    • Mazurowski, M.A.1    Habas, P.A.2    Zurada, J.M.3    Lo, J.Y.4    Baker, J.A.5    Tourassi, G.D.6
  • 28
    • 84864362117 scopus 로고    scopus 로고
    • SPAN: spike pattern association neuron for learning spatio-temporal sequences
    • Mohemmed, A., Schliebs, S., Matsuda, S., Kasabov, N., SPAN: spike pattern association neuron for learning spatio-temporal sequences. Int. J. Neural Syst. 22:4 (2012), 1–16.
    • (2012) Int. J. Neural Syst. , vol.22 , Issue.4 , pp. 1-16
    • Mohemmed, A.1    Schliebs, S.2    Matsuda, S.3    Kasabov, N.4
  • 29
    • 84926525100 scopus 로고    scopus 로고
    • Coupling different methods for overcoming the class imbalance problem
    • Nanni, L., Fantozzi, C., Lazzarini, N., Coupling different methods for overcoming the class imbalance problem. Neurocomputing 158 (2015), 48–61.
    • (2015) Neurocomputing , vol.158 , pp. 48-61
    • Nanni, L.1    Fantozzi, C.2    Lazzarini, N.3
  • 30
    • 32344438970 scopus 로고    scopus 로고
    • Extreme rebalancing for SVMs: a case study
    • Raskutti, B., Kowalczyk, A., Extreme rebalancing for SVMs: a case study. ACM SIGKDD Explor. 6:1 (2004), 60–69.
    • (2004) ACM SIGKDD Explor. , vol.6 , Issue.1 , pp. 60-69
    • Raskutti, B.1    Kowalczyk, A.2
  • 31
    • 0025448521 scopus 로고
    • The strength of weak learnabilty
    • Schapire, R.E., The strength of weak learnabilty. Mach. Learn. 5:2 (1990), 197–227.
    • (1990) Mach. Learn. , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 34
    • 84921817000 scopus 로고    scopus 로고
    • A novel ensemble method for classifying imbalanced data
    • Sun, Z., Song, Q., Zhu, X., Sun, H., Xu, B., Zhou, Y., A novel ensemble method for classifying imbalanced data. Pattern Recognit. 48 (2015), 1623–1637.
    • (2015) Pattern Recognit. , vol.48 , pp. 1623-1637
    • Sun, Z.1    Song, Q.2    Zhu, X.3    Sun, H.4    Xu, B.5    Zhou, Y.6
  • 35
    • 85019072045 scopus 로고    scopus 로고
    • A hybrid under-sampling approach for better bankruptcy prediction
    • Taehoon, K., Hyunchul, A., A hybrid under-sampling approach for better bankruptcy prediction. J. Intell. Inf. Syst. 21:2 (2015), 173–190.
    • (2015) J. Intell. Inf. Syst. , vol.21 , Issue.2 , pp. 173-190
    • Taehoon, K.1    Hyunchul, A.2
  • 37
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: a unifying framework
    • Weiss, G.M., Mining with rarity: a unifying framework. SIGKDD Explor. 6:1 (2004), 1–7.
    • (2004) SIGKDD Explor. , vol.6 , Issue.1 , pp. 1-7
    • Weiss, G.M.1
  • 38
    • 84925543305 scopus 로고    scopus 로고
    • A dissimilarity-based imbalance data classification algorithm
    • Zhang, X., Song, Q., Wang, G., Zhang, K., He, L., Jia, X., A dissimilarity-based imbalance data classification algorithm. Appl. Intell. 42 (2015), 544–565.
    • (2015) Appl. Intell. , vol.42 , pp. 544-565
    • Zhang, X.1    Song, Q.2    Wang, G.3    Zhang, K.4    He, L.5    Jia, X.6
  • 39
    • 84873725663 scopus 로고    scopus 로고
    • Performance of corporate bankruptcy prediction models on imbalanced dataset: the effect of sampling methods
    • Zhou, L., Performance of corporate bankruptcy prediction models on imbalanced dataset: the effect of sampling methods. Knowl.-Based Syst. 41 (2013), 16–25.
    • (2013) Knowl.-Based Syst. , vol.41 , pp. 16-25
    • Zhou, L.1
  • 40
    • 77955413170 scopus 로고    scopus 로고
    • Fault diagnosis based on imbalance modified kernel Fisher discriminant analysis
    • Zhu, Z.-B., Song, Z.-H., Fault diagnosis based on imbalance modified kernel Fisher discriminant analysis. Chem. Eng. Res. Des. 88:8 (2010), 936–951.
    • (2010) Chem. Eng. Res. Des. , vol.88 , Issue.8 , pp. 936-951
    • Zhu, Z.-B.1    Song, Z.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.