-
1
-
-
84961631662
-
To combat multi-class imbalanced problems by means of over-sampling techniques
-
Abdi, L., Hashemi, S., To combat multi-class imbalanced problems by means of over-sampling techniques. IEEE Trans. Knowl. Data Eng. 28:1 (2016), 238–251.
-
(2016)
IEEE Trans. Knowl. Data Eng.
, vol.28
, Issue.1
, pp. 238-251
-
-
Abdi, L.1
Hashemi, S.2
-
2
-
-
0348222721
-
New applications of ensembles of classifiers
-
Barandela, R., Valdovinos, R.M., Sanchez, J.S., New applications of ensembles of classifiers. Pattern Anal. Appl. 6 (2003), 245–256.
-
(2003)
Pattern Anal. Appl.
, vol.6
, pp. 245-256
-
-
Barandela, R.1
Valdovinos, R.M.2
Sanchez, J.S.3
-
3
-
-
27144531570
-
A survey of the behavior of several methods for balancing machine learning training data
-
Batista, G.E.A.P.A., Prati, R.C., Monard, M.C., A survey of the behavior of several methods for balancing machine learning training data. SIGKDD Explor. 6:1 (2004), 20–29.
-
(2004)
SIGKDD Explor.
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.E.A.P.A.1
Prati, R.C.2
Monard, M.C.3
-
4
-
-
84921689324
-
Classifying imbalanced data sets using similarity based hierarchical decomposition
-
Bayan, C., Fisher, R., Classifying imbalanced data sets using similarity based hierarchical decomposition. Pattern Recognit. 48 (2015), 1653–1672.
-
(2015)
Pattern Recognit.
, vol.48
, pp. 1653-1672
-
-
Bayan, C.1
Fisher, R.2
-
5
-
-
84922643075
-
Neighborhood sampling in bagging for imbalanced data
-
Blaszczynski, J., Stefanowski, J., Neighborhood sampling in bagging for imbalanced data. Neurocomputing 150 (2015), 529–542.
-
(2015)
Neurocomputing
, vol.150
, pp. 529-542
-
-
Blaszczynski, J.1
Stefanowski, J.2
-
6
-
-
0030211964
-
Bagging predictors
-
Breiman, L., Bagging predictors. Mach. Learn. 24:2 (1996), 123–140.
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
7
-
-
37949004300
-
Data mining for imbalanced datasets: an overview
-
O. Maimon L. Rokach Springer-Verlag New York
-
Chawla, N.V., Data mining for imbalanced datasets: an overview. Maimon, O., Rokach, L., (eds.) Data Mining and Knowledge Discovery Handbook, 2005, Springer-Verlag, New York, 853–867.
-
(2005)
Data Mining and Knowledge Discovery Handbook
, pp. 853-867
-
-
Chawla, N.V.1
-
8
-
-
0346586663
-
SMOTE: synthetic minority over-sampling technique
-
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P., SMOTE: synthetic minority over-sampling technique. J. Artifi. Intell. Res. 16 (2002), 321–357.
-
(2002)
J. Artifi. Intell. Res.
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
9
-
-
9444297357
-
SMOTEBoost: improving prediction of the minority class in boosting
-
Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W., SMOTEBoost: improving prediction of the minority class in boosting. European Conference on Principles and Practice of Knowledge Discovery in Databases, 2003, 107–119.
-
(2003)
European Conference on Principles and Practice of Knowledge Discovery in Databases
, pp. 107-119
-
-
Chawla, N.V.1
Lazarevic, A.2
Hall, L.O.3
Bowyer, K.W.4
-
11
-
-
33646023117
-
An introduction to ROC analysis
-
Fawcett, T., An introduction to ROC analysis. Pattern Recognit. Lett. 27 (2006), 861–874.
-
(2006)
Pattern Recognit. Lett.
, vol.27
, pp. 861-874
-
-
Fawcett, T.1
-
12
-
-
84862515469
-
A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches
-
Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F., A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. – Part C 42:4 (2012), 463–484.
-
(2012)
IEEE Trans. Syst. Man Cybern. – Part C
, vol.42
, Issue.4
, pp. 463-484
-
-
Galar, M.1
Fernandez, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
13
-
-
84881072864
-
EUSBoost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling
-
Galar, M., Fernandez, A., Barrenechea, E., Herrera, F., EUSBoost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling. Pattern Recognit. 46 (2014), 3460–3471.
-
(2014)
Pattern Recognit.
, vol.46
, pp. 3460-3471
-
-
Galar, M.1
Fernandez, A.2
Barrenechea, E.3
Herrera, F.4
-
14
-
-
0001138328
-
Algorithm AS 136: a k-means clustering algorithm
-
Hartigan, J.A., Wong, M.A., Algorithm AS 136: a k-means clustering algorithm. J. R. Stat. Soc., Ser. C 28:1 (1979), 100–108.
-
(1979)
J. R. Stat. Soc., Ser. C
, vol.28
, Issue.1
, pp. 100-108
-
-
Hartigan, J.A.1
Wong, M.A.2
-
15
-
-
77950231896
-
MSMOTE: improving classification performance when training data is imbalanced
-
Hu, S., Liang, Y., Ma, L., He, Y., MSMOTE: improving classification performance when training data is imbalanced. International Workshop on Computer Science and Engineering, 2009, 13–17.
-
(2009)
International Workshop on Computer Science and Engineering
, pp. 13-17
-
-
Hu, S.1
Liang, Y.2
Ma, L.3
He, Y.4
-
16
-
-
84893405732
-
Data clustering: a review
-
Jain, A.K., Murty, M.N., Flynn, P.J., Data clustering: a review. ACM Comput. Surv. 31:3 (1999), 264–323.
-
(1999)
ACM Comput. Surv.
, vol.31
, Issue.3
, pp. 264-323
-
-
Jain, A.K.1
Murty, M.N.2
Flynn, P.J.3
-
18
-
-
84926158684
-
Evolving connectionist systems for adaptive learning and knowledge discovery: trends and directions
-
Kasabov, N., Evolving connectionist systems for adaptive learning and knowledge discovery: trends and directions. Knowl.-Based Syst. 80 (2015), 24–33.
-
(2015)
Knowl.-Based Syst.
, vol.80
, pp. 24-33
-
-
Kasabov, N.1
-
19
-
-
84991033007
-
Mapping, learning, visualisation, classification and understanding of fMRI data in the NeuCube spatio temporal data machine
-
Manuscript Number: TNNLS-2016-P-6356, 2016
-
Kasabov, N., Doborjeh, M., Doborjeh, Z., Mapping, learning, visualisation, classification and understanding of fMRI data in the NeuCube spatio temporal data machine. IEEE Trans. Neural Netw. Learn. Syst., 2016, 10.1109/TNNLS.2016.2612890 Manuscript Number: TNNLS-2016-P-6356, 2016.
-
(2016)
IEEE Trans. Neural Netw. Learn. Syst.
-
-
Kasabov, N.1
Doborjeh, M.2
Doborjeh, Z.3
-
20
-
-
84896548177
-
Evolving spiking neural networks for personalised modelling, classification and prediction of spatio-temporal patterns with a case study on stroke
-
Kasabov, N., Feigin, V., Hou, Z.-G., Chen, Y., Liang, L., Krishnamurthi, R., Parmar, P., Evolving spiking neural networks for personalised modelling, classification and prediction of spatio-temporal patterns with a case study on stroke. Neurocomputing 134 (2014), 269–279.
-
(2014)
Neurocomputing
, vol.134
, pp. 269-279
-
-
Kasabov, N.1
Feigin, V.2
Hou, Z.-G.3
Chen, Y.4
Liang, L.5
Krishnamurthi, R.6
Parmar, P.7
-
21
-
-
0001122762
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
Kohavi, R., A study of cross-validation and bootstrap for accuracy estimation and model selection. International Joint Conference on Artificial Intelligence, 2, 1995, 1137–1143.
-
(1995)
International Joint Conference on Artificial Intelligence
, vol.2
, pp. 1137-1143
-
-
Kohavi, R.1
-
22
-
-
35348935140
-
Handling imbalanced datasets: a review
-
Kotsiantis, S., Kanellopoulos, D., Pintelas, P., Handling imbalanced datasets: a review. GESTS Int. Trans. Comput. Sci. Eng. 30:1 (2006), 25–36.
-
(2006)
GESTS Int. Trans. Comput. Sci. Eng.
, vol.30
, Issue.1
, pp. 25-36
-
-
Kotsiantis, S.1
Kanellopoulos, D.2
Pintelas, P.3
-
24
-
-
64049108468
-
Exploratory undersampling for class-imbalance learning
-
Liu, X.-Y., Wu, J., Zhou, Z.-H., Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. – Part B 39:2 (2009), 539–550.
-
(2009)
IEEE Trans. Syst. Man Cybern. – Part B
, vol.39
, Issue.2
, pp. 539-550
-
-
Liu, X.-Y.1
Wu, J.2
Zhou, Z.-H.3
-
25
-
-
27944460950
-
Total margin based adaptive fuzzy support vector machines for multiview face recognition
-
Liu, Y.-H., Chen, Y.-T., Total margin based adaptive fuzzy support vector machines for multiview face recognition. IEEE International Conference on Systems, Man and Cybernetics, 2, 2005, 1704–1711.
-
(2005)
IEEE International Conference on Systems, Man and Cybernetics
, vol.2
, pp. 1704-1711
-
-
Liu, Y.-H.1
Chen, Y.-T.2
-
26
-
-
84899979414
-
Class imbalance problem in data mining: review
-
Longadge, R., Dongrre, S.S., Malik, L., Class imbalance problem in data mining: review. Int. J. Comput. Sci. Netw. 2:1 (2013), 83–87.
-
(2013)
Int. J. Comput. Sci. Netw.
, vol.2
, Issue.1
, pp. 83-87
-
-
Longadge, R.1
Dongrre, S.S.2
Malik, L.3
-
27
-
-
40649126091
-
Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance
-
Mazurowski, M.A., Habas, P.A., Zurada, J.M., Lo, J.Y., Baker, J.A., Tourassi, G.D., Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance. Neural Netw. 21:2-3 (2008), 427–436.
-
(2008)
Neural Netw.
, vol.21
, Issue.2-3
, pp. 427-436
-
-
Mazurowski, M.A.1
Habas, P.A.2
Zurada, J.M.3
Lo, J.Y.4
Baker, J.A.5
Tourassi, G.D.6
-
28
-
-
84864362117
-
SPAN: spike pattern association neuron for learning spatio-temporal sequences
-
Mohemmed, A., Schliebs, S., Matsuda, S., Kasabov, N., SPAN: spike pattern association neuron for learning spatio-temporal sequences. Int. J. Neural Syst. 22:4 (2012), 1–16.
-
(2012)
Int. J. Neural Syst.
, vol.22
, Issue.4
, pp. 1-16
-
-
Mohemmed, A.1
Schliebs, S.2
Matsuda, S.3
Kasabov, N.4
-
29
-
-
84926525100
-
Coupling different methods for overcoming the class imbalance problem
-
Nanni, L., Fantozzi, C., Lazzarini, N., Coupling different methods for overcoming the class imbalance problem. Neurocomputing 158 (2015), 48–61.
-
(2015)
Neurocomputing
, vol.158
, pp. 48-61
-
-
Nanni, L.1
Fantozzi, C.2
Lazzarini, N.3
-
30
-
-
32344438970
-
Extreme rebalancing for SVMs: a case study
-
Raskutti, B., Kowalczyk, A., Extreme rebalancing for SVMs: a case study. ACM SIGKDD Explor. 6:1 (2004), 60–69.
-
(2004)
ACM SIGKDD Explor.
, vol.6
, Issue.1
, pp. 60-69
-
-
Raskutti, B.1
Kowalczyk, A.2
-
31
-
-
0025448521
-
The strength of weak learnabilty
-
Schapire, R.E., The strength of weak learnabilty. Mach. Learn. 5:2 (1990), 197–227.
-
(1990)
Mach. Learn.
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
32
-
-
72949118881
-
RUSBoost: a hybrid approach to alleviating class imbalance
-
Seiffert, C., Khoshgoftaar, T., Van Hulse, J., Napolitano, A., RUSBoost: a hybrid approach to alleviating class imbalance. IEEE Trans. Syst. Man Cybern. – Part A 40:1 (2010), 185–197.
-
(2010)
IEEE Trans. Syst. Man Cybern. – Part A
, vol.40
, Issue.1
, pp. 185-197
-
-
Seiffert, C.1
Khoshgoftaar, T.2
Van Hulse, J.3
Napolitano, A.4
-
33
-
-
67650706774
-
Classification of imbalanced data: a review
-
Sun, Y., Wong, A.K.C., Kamel, M.S., Classification of imbalanced data: a review. Int. J. Pattern Recognit. Artif. Intell. 23:4 (2009), 687–719.
-
(2009)
Int. J. Pattern Recognit. Artif. Intell.
, vol.23
, Issue.4
, pp. 687-719
-
-
Sun, Y.1
Wong, A.K.C.2
Kamel, M.S.3
-
34
-
-
84921817000
-
A novel ensemble method for classifying imbalanced data
-
Sun, Z., Song, Q., Zhu, X., Sun, H., Xu, B., Zhou, Y., A novel ensemble method for classifying imbalanced data. Pattern Recognit. 48 (2015), 1623–1637.
-
(2015)
Pattern Recognit.
, vol.48
, pp. 1623-1637
-
-
Sun, Z.1
Song, Q.2
Zhu, X.3
Sun, H.4
Xu, B.5
Zhou, Y.6
-
35
-
-
85019072045
-
A hybrid under-sampling approach for better bankruptcy prediction
-
Taehoon, K., Hyunchul, A., A hybrid under-sampling approach for better bankruptcy prediction. J. Intell. Inf. Syst. 21:2 (2015), 173–190.
-
(2015)
J. Intell. Inf. Syst.
, vol.21
, Issue.2
, pp. 173-190
-
-
Taehoon, K.1
Hyunchul, A.2
-
37
-
-
20844458491
-
Mining with rarity: a unifying framework
-
Weiss, G.M., Mining with rarity: a unifying framework. SIGKDD Explor. 6:1 (2004), 1–7.
-
(2004)
SIGKDD Explor.
, vol.6
, Issue.1
, pp. 1-7
-
-
Weiss, G.M.1
-
38
-
-
84925543305
-
A dissimilarity-based imbalance data classification algorithm
-
Zhang, X., Song, Q., Wang, G., Zhang, K., He, L., Jia, X., A dissimilarity-based imbalance data classification algorithm. Appl. Intell. 42 (2015), 544–565.
-
(2015)
Appl. Intell.
, vol.42
, pp. 544-565
-
-
Zhang, X.1
Song, Q.2
Wang, G.3
Zhang, K.4
He, L.5
Jia, X.6
-
39
-
-
84873725663
-
Performance of corporate bankruptcy prediction models on imbalanced dataset: the effect of sampling methods
-
Zhou, L., Performance of corporate bankruptcy prediction models on imbalanced dataset: the effect of sampling methods. Knowl.-Based Syst. 41 (2013), 16–25.
-
(2013)
Knowl.-Based Syst.
, vol.41
, pp. 16-25
-
-
Zhou, L.1
-
40
-
-
77955413170
-
Fault diagnosis based on imbalance modified kernel Fisher discriminant analysis
-
Zhu, Z.-B., Song, Z.-H., Fault diagnosis based on imbalance modified kernel Fisher discriminant analysis. Chem. Eng. Res. Des. 88:8 (2010), 936–951.
-
(2010)
Chem. Eng. Res. Des.
, vol.88
, Issue.8
, pp. 936-951
-
-
Zhu, Z.-B.1
Song, Z.-H.2
|