메뉴 건너뛰기




Volumn 134, Issue , 2014, Pages 269-279

Evolving spiking neural networks for personalised modelling, classification and prediction of spatio-temporal patterns with a case study on stroke

Author keywords

Evolving connectionist systems; Personalised modelling; Spatio temporal pattern recognition; Spiking neural networks; Stroke occurrence prediction

Indexed keywords

FORECASTING; INTELLIGENT AGENTS; LEARNING SYSTEMS; PATTERN RECOGNITION;

EID: 84896548177     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.09.049     Document Type: Article
Times cited : (115)

References (34)
  • 1
    • 84864998470 scopus 로고    scopus 로고
    • Data analysis and predictive systems and related methodologies-personalised trait modelling system
    • New Zealand Patent nos. 572036, PCT/NZ2009/000222, NZ2009/000222-W16-79
    • N. Kasabov, Data analysis and predictive systems and related methodologies-personalised trait modelling system, New Zealand Patent nos. 572036, PCT/NZ2009/000222, NZ2009/000222-W16-79, 2008.
    • (2008)
    • Kasabov, N.1
  • 2
    • 80055044134 scopus 로고    scopus 로고
    • Integrated optimisation method for personalised modelling and case studies for medical decision support
    • Kasabov N., Hu Y.J. Integrated optimisation method for personalised modelling and case studies for medical decision support. Int. J. Funct. Inform. Pers. Med. 2010, 3(3):236-256.
    • (2010) Int. J. Funct. Inform. Pers. Med. , vol.3 , Issue.3 , pp. 236-256
    • Kasabov, N.1    Hu, Y.J.2
  • 3
    • 35649001607 scopus 로고
    • A quantitative description of membrane current and its application to conduction and excitation in nerve
    • Hodgkin A.L., Huxley A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117:500-544.
    • (1952) J. Physiol. , vol.117 , pp. 500-544
    • Hodgkin, A.L.1    Huxley, A.F.2
  • 4
    • 0000788367 scopus 로고
    • Time structure of the activity of neural network models
    • Gerstner W. Time structure of the activity of neural network models. Phys. Rev. 1995, 51:738-758.
    • (1995) Phys. Rev. , vol.51 , pp. 738-758
    • Gerstner, W.1
  • 5
    • 0037705272 scopus 로고    scopus 로고
    • Computing create and learning with dynamic synapses
    • MIT Press, Boston, USA
    • Maass W., Zador A.M. Computing create and learning with dynamic synapses. In Pulsed Neural Networks 1999, 321-336. MIT Press, Boston, USA.
    • (1999) In Pulsed Neural Networks , pp. 321-336
    • Maass, W.1    Zador, A.M.2
  • 7
    • 4344661328 scopus 로고    scopus 로고
    • Which model to use for cortical spiking neurons?
    • Izhikevich E.M. Which model to use for cortical spiking neurons?. IEEE Trans. Neural Netw. 2004, 15(5):1063-1070.
    • (2004) IEEE Trans. Neural Netw. , vol.15 , Issue.5 , pp. 1063-1070
    • Izhikevich, E.M.1
  • 8
    • 33644898137 scopus 로고    scopus 로고
    • Polychronization: computation with spikes
    • Izhikevich E.M. Polychronization: computation with spikes. Neural Comput. 2006, 18:245-282.
    • (2006) Neural Comput. , vol.18 , pp. 245-282
    • Izhikevich, E.M.1
  • 9
    • 33750308619 scopus 로고    scopus 로고
    • Advances in design and application of spiking neural networks
    • Belatreche A., Maguire L.P., McGinnity M. Advances in design and application of spiking neural networks. Soft Comput. 2006, 11(3):239-248.
    • (2006) Soft Comput. , vol.11 , Issue.3 , pp. 239-248
    • Belatreche, A.1    Maguire, L.P.2    McGinnity, M.3
  • 10
    • 35248866865 scopus 로고    scopus 로고
    • Simulation of networks of spiking neurons: a review of tools and strategies
    • Brette R., et al. Simulation of networks of spiking neurons: a review of tools and strategies. J. Comput. Neurosci. 2007, 23:349-398.
    • (2007) J. Comput. Neurosci. , vol.23 , pp. 349-398
    • Brette, R.1
  • 12
    • 38949179110 scopus 로고    scopus 로고
    • Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains
    • Masquelier T., Guyonneau R., Thorpe S.J. Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains. PLoS One 2008, 3(1):e1377.
    • (2008) PLoS One , vol.3 , Issue.1
    • Masquelier, T.1    Guyonneau, R.2    Thorpe, S.J.3
  • 14
    • 77955058561 scopus 로고    scopus 로고
    • Evolving spiking neural networks for audiovisual information processing
    • Wysoski S., Benuskova L., Kasabov N. Evolving spiking neural networks for audiovisual information processing. Neural Netw. 2010, 23(7):819-835.
    • (2010) Neural Netw. , vol.23 , Issue.7 , pp. 819-835
    • Wysoski, S.1    Benuskova, L.2    Kasabov, N.3
  • 15
    • 84875878715 scopus 로고    scopus 로고
    • Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition
    • Kasabov N., Dhoble K., Nuntalid N., Indiveri G. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. Neural Netw. 2013, 41:188-201.
    • (2013) Neural Netw. , vol.41 , pp. 188-201
    • Kasabov, N.1    Dhoble, K.2    Nuntalid, N.3    Indiveri, G.4
  • 17
    • 84864362117 scopus 로고    scopus 로고
    • SPAN: spike pattern association neuron for learning spatio-temporal sequences
    • Mohemmed A., Schliebs S., Matsuda S., Kasabov N. SPAN: spike pattern association neuron for learning spatio-temporal sequences. Int. J. Neural Syst. 2012, 22(4):1-16.
    • (2012) Int. J. Neural Syst. , vol.22 , Issue.4 , pp. 1-16
    • Mohemmed, A.1    Schliebs, S.2    Matsuda, S.3    Kasabov, N.4
  • 18
    • 84875229251 scopus 로고    scopus 로고
    • Training spiking neural networks to associate spatio-temporal input-output spike patterns
    • Mohemmed A., Schliebs S., Matsuda S., Kasabov N. Training spiking neural networks to associate spatio-temporal input-output spike patterns. Neurocomputing 2013, 107:3-10.
    • (2013) Neurocomputing , vol.107 , pp. 3-10
    • Mohemmed, A.1    Schliebs, S.2    Matsuda, S.3    Kasabov, N.4
  • 19
    • 70649084995 scopus 로고    scopus 로고
    • To spike or not to spike: a probabilistic spiking neuron model
    • Kasabov N. To spike or not to spike: a probabilistic spiking neuron model. Neural Netw. 2010, 23(1):16-19.
    • (2010) Neural Netw. , vol.23 , Issue.1 , pp. 16-19
    • Kasabov, N.1
  • 20
    • 67349253008 scopus 로고    scopus 로고
    • A decade of Kasabov[U+05F3]s evolving connectionist systems: a review
    • Watts M. A decade of Kasabov[U+05F3]s evolving connectionist systems: a review. IEEE Trans. SMC - Part C: Appl. Rev. 2009, 39(3):253-269.
    • (2009) IEEE Trans. SMC - Part C: Appl. Rev. , vol.39 , Issue.3 , pp. 253-269
    • Watts, M.1
  • 21
    • 78649583381 scopus 로고    scopus 로고
    • Knowledge extraction from evolving spiking neural networks with rank order population coding
    • Soltic S., Kasabov N. Knowledge extraction from evolving spiking neural networks with rank order population coding. Int. J. Neural Syst. 2010, 20(6):437-445.
    • (2010) Int. J. Neural Syst. , vol.20 , Issue.6 , pp. 437-445
    • Soltic, S.1    Kasabov, N.2
  • 22
    • 78349299057 scopus 로고    scopus 로고
    • Auckland stroke outcomes study. Part 1: gender, stroke types, ethnicity, and functional outcomes 5 years poststroke
    • Feigin V.L., Barker-Collo S., Parag V., Lawes C.M.M., Ratnasabapathy Y., Glen E. Auckland stroke outcomes study. Part 1: gender, stroke types, ethnicity, and functional outcomes 5 years poststroke. Neurology 2010, 75(18):1597-1607.
    • (2010) Neurology , vol.75 , Issue.18 , pp. 1597-1607
    • Feigin, V.L.1    Barker-Collo, S.2    Parag, V.3    Lawes, C.M.M.4    Ratnasabapathy, Y.5    Glen, E.6
  • 23
    • 30844446252 scopus 로고    scopus 로고
    • Ethnic disparities in incidence of stroke subtypes: Auckland regional community stroke study, 2002-2003
    • Feigin V.L., Carter K., Hackett M., Barber P., McNaughton H., Dyall L. Ethnic disparities in incidence of stroke subtypes: Auckland regional community stroke study, 2002-2003. Lancet Neurol. 2006, 5(2):130-139.
    • (2006) Lancet Neurol. , vol.5 , Issue.2 , pp. 130-139
    • Feigin, V.L.1    Carter, K.2    Hackett, M.3    Barber, P.4    McNaughton, H.5    Dyall, L.6
  • 24
    • 0043013350 scopus 로고    scopus 로고
    • Stroke epidemiology: a review of population based studies of incidence, prevalence, and case fatality in the late 20th century
    • Feigin V.L., Lawes C., Bennett D., Anderson C. Stroke epidemiology: a review of population based studies of incidence, prevalence, and case fatality in the late 20th century. Lancet Neurol. 2003, 2(1):43-53.
    • (2003) Lancet Neurol. , vol.2 , Issue.1 , pp. 43-53
    • Feigin, V.L.1    Lawes, C.2    Bennett, D.3    Anderson, C.4
  • 25
    • 62149099593 scopus 로고    scopus 로고
    • Worldwide stroke incidence and early case fatality reported in 56 population based studies: a systematic review
    • Feigin V.L., Lawes C., Bennett D., Barker S., Varsha P. Worldwide stroke incidence and early case fatality reported in 56 population based studies: a systematic review. Lancet Neurol. 2009, 8(4):355-369.
    • (2009) Lancet Neurol. , vol.8 , Issue.4 , pp. 355-369
    • Feigin, V.L.1    Lawes, C.2    Bennett, D.3    Barker, S.4    Varsha, P.5
  • 27
  • 28
    • 79959923883 scopus 로고    scopus 로고
    • Trigger factors and their attributable risk for rupture of intracranial aneurysms: a case-crossover study
    • Vlak M., Rinkel G., Greebe P., van der Bom J., Algra A. Trigger factors and their attributable risk for rupture of intracranial aneurysms: a case-crossover study. Stroke 2011, 42:1878-1882.
    • (2011) Stroke , vol.42 , pp. 1878-1882
    • Vlak, M.1    Rinkel, G.2    Greebe, P.3    van der Bom, J.4    Algra, A.5
  • 29
    • 84912085623 scopus 로고    scopus 로고
    • Evolving personalized modeling system for integrated feature, neighborhood and parameter optimization utilizing gravitational search algorithm
    • Springer, 10.1007/s12530-013-9081-x
    • Liang W., Hu Y., Kasabov N. Evolving personalized modeling system for integrated feature, neighborhood and parameter optimization utilizing gravitational search algorithm. Evolving System 2013, Springer, 10.1007/s12530-013-9081-x.
    • (2013) Evolving System
    • Liang, W.1    Hu, Y.2    Kasabov, N.3
  • 31
    • 71549154408 scopus 로고    scopus 로고
    • Quantum-inspired evolutionary algorithm: a multi-model EDA
    • Defoin-Platel M., Schliebs S., Kasabov N. Quantum-inspired evolutionary algorithm: a multi-model EDA. IEEE Trans. Evol. Comput. 2009, 13(6):1218-1232.
    • (2009) IEEE Trans. Evol. Comput. , vol.13 , Issue.6 , pp. 1218-1232
    • Defoin-Platel, M.1    Schliebs, S.2    Kasabov, N.3
  • 32
    • 0030779574 scopus 로고    scopus 로고
    • Solar and geomagnetic activities: are there associations with stroke occurrence?
    • Feigin V.L., Nikitin Y., Vinogradova T. Solar and geomagnetic activities: are there associations with stroke occurrence?. Cerebrovasc. Dis. 1997, 7(6):345-348.
    • (1997) Cerebrovasc. Dis. , vol.7 , Issue.6 , pp. 345-348
    • Feigin, V.L.1    Nikitin, Y.2    Vinogradova, T.3
  • 33
    • 68149171764 scopus 로고    scopus 로고
    • Integrated feature and parameter optimization for evolving spiking neural networks: exploring heterogeneous probabilistic models
    • Schliebs S., Defoin Platel M., Worner S., Kasabov N. Integrated feature and parameter optimization for evolving spiking neural networks: exploring heterogeneous probabilistic models. Neural Netw. 2009, 22:623-632.
    • (2009) Neural Netw. , vol.22 , pp. 623-632
    • Schliebs, S.1    Defoin Platel, M.2    Worner, S.3    Kasabov, N.4
  • 34
    • 84893643798 scopus 로고    scopus 로고
    • NeuCube: A Spiking Neural Network Architecture for Mapping, Learning and Understanding of Spatio-Temporal Brain Data
    • Kasabov N. NeuCube: A Spiking Neural Network Architecture for Mapping, Learning and Understanding of Spatio-Temporal Brain Data. Neural Netw. 2014, 52:62-67. 10.1016/j.neunet.2014.01.006.
    • (2014) Neural Netw. , vol.52 , pp. 62-67
    • Kasabov, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.