메뉴 건너뛰기




Volumn 42, Issue 3, 2015, Pages 544-565

A dissimilarity-based imbalance data classification algorithm

Author keywords

Class imbalance; Dissimilarity based classification; Feature selection; Prototype selection; Software defect prediction

Indexed keywords

BENCHMARKING; DECISION TREES; FEATURE EXTRACTION; SOFTWARE PROTOTYPING;

EID: 84925543305     PISSN: 0924669X     EISSN: 15737497     Source Type: Journal    
DOI: 10.1007/s10489-014-0610-5     Document Type: Article
Times cited : (41)

References (81)
  • 3
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • Batista GE, Prati RC, Monard MC (2004) A study of the behavior of several methods for balancing machine learning training data. ACM Sigkdd Explorations Newsletter 6(1):20–29
    • (2004) ACM Sigkdd Explorations Newsletter , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.1    Prati, R.C.2    Monard, M.C.3
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Mach learn 24(2):123–140
    • (1996) Mach learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 7
    • 37949004300 scopus 로고    scopus 로고
    • (2005) Data mining for imbalanced datasets: An overview
    • Springer, New York:
    • Chawla NV (2005) Data mining for imbalanced datasets: An overview. In: Data mining and knowledge discovery handbook. Springer, New York, pp 853–867
    • Data mining and knowledge discovery handbook , pp. 853-867
    • Chawla, N.V.1
  • 11
    • 58049141286 scopus 로고    scopus 로고
    • Fast A roc-based feature selection metric for small samples and imbalanced data classification problems. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge very and data mining, pp. 124–132
    • Chen XW, Wasikowski M (2008) Fast A roc-based feature selection metric for small samples and imbalanced data classification problems. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge very and data mining, pp. 124–132. ACM
    • (2008) ACM
    • Chen, X.W.1    Wasikowski, M.2
  • 12
    • 0029357425 scopus 로고
    • Mean shift, mode seeking, and clustering
    • Cheng Y (1995) Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal Mach Intel 17(8):790–799
    • (1995) IEEE Trans Pattern Anal Mach Intel , vol.17 , Issue.8 , pp. 790-799
    • Cheng, Y.1
  • 13
    • 33745786017 scopus 로고    scopus 로고
    • A multistrategy approach for digital text categorization from imbalanced documents
    • Del Castillo MD, Serrano JI (2004) A multistrategy approach for digital text categorization from imbalanced documents. ACM SIGKDD Explorations Newsletter 6(1):70–79
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 70-79
    • Del Castillo, M.D.1    Serrano, J.I.2
  • 14
    • 0002106691 scopus 로고    scopus 로고
    • Metacost a general method for making classifiers cost-sensitive. In: Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining ACM
    • Domingos P (1999) Metacost a general method for making classifiers cost-sensitive. In: Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining ACM, pp 155–164
    • (1999) pp 155–164
    • Domingos, P.1
  • 15
    • 84925461874 scopus 로고    scopus 로고
    • Compactness and complexity of pattern recognition problems. In: International Symposium on Pattern Recognition In Memoriam Pierre Devijver
    • Duin R (1999) Compactness and complexity of pattern recognition problems. In: International Symposium on Pattern Recognition In Memoriam Pierre Devijver, pp 124–128
    • (1999) pp 124–128
    • Duin, R.1
  • 17
    • 17144461493 scopus 로고    scopus 로고
    • Relational discriminant analysis
    • Duin R, Pekalska E, Ridder D (1999) Relational discriminant analysis. Pattern Recog Lett 20(11):1175–1181
    • (1999) Pattern Recog Lett , vol.20 , Issue.11 , pp. 1175-1181
    • Duin, R.1    Pekalska, E.2    Ridder, D.3
  • 18
    • 0004038335 scopus 로고    scopus 로고
    • Representation and recognition in vision
    • Edelman S (1999) Representation and recognition in vision. MIT press
    • (1999) MIT press
    • Edelman, S.1
  • 19
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • Forman G (2003) An extensive empirical study of feature selection metrics for text classification. J Mach Learn Res 3:1289–1305
    • (2003) J Mach Learn Res , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 20
    • 56549113284 scopus 로고    scopus 로고
    • Uci machine learning repository irvine, ca: University of california
    • Frank A, Asuncion A (2010) Uci machine learning repository irvine, ca: University of california. School of Information and Computer Science, vol 213. http://archive.ics.uci.edu/ml
    • (2010) School of Information and Computer Science , vol.213
    • Frank, A.1    Asuncion, A.2
  • 22
    • 57649123451 scopus 로고    scopus 로고
    • On the class imbalance problem. In: Fourth International Conference on Natural Computation vol 4 IEEE
    • Guo X, Yin Y, Dong C, Yang G, Zhou G (2008) On the class imbalance problem. In: Fourth International Conference on Natural Computation vol 4 IEEE, pp 192–201
    • (2008) pp 192–201
    • Guo, X.1    Yin, Y.2    Dong, C.3    Yang, G.4    Zhou, G.5
  • 23
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. The J Mach Learn Res 3:1157–1182
    • (2003) The J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 25
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263–1284
    • (2009) IEEE Trans Knowl Data Eng , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.A.2
  • 26
    • 14644390912 scopus 로고    scopus 로고
    • Using auc and accuracy in evaluating learning algorithms
    • Huang J, Ling CX (2005) Using auc and accuracy in evaluating learning algorithms. IEEE Trans Knowl Data Eng 17(3):299– 310
    • (2005) IEEE Trans Knowl Data Eng , vol.17 , Issue.3 , pp. 299-310
    • Huang, J.1    Ling, C.X.2
  • 27
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • Jain A, Zongker D (1997) Feature selection: Evaluation, application, and small sample performance. IEEE Trans Pattern Anal Mach Int 19(2):153–158
    • (1997) IEEE Trans Pattern Anal Mach Int , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 28
    • 2242481419 scopus 로고    scopus 로고
    • Learning from imbalanced data sets: a comparison of various strategies
    • CA, Menlo Park:
    • Japkowicz N (2000) Learning from imbalanced data sets: a comparison of various strategies. In: AAAI workshop on sets, learning from imbalanced data vol 68. CA, Menlo Park
    • (2000) AAAI workshop on sets, learning from imbalanced data , vol.68
    • Japkowicz, N.1
  • 29
    • 0034825091 scopus 로고    scopus 로고
    • Supervised versus unsupervised binary-learning by feedforward neural networks
    • Japkowicz N (2001) Supervised versus unsupervised binary-learning by feedforward neural networks. Mach Learn 42(1-2):97–122
    • (2001) Mach Learn , vol.42 , Issue.1-2 , pp. 97-122
    • Japkowicz, N.1
  • 30
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • Japkowicz N, Stephen S (2002) The class imbalance problem: A systematic study. Int Data Anal 6(5):429–449
    • (2002) Int Data Anal , vol.6 , Issue.5 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 31
    • 0015680655 scopus 로고
    • Clustering using a similarity measure based on shared near neighbors
    • Jarvis RA, Patrick EA (1973) Clustering using a similarity measure based on shared near neighbors. IEEE Trans Comput 100(11):1025–1034
    • (1973) IEEE Trans Comput , vol.100 , Issue.11 , pp. 1025-1034
    • Jarvis, R.A.1    Patrick, E.A.2
  • 32
    • 52549091028 scopus 로고    scopus 로고
    • Techniques for evaluating fault prediction models
    • Jiang Y, Cukic B, Ma Y (2008) Techniques for evaluating fault prediction models. Emp Software Eng 13(5):561–595
    • (2008) Emp Software Eng , vol.13 , Issue.5 , pp. 561-595
    • Jiang, Y.1    Cukic, B.2    Ma, Y.3
  • 33
    • 51649085353 scopus 로고    scopus 로고
    • Evaluating boosting algorithms to classify rare classes: Comparison and improvements. In: Proceedings IEEE International Conference on Data Mining
    • Joshi MV, Kumar V, Agarwal RC (2001) Evaluating boosting algorithms to classify rare classes: Comparison and improvements. In: Proceedings IEEE International Conference on Data Mining, pp 257–264
    • (2001) pp 257–264
    • Joshi, M.V.1    Kumar, V.2    Agarwal, R.C.3
  • 34
    • 77950789610 scopus 로고    scopus 로고
    • Feature selection with imbalanced data for software defect prediction. In: International Conference on Machine Learning and Applications, IEEE
    • Khoshgoftaar TM, Gao K (2009) Feature selection with imbalanced data for software defect prediction. In: International Conference on Machine Learning and Applications, IEEE, pp 235–240
    • (2009) pp 235–240
    • Khoshgoftaar, T.M.1    Gao, K.2
  • 35
    • 78751556705 scopus 로고    scopus 로고
    • Attribute selection and imbalanced data: Problems in software defect prediction. In: International Conference on Tools with Artificial Intelligence, vol 1 IEEE
    • Khoshgoftaar TM, Gao K, Seliya N (2010) Attribute selection and imbalanced data: Problems in software defect prediction. In: International Conference on Tools with Artificial Intelligence, vol 1 IEEE, pp 137–144
    • (2010) pp 137–144
    • Khoshgoftaar, T.M.1    Gao, K.2    Seliya, N.3
  • 36
    • 48649089002 scopus 로고    scopus 로고
    • An empirical study of learning from imbalanced data using random forest. In: IEEE International Conference on Tools with Artificial Intelligence, vol 2 IEEE
    • Khoshgoftaar TM, Golawala M, Van Hulse J (2007) An empirical study of learning from imbalanced data using random forest. In: IEEE International Conference on Tools with Artificial Intelligence, vol 2 IEEE, pp 310–317
    • (2007) pp 310–317
    • Khoshgoftaar, T.M.1    Golawala, M.2    Van Hulse, J.3
  • 37
    • 34250851661 scopus 로고    scopus 로고
    • On using prototype reduction schemes to optimize dissimilarity-based classification
    • Kim S, Oommen B (2007) On using prototype reduction schemes to optimize dissimilarity-based classification. Pattern Recog 40(11):2946–2957
    • (2007) Pattern Recog , vol.40 , Issue.11 , pp. 2946-2957
    • Kim, S.1    Oommen, B.2
  • 39
    • 33749685587 scopus 로고    scopus 로고
    • Oommen BJ (2006) On optimizing dissimilarity-based classification using prototype reduction schemes
    • Springer, New York:
    • Kim SW, Oommen BJ (2006) On optimizing dissimilarity-based classification using prototype reduction schemes. In: Image Analysis and Recognition. Springer, New York, pp 15–28
    • Image Analysis and Recognition , pp. 15-28
    • Kim, S.W.1
  • 40
    • 35348935140 scopus 로고    scopus 로고
    • Handling imbalanced datasets: A review. GESTS International
    • Kotsiantis S, Kanellopoulos D, Pintelas P (2006) Handling imbalanced datasets: A review. GESTS International. Trans Comput Sci Eng 30(1):25–36
    • (2006) Trans Comput Sci Eng , vol.30 , Issue.1 , pp. 25-36
    • Kotsiantis, S.1    Kanellopoulos, D.2    Pintelas, P.3
  • 42
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced training sets: one-sided selection
    • Kubat M, Matwin S (1997) Addressing the curse of imbalanced training sets: one-sided selection. In: ICML, vol 97, pp 179–186
    • (1997) ICML , vol.97 , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 43
    • 49749145242 scopus 로고    scopus 로고
    • Optimal subsequence bijection. In: Seventh IEEE International Conference on Data Mining, IEEE
    • Latecki LJ, Wang Q, Koknar-Tezel S, Megalooikonomou V (2007) Optimal subsequence bijection. In: Seventh IEEE International Conference on Data Mining, IEEE, pp 565–570
    • (2007) pp 565–570
    • Latecki, L.J.1    Wang, Q.2    Koknar-Tezel, S.3    Megalooikonomou, V.4
  • 44
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomforest
    • Liaw A, Wiener M (2002) Classification and regression by randomforest. Rnews 2(3):18–22
    • (2002) Rnews , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 45
    • 84878098426 scopus 로고    scopus 로고
    • The influence of class imbalance on cost-sensitive learning: An empirical study. In: Sixth International Conference on Data Mining IEEE
    • Liu XY, Zhou ZH (2006) The influence of class imbalance on cost-sensitive learning: An empirical study. In: Sixth International Conference on Data Mining IEEE, pp 970–974
    • (2006) pp 970–974
    • Liu, X.Y.1    Zhou, Z.H.2
  • 46
    • 79751534499 scopus 로고    scopus 로고
    • Resampling techniques for sentence boundary detection: a case study in machine learning from imbalanced data for spoken language processing. Tech
    • Liu Y, Chawla N, Shriberg E, Stolcke A, Harper M (2003) Resampling techniques for sentence boundary detection: a case study in machine learning from imbalanced data for spoken language processing. Tech. rep
    • (2003) rep
    • Liu, Y.1    Chawla, N.2    Shriberg, E.3    Stolcke, A.4    Harper, M.5
  • 47
    • 0002551285 scopus 로고    scopus 로고
    • Feature selection for unbalanced class distribution and naive bayes
    • Mladenic D, Grobelnik M (1999) Feature selection for unbalanced class distribution and naive bayes. In: ICML, vol 99, pp 258–267
    • (1999) ICML , vol.99 , pp. 258-267
    • Mladenic, D.1    Grobelnik, M.2
  • 48
    • 84899759403 scopus 로고    scopus 로고
    • Evaluation of gene expression classification studies: Factors, associated with classification performance
    • Novianti PW, Roes KC, Eijkemans MJ (2014) Evaluation of gene expression classification studies: Factors, associated with classification performance. PloS one 9(4) e96:063
    • (2014) PloS one 9(4) , vol.e96 , pp. 063
    • Novianti, P.W.1    Roes, K.C.2    Eijkemans, M.J.3
  • 49
    • 37849025714 scopus 로고    scopus 로고
    • Dissimilarity-based classification of seismic signals at nevado del ruiz volcano
    • Orozco M, García ME, Duin RP, Castellanos CG (2006) Dissimilarity-based classification of seismic signals at nevado del ruiz volcano. Earth Sci Res J 10(2)
    • (2006) Earth Sci Res J , vol.10 , Issue.2
    • Orozco, M.1    García, M.E.2    Duin, R.P.3    Castellanos, C.G.4
  • 50
    • 84945896801 scopus 로고    scopus 로고
    • Nearest feature rules and dissimilarity representations for face recognition problems Face Recognition; International Journal of Advanced Robotic Systems, Vienna
    • Orozco-Alzate M, Castellanos-Domínguez C (2007) Nearest feature rules and dissimilarity representations for face recognition problems Face Recognition; International Journal of Advanced Robotic Systems, Vienna, Austria, pp 337–356
    • (2007) Austria , pp. 337-356
    • Orozco-Alzate, M.1    Castellanos-Domínguez, C.2
  • 51
    • 27744575652 scopus 로고    scopus 로고
    • Classifying spectral data using relational representation
    • In, Proceedings of the Spectral Imaging Workshop:
    • Paclik P, Duin R (2003) Classifying spectral data using relational representation. In: In: Proceedings of the Spectral Imaging Workshop
    • (2003) In
    • Paclik, P.1    Duin, R.2
  • 52
    • 0348041666 scopus 로고    scopus 로고
    • Dissimilarity-based classification of spectra: computational issues
    • Paclik P, Duin R (2003) Dissimilarity-based classification of spectra: computational issues. Real-Time Imaging 9(4):237–244
    • (2003) Real-Time Imaging , vol.9 , Issue.4 , pp. 237-244
    • Paclik, P.1    Duin, R.2
  • 53
    • 84925461862 scopus 로고    scopus 로고
    • Kumar V: Introduction to data mining
    • Pang-Ning T, Steinbach M, Kumar V (2007) Introduction to data mining
    • (2007) Steinbach M
    • Pang-Ning, T.1
  • 54
    • 84925461861 scopus 로고    scopus 로고
    • Introduction to data mining. In: Library of Congress
    • Pang-Ning T, Steinbach M, Kumar V, et al. (2006) Introduction to data mining. In: Library of Congress
    • (2006) et al
    • Pang-Ning, T.1    Steinbach, M.2    Kumar, V.3
  • 55
    • 4944220798 scopus 로고    scopus 로고
    • P-fcm: a proximity based fuzzy clustering
    • Pedrycz W, Loia V, Senatore S (2004) P-fcm: a proximity based fuzzy clustering. Fuzzy Sets Syst 148(1):21–41
    • (2004) Fuzzy Sets Syst , vol.148 , Issue.1 , pp. 21-41
    • Pedrycz, W.1    Loia, V.2    Senatore, S.3
  • 56
    • 0036604999 scopus 로고    scopus 로고
    • Dissimilarity representations allow for building good classifiers
    • Pekalska E, Duin R (2002) Dissimilarity representations allow for building good classifiers. Patte Recognition Letters 23(8):943–956
    • (2002) Patte Recognition Letters , vol.23 , Issue.8 , pp. 943-956
    • Pekalska, E.1    Duin, R.2
  • 57
    • 27744546228 scopus 로고    scopus 로고
    • Prototype selection for dissimilarity-based classifiers
    • Pekalska E, Duin R, Paclik P (2006) Prototype selection for dissimilarity-based classifiers. Pattern Recog 39(2):189–208
    • (2006) Pattern Recog , vol.39 , Issue.2 , pp. 189-208
    • Pekalska, E.1    Duin, R.2    Paclik, P.3
  • 60
    • 0041995203 scopus 로고    scopus 로고
    • A generalized kernel approach to dissimilarity-based classification
    • Pekalska E, Paclik P, Duin RP (2002) A generalized kernel approach to dissimilarity-based classification. The J Mach Learn Res 2:175–211
    • (2002) The J Mach Learn Res , vol.2 , pp. 175-211
    • Pekalska, E.1    Paclik, P.2    Duin, R.P.3
  • 61
    • 35148838577 scopus 로고    scopus 로고
    • Applying novel resampling strategies to software defect prediction. In: In: Conference of the North American Fuzzy Information Processing Society IEEE
    • Pelayo L, Dick S (2007) Applying novel resampling strategies to software defect prediction. In: In: Conference of the North American Fuzzy Information Processing Society IEEE, pp 69–72
    • (2007) pp 69–72
    • Pelayo, L.1    Dick, S.2
  • 62
    • 0036604999 scopus 로고    scopus 로고
    • Dissimilarity representations allow for building good classifiers
    • Pkekalska E, Duin RP (2002) Dissimilarity representations allow for building good classifiers. Pattern Recog Lett 23(8):943–956
    • (2002) Pattern Recog Lett , vol.23 , Issue.8 , pp. 943-956
    • Pkekalska, E.1    Duin, R.P.2
  • 63
    • 27744493015 scopus 로고    scopus 로고
    • The dissimilarity representation for pattern recognition: foundations and applications. 64
    • Pkekalska E, Duin RP (2005) The dissimilarity representation for pattern recognition: foundations and applications. 64. World Scientific
    • (2005) World Scientific
    • Pkekalska, E.1    Duin, R.P.2
  • 65
    • 0017930815 scopus 로고
    • Dynamic programming algorithm optimization for spoken word recognition IEEE
    • Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recognition IEEE. Trans Acoustics Speech Signal Process 26(1):43–49
    • (1978) Trans Acoustics Speech Signal Process , vol.26 , Issue.1 , pp. 43-49
    • Sakoe, H.1    Chiba, S.2
  • 66
    • 84870441851 scopus 로고    scopus 로고
    • A fast clustering-based feature subset selection algorithm for high-dimensional data
    • Song Q, Ni J, Wang G (2013) A fast clustering-based feature subset selection algorithm for high-dimensional data. IEEE Trans Knowl Data Eng 25(1):1–14
    • (2013) IEEE Trans Knowl Data Eng , vol.25 , Issue.1 , pp. 1-14
    • Song, Q.1    Ni, J.2    Wang, G.3
  • 69
    • 3242765279 scopus 로고    scopus 로고
    • A bias-variance analysis of a real world learning problem: The coil challenge 2000
    • Van Der Putten P, Van Someren M (2004) A bias-variance analysis of a real world learning problem: The coil challenge 2000. Mach Learn 57(1-2):177–195
    • (2004) Mach Learn , vol.57 , Issue.1-2 , pp. 177-195
    • Van Der Putten, P.1    Van Someren, M.2
  • 71
    • 77951173974 scopus 로고    scopus 로고
    • Feature selection with high-dimensional imbalanced data. In: IEEE International Conference on Data Mining Workshops, IEEE
    • Van Hulse J, Khoshgoftaar TM, Napolitano A, Wald R (2009) Feature selection with high-dimensional imbalanced data. In: IEEE International Conference on Data Mining Workshops, IEEE, pp 507–514
    • (2009) pp 507–514
    • Van Hulse, J.1    Khoshgoftaar, T.M.2    Napolitano, A.3    Wald, R.4
  • 72
    • 77956023732 scopus 로고    scopus 로고
    • Combating the small sample class imbalance problem using feature selection
    • Wasikowski M, Chen X (2010) Combating the small sample class imbalance problem using feature selection. IEEE Trans Knowl Data Eng 22:1388–1400
    • (2010) IEEE Trans Knowl Data Eng , vol.22 , pp. 1388-1400
    • Wasikowski, M.1    Chen, X.2
  • 73
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: a unifying framework
    • Weiss G (2004) Mining with rarity: a unifying framework. Sigkdd Explorations 6(1):7–19
    • (2004) Sigkdd Explorations , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.1
  • 74
    • 84925461855 scopus 로고    scopus 로고
    • eiss GM, Provost F (2001) The effect of class distribution on classifier learning: an empirical study Rutgers University
    • Weiss GM, Provost F (2001) The effect of class distribution on classifier learning: an empirical study Rutgers University
  • 75
    • 84925461854 scopus 로고
    • Fast effective rule induction. In: Twelfth International Conference on Machine Learning
    • William C (1995) Fast effective rule induction. In: Twelfth International Conference on Machine Learning, pp 115–123
    • (1995) pp 115–123
    • William, C.1
  • 77
    • 84875404700 scopus 로고    scopus 로고
    • Feature selection for high-dimensional imbalanced data
    • Yin L, Ge Y, Xiao K, Wang X, Quan X (2013) Feature selection for high-dimensional imbalanced data. Neurocomputing 105:3–11
    • (2013) Neurocomputing , vol.105 , pp. 3-11
    • Yin, L.1    Ge, Y.2    Xiao, K.3    Wang, X.4    Quan, X.5
  • 78
    • 1942451938 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data: A fast correlation-based filter solution
    • Yu L, Liu H (2003) Feature selection for high-dimensional data: A fast correlation-based filter solution. In: ICML, vol 3, pp 856–863
    • (2003) ICML , vol.3 , pp. 856-863
    • Yu, L.1    Liu, H.2
  • 79
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu L, Liu H (2004) Efficient feature selection via analysis of relevance and redundancy. The J Mach Learn Res 5:1205–1224
    • (2004) The J Mach Learn Res , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 81
    • 16644402628 scopus 로고    scopus 로고
    • Feature selection for text categorization on imbalanced data
    • Zheng Z, Wu X, Srihari R (2004) Feature selection for text categorization on imbalanced data. ACM SIGKDD Explorations Newsletter 6(1):80–89
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 80-89
    • Zheng, Z.1    Wu, X.2    Srihari, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.