-
2
-
-
0036522693
-
Strategies for learning in class imbalance problems
-
Barandela R, Sánchez JS, Garcıa V, Rangel E (2003) Strategies for learning in class imbalance problems. Pattern Recog 36(3):849–851
-
(2003)
Pattern Recog
, vol.36
, Issue.3
, pp. 849-851
-
-
Barandela, R.1
Sánchez, J.S.2
Garcıa, V.3
Rangel, E.4
-
3
-
-
27144531570
-
A study of the behavior of several methods for balancing machine learning training data
-
Batista GE, Prati RC, Monard MC (2004) A study of the behavior of several methods for balancing machine learning training data. ACM Sigkdd Explorations Newsletter 6(1):20–29
-
(2004)
ACM Sigkdd Explorations Newsletter
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.E.1
Prati, R.C.2
Monard, M.C.3
-
6
-
-
0030211964
-
Bagging predictors
-
Breiman L (1996) Bagging predictors. Mach learn 24(2):123–140
-
(1996)
Mach learn
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
7
-
-
37949004300
-
(2005) Data mining for imbalanced datasets: An overview
-
Springer, New York:
-
Chawla NV (2005) Data mining for imbalanced datasets: An overview. In: Data mining and knowledge discovery handbook. Springer, New York, pp 853–867
-
Data mining and knowledge discovery handbook
, pp. 853-867
-
-
Chawla, N.V.1
-
10
-
-
9444297357
-
Smoteboost: Improving prediction of the minority class in boosting
-
Springer, New York:
-
Chawla NV, Lazarevic A, Hall LO, Bowyer KW (2003) Smoteboost: Improving prediction of the minority class in boosting. In: Knowledge Discovery in Databases: PKDD 2003. Springer, New York, pp 107–119
-
(2003)
Knowledge Discovery in Databases: PKDD
, vol.2003
, pp. 107-119
-
-
Chawla, N.V.1
Lazarevic, A.2
Hall, L.O.3
Bowyer, K.W.4
-
11
-
-
58049141286
-
Fast A roc-based feature selection metric for small samples and imbalanced data classification problems. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge very and data mining, pp. 124–132
-
Chen XW, Wasikowski M (2008) Fast A roc-based feature selection metric for small samples and imbalanced data classification problems. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge very and data mining, pp. 124–132. ACM
-
(2008)
ACM
-
-
Chen, X.W.1
Wasikowski, M.2
-
12
-
-
0029357425
-
Mean shift, mode seeking, and clustering
-
Cheng Y (1995) Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal Mach Intel 17(8):790–799
-
(1995)
IEEE Trans Pattern Anal Mach Intel
, vol.17
, Issue.8
, pp. 790-799
-
-
Cheng, Y.1
-
13
-
-
33745786017
-
A multistrategy approach for digital text categorization from imbalanced documents
-
Del Castillo MD, Serrano JI (2004) A multistrategy approach for digital text categorization from imbalanced documents. ACM SIGKDD Explorations Newsletter 6(1):70–79
-
(2004)
ACM SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 70-79
-
-
Del Castillo, M.D.1
Serrano, J.I.2
-
14
-
-
0002106691
-
Metacost a general method for making classifiers cost-sensitive. In: Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining ACM
-
Domingos P (1999) Metacost a general method for making classifiers cost-sensitive. In: Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining ACM, pp 155–164
-
(1999)
pp 155–164
-
-
Domingos, P.1
-
15
-
-
84925461874
-
Compactness and complexity of pattern recognition problems. In: International Symposium on Pattern Recognition In Memoriam Pierre Devijver
-
Duin R (1999) Compactness and complexity of pattern recognition problems. In: International Symposium on Pattern Recognition In Memoriam Pierre Devijver, pp 124–128
-
(1999)
pp 124–128
-
-
Duin, R.1
-
16
-
-
78049457027
-
A matlab toolbox for pattern recognition
-
Duin R, Juszczak P, Paclik P, Pekalska E, De Ridder D, Tax D, Verzakov S (2000) A matlab toolbox for pattern recognition. PRTools version 3
-
(2000)
PRTools version
, pp. 3
-
-
Duin, R.1
Juszczak, P.2
Paclik, P.3
Pekalska, E.4
De Ridder, D.5
Tax, D.6
Verzakov, S.7
-
18
-
-
0004038335
-
Representation and recognition in vision
-
Edelman S (1999) Representation and recognition in vision. MIT press
-
(1999)
MIT press
-
-
Edelman, S.1
-
19
-
-
2942731012
-
An extensive empirical study of feature selection metrics for text classification
-
Forman G (2003) An extensive empirical study of feature selection metrics for text classification. J Mach Learn Res 3:1289–1305
-
(2003)
J Mach Learn Res
, vol.3
, pp. 1289-1305
-
-
Forman, G.1
-
20
-
-
56549113284
-
Uci machine learning repository irvine, ca: University of california
-
Frank A, Asuncion A (2010) Uci machine learning repository irvine, ca: University of california. School of Information and Computer Science, vol 213. http://archive.ics.uci.edu/ml
-
(2010)
School of Information and Computer Science
, vol.213
-
-
Frank, A.1
Asuncion, A.2
-
22
-
-
57649123451
-
On the class imbalance problem. In: Fourth International Conference on Natural Computation vol 4 IEEE
-
Guo X, Yin Y, Dong C, Yang G, Zhou G (2008) On the class imbalance problem. In: Fourth International Conference on Natural Computation vol 4 IEEE, pp 192–201
-
(2008)
pp 192–201
-
-
Guo, X.1
Yin, Y.2
Dong, C.3
Yang, G.4
Zhou, G.5
-
23
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. The J Mach Learn Res 3:1157–1182
-
(2003)
The J Mach Learn Res
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
25
-
-
68549133155
-
Learning from imbalanced data
-
He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263–1284
-
(2009)
IEEE Trans Knowl Data Eng
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.A.2
-
26
-
-
14644390912
-
Using auc and accuracy in evaluating learning algorithms
-
Huang J, Ling CX (2005) Using auc and accuracy in evaluating learning algorithms. IEEE Trans Knowl Data Eng 17(3):299– 310
-
(2005)
IEEE Trans Knowl Data Eng
, vol.17
, Issue.3
, pp. 299-310
-
-
Huang, J.1
Ling, C.X.2
-
27
-
-
0031078007
-
Feature selection: Evaluation, application, and small sample performance
-
Jain A, Zongker D (1997) Feature selection: Evaluation, application, and small sample performance. IEEE Trans Pattern Anal Mach Int 19(2):153–158
-
(1997)
IEEE Trans Pattern Anal Mach Int
, vol.19
, Issue.2
, pp. 153-158
-
-
Jain, A.1
Zongker, D.2
-
28
-
-
2242481419
-
Learning from imbalanced data sets: a comparison of various strategies
-
CA, Menlo Park:
-
Japkowicz N (2000) Learning from imbalanced data sets: a comparison of various strategies. In: AAAI workshop on sets, learning from imbalanced data vol 68. CA, Menlo Park
-
(2000)
AAAI workshop on sets, learning from imbalanced data
, vol.68
-
-
Japkowicz, N.1
-
29
-
-
0034825091
-
Supervised versus unsupervised binary-learning by feedforward neural networks
-
Japkowicz N (2001) Supervised versus unsupervised binary-learning by feedforward neural networks. Mach Learn 42(1-2):97–122
-
(2001)
Mach Learn
, vol.42
, Issue.1-2
, pp. 97-122
-
-
Japkowicz, N.1
-
30
-
-
33845536164
-
The class imbalance problem: A systematic study
-
Japkowicz N, Stephen S (2002) The class imbalance problem: A systematic study. Int Data Anal 6(5):429–449
-
(2002)
Int Data Anal
, vol.6
, Issue.5
, pp. 429-449
-
-
Japkowicz, N.1
Stephen, S.2
-
31
-
-
0015680655
-
Clustering using a similarity measure based on shared near neighbors
-
Jarvis RA, Patrick EA (1973) Clustering using a similarity measure based on shared near neighbors. IEEE Trans Comput 100(11):1025–1034
-
(1973)
IEEE Trans Comput
, vol.100
, Issue.11
, pp. 1025-1034
-
-
Jarvis, R.A.1
Patrick, E.A.2
-
32
-
-
52549091028
-
Techniques for evaluating fault prediction models
-
Jiang Y, Cukic B, Ma Y (2008) Techniques for evaluating fault prediction models. Emp Software Eng 13(5):561–595
-
(2008)
Emp Software Eng
, vol.13
, Issue.5
, pp. 561-595
-
-
Jiang, Y.1
Cukic, B.2
Ma, Y.3
-
33
-
-
51649085353
-
Evaluating boosting algorithms to classify rare classes: Comparison and improvements. In: Proceedings IEEE International Conference on Data Mining
-
Joshi MV, Kumar V, Agarwal RC (2001) Evaluating boosting algorithms to classify rare classes: Comparison and improvements. In: Proceedings IEEE International Conference on Data Mining, pp 257–264
-
(2001)
pp 257–264
-
-
Joshi, M.V.1
Kumar, V.2
Agarwal, R.C.3
-
34
-
-
77950789610
-
Feature selection with imbalanced data for software defect prediction. In: International Conference on Machine Learning and Applications, IEEE
-
Khoshgoftaar TM, Gao K (2009) Feature selection with imbalanced data for software defect prediction. In: International Conference on Machine Learning and Applications, IEEE, pp 235–240
-
(2009)
pp 235–240
-
-
Khoshgoftaar, T.M.1
Gao, K.2
-
35
-
-
78751556705
-
Attribute selection and imbalanced data: Problems in software defect prediction. In: International Conference on Tools with Artificial Intelligence, vol 1 IEEE
-
Khoshgoftaar TM, Gao K, Seliya N (2010) Attribute selection and imbalanced data: Problems in software defect prediction. In: International Conference on Tools with Artificial Intelligence, vol 1 IEEE, pp 137–144
-
(2010)
pp 137–144
-
-
Khoshgoftaar, T.M.1
Gao, K.2
Seliya, N.3
-
36
-
-
48649089002
-
An empirical study of learning from imbalanced data using random forest. In: IEEE International Conference on Tools with Artificial Intelligence, vol 2 IEEE
-
Khoshgoftaar TM, Golawala M, Van Hulse J (2007) An empirical study of learning from imbalanced data using random forest. In: IEEE International Conference on Tools with Artificial Intelligence, vol 2 IEEE, pp 310–317
-
(2007)
pp 310–317
-
-
Khoshgoftaar, T.M.1
Golawala, M.2
Van Hulse, J.3
-
37
-
-
34250851661
-
On using prototype reduction schemes to optimize dissimilarity-based classification
-
Kim S, Oommen B (2007) On using prototype reduction schemes to optimize dissimilarity-based classification. Pattern Recog 40(11):2946–2957
-
(2007)
Pattern Recog
, vol.40
, Issue.11
, pp. 2946-2957
-
-
Kim, S.1
Oommen, B.2
-
39
-
-
33749685587
-
Oommen BJ (2006) On optimizing dissimilarity-based classification using prototype reduction schemes
-
Springer, New York:
-
Kim SW, Oommen BJ (2006) On optimizing dissimilarity-based classification using prototype reduction schemes. In: Image Analysis and Recognition. Springer, New York, pp 15–28
-
Image Analysis and Recognition
, pp. 15-28
-
-
Kim, S.W.1
-
42
-
-
0001972236
-
Addressing the curse of imbalanced training sets: one-sided selection
-
Kubat M, Matwin S (1997) Addressing the curse of imbalanced training sets: one-sided selection. In: ICML, vol 97, pp 179–186
-
(1997)
ICML
, vol.97
, pp. 179-186
-
-
Kubat, M.1
Matwin, S.2
-
43
-
-
49749145242
-
Optimal subsequence bijection. In: Seventh IEEE International Conference on Data Mining, IEEE
-
Latecki LJ, Wang Q, Koknar-Tezel S, Megalooikonomou V (2007) Optimal subsequence bijection. In: Seventh IEEE International Conference on Data Mining, IEEE, pp 565–570
-
(2007)
pp 565–570
-
-
Latecki, L.J.1
Wang, Q.2
Koknar-Tezel, S.3
Megalooikonomou, V.4
-
44
-
-
0345040873
-
Classification and regression by randomforest
-
Liaw A, Wiener M (2002) Classification and regression by randomforest. Rnews 2(3):18–22
-
(2002)
Rnews
, vol.2
, Issue.3
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
45
-
-
84878098426
-
The influence of class imbalance on cost-sensitive learning: An empirical study. In: Sixth International Conference on Data Mining IEEE
-
Liu XY, Zhou ZH (2006) The influence of class imbalance on cost-sensitive learning: An empirical study. In: Sixth International Conference on Data Mining IEEE, pp 970–974
-
(2006)
pp 970–974
-
-
Liu, X.Y.1
Zhou, Z.H.2
-
46
-
-
79751534499
-
Resampling techniques for sentence boundary detection: a case study in machine learning from imbalanced data for spoken language processing. Tech
-
Liu Y, Chawla N, Shriberg E, Stolcke A, Harper M (2003) Resampling techniques for sentence boundary detection: a case study in machine learning from imbalanced data for spoken language processing. Tech. rep
-
(2003)
rep
-
-
Liu, Y.1
Chawla, N.2
Shriberg, E.3
Stolcke, A.4
Harper, M.5
-
47
-
-
0002551285
-
Feature selection for unbalanced class distribution and naive bayes
-
Mladenic D, Grobelnik M (1999) Feature selection for unbalanced class distribution and naive bayes. In: ICML, vol 99, pp 258–267
-
(1999)
ICML
, vol.99
, pp. 258-267
-
-
Mladenic, D.1
Grobelnik, M.2
-
48
-
-
84899759403
-
Evaluation of gene expression classification studies: Factors, associated with classification performance
-
Novianti PW, Roes KC, Eijkemans MJ (2014) Evaluation of gene expression classification studies: Factors, associated with classification performance. PloS one 9(4) e96:063
-
(2014)
PloS one 9(4)
, vol.e96
, pp. 063
-
-
Novianti, P.W.1
Roes, K.C.2
Eijkemans, M.J.3
-
49
-
-
37849025714
-
Dissimilarity-based classification of seismic signals at nevado del ruiz volcano
-
Orozco M, García ME, Duin RP, Castellanos CG (2006) Dissimilarity-based classification of seismic signals at nevado del ruiz volcano. Earth Sci Res J 10(2)
-
(2006)
Earth Sci Res J
, vol.10
, Issue.2
-
-
Orozco, M.1
García, M.E.2
Duin, R.P.3
Castellanos, C.G.4
-
50
-
-
84945896801
-
Nearest feature rules and dissimilarity representations for face recognition problems Face Recognition; International Journal of Advanced Robotic Systems, Vienna
-
Orozco-Alzate M, Castellanos-Domínguez C (2007) Nearest feature rules and dissimilarity representations for face recognition problems Face Recognition; International Journal of Advanced Robotic Systems, Vienna, Austria, pp 337–356
-
(2007)
Austria
, pp. 337-356
-
-
Orozco-Alzate, M.1
Castellanos-Domínguez, C.2
-
51
-
-
27744575652
-
Classifying spectral data using relational representation
-
In, Proceedings of the Spectral Imaging Workshop:
-
Paclik P, Duin R (2003) Classifying spectral data using relational representation. In: In: Proceedings of the Spectral Imaging Workshop
-
(2003)
In
-
-
Paclik, P.1
Duin, R.2
-
52
-
-
0348041666
-
Dissimilarity-based classification of spectra: computational issues
-
Paclik P, Duin R (2003) Dissimilarity-based classification of spectra: computational issues. Real-Time Imaging 9(4):237–244
-
(2003)
Real-Time Imaging
, vol.9
, Issue.4
, pp. 237-244
-
-
Paclik, P.1
Duin, R.2
-
53
-
-
84925461862
-
-
Kumar V: Introduction to data mining
-
Pang-Ning T, Steinbach M, Kumar V (2007) Introduction to data mining
-
(2007)
Steinbach M
-
-
Pang-Ning, T.1
-
54
-
-
84925461861
-
-
Introduction to data mining. In: Library of Congress
-
Pang-Ning T, Steinbach M, Kumar V, et al. (2006) Introduction to data mining. In: Library of Congress
-
(2006)
et al
-
-
Pang-Ning, T.1
Steinbach, M.2
Kumar, V.3
-
55
-
-
4944220798
-
P-fcm: a proximity based fuzzy clustering
-
Pedrycz W, Loia V, Senatore S (2004) P-fcm: a proximity based fuzzy clustering. Fuzzy Sets Syst 148(1):21–41
-
(2004)
Fuzzy Sets Syst
, vol.148
, Issue.1
, pp. 21-41
-
-
Pedrycz, W.1
Loia, V.2
Senatore, S.3
-
56
-
-
0036604999
-
Dissimilarity representations allow for building good classifiers
-
Pekalska E, Duin R (2002) Dissimilarity representations allow for building good classifiers. Patte Recognition Letters 23(8):943–956
-
(2002)
Patte Recognition Letters
, vol.23
, Issue.8
, pp. 943-956
-
-
Pekalska, E.1
Duin, R.2
-
57
-
-
27744546228
-
Prototype selection for dissimilarity-based classifiers
-
Pekalska E, Duin R, Paclik P (2006) Prototype selection for dissimilarity-based classifiers. Pattern Recog 39(2):189–208
-
(2006)
Pattern Recog
, vol.39
, Issue.2
, pp. 189-208
-
-
Pekalska, E.1
Duin, R.2
Paclik, P.3
-
60
-
-
0041995203
-
A generalized kernel approach to dissimilarity-based classification
-
Pekalska E, Paclik P, Duin RP (2002) A generalized kernel approach to dissimilarity-based classification. The J Mach Learn Res 2:175–211
-
(2002)
The J Mach Learn Res
, vol.2
, pp. 175-211
-
-
Pekalska, E.1
Paclik, P.2
Duin, R.P.3
-
61
-
-
35148838577
-
Applying novel resampling strategies to software defect prediction. In: In: Conference of the North American Fuzzy Information Processing Society IEEE
-
Pelayo L, Dick S (2007) Applying novel resampling strategies to software defect prediction. In: In: Conference of the North American Fuzzy Information Processing Society IEEE, pp 69–72
-
(2007)
pp 69–72
-
-
Pelayo, L.1
Dick, S.2
-
62
-
-
0036604999
-
Dissimilarity representations allow for building good classifiers
-
Pkekalska E, Duin RP (2002) Dissimilarity representations allow for building good classifiers. Pattern Recog Lett 23(8):943–956
-
(2002)
Pattern Recog Lett
, vol.23
, Issue.8
, pp. 943-956
-
-
Pkekalska, E.1
Duin, R.P.2
-
63
-
-
27744493015
-
The dissimilarity representation for pattern recognition: foundations and applications. 64
-
Pkekalska E, Duin RP (2005) The dissimilarity representation for pattern recognition: foundations and applications. 64. World Scientific
-
(2005)
World Scientific
-
-
Pkekalska, E.1
Duin, R.P.2
-
65
-
-
0017930815
-
Dynamic programming algorithm optimization for spoken word recognition IEEE
-
Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recognition IEEE. Trans Acoustics Speech Signal Process 26(1):43–49
-
(1978)
Trans Acoustics Speech Signal Process
, vol.26
, Issue.1
, pp. 43-49
-
-
Sakoe, H.1
Chiba, S.2
-
66
-
-
84870441851
-
A fast clustering-based feature subset selection algorithm for high-dimensional data
-
Song Q, Ni J, Wang G (2013) A fast clustering-based feature subset selection algorithm for high-dimensional data. IEEE Trans Knowl Data Eng 25(1):1–14
-
(2013)
IEEE Trans Knowl Data Eng
, vol.25
, Issue.1
, pp. 1-14
-
-
Song, Q.1
Ni, J.2
Wang, G.3
-
67
-
-
84883842243
-
Image dissimilarity-based quantification of lung disease from CT
-
Sørensen L, Loog M, Lo P, Ashraf H, Dirksen A, Duin RP, de Bruijne M (2010) Image dissimilarity-based quantification of lung disease from CT. Springer
-
(2010)
Springer
-
-
Sørensen, L.1
Loog, M.2
Lo, P.3
Ashraf, H.4
Dirksen, A.5
Duin, R.P.6
de Bruijne, M.7
-
68
-
-
84871802491
-
Using coding-based ensemble learning to improve software defect prediction
-
Sun Z, Song Q, Zhu X (2012) Using coding-based ensemble learning to improve software defect prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 42(6):1806–1817
-
(2012)
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews
, vol.42
, Issue.6
, pp. 1806-1817
-
-
Sun, Z.1
Song, Q.2
Zhu, X.3
-
69
-
-
3242765279
-
A bias-variance analysis of a real world learning problem: The coil challenge 2000
-
Van Der Putten P, Van Someren M (2004) A bias-variance analysis of a real world learning problem: The coil challenge 2000. Mach Learn 57(1-2):177–195
-
(2004)
Mach Learn
, vol.57
, Issue.1-2
, pp. 177-195
-
-
Van Der Putten, P.1
Van Someren, M.2
-
71
-
-
77951173974
-
Feature selection with high-dimensional imbalanced data. In: IEEE International Conference on Data Mining Workshops, IEEE
-
Van Hulse J, Khoshgoftaar TM, Napolitano A, Wald R (2009) Feature selection with high-dimensional imbalanced data. In: IEEE International Conference on Data Mining Workshops, IEEE, pp 507–514
-
(2009)
pp 507–514
-
-
Van Hulse, J.1
Khoshgoftaar, T.M.2
Napolitano, A.3
Wald, R.4
-
72
-
-
77956023732
-
Combating the small sample class imbalance problem using feature selection
-
Wasikowski M, Chen X (2010) Combating the small sample class imbalance problem using feature selection. IEEE Trans Knowl Data Eng 22:1388–1400
-
(2010)
IEEE Trans Knowl Data Eng
, vol.22
, pp. 1388-1400
-
-
Wasikowski, M.1
Chen, X.2
-
73
-
-
20844458491
-
Mining with rarity: a unifying framework
-
Weiss G (2004) Mining with rarity: a unifying framework. Sigkdd Explorations 6(1):7–19
-
(2004)
Sigkdd Explorations
, vol.6
, Issue.1
, pp. 7-19
-
-
Weiss, G.1
-
74
-
-
84925461855
-
-
eiss GM, Provost F (2001) The effect of class distribution on classifier learning: an empirical study Rutgers University
-
Weiss GM, Provost F (2001) The effect of class distribution on classifier learning: an empirical study Rutgers University
-
-
-
-
75
-
-
84925461854
-
Fast effective rule induction. In: Twelfth International Conference on Machine Learning
-
William C (1995) Fast effective rule induction. In: Twelfth International Conference on Machine Learning, pp 115–123
-
(1995)
pp 115–123
-
-
William, C.1
-
76
-
-
77949808387
-
Homeostatic imbalance of purine catabolism in first-episode neuroleptic-naïve patients with schizophrenia
-
Yao JK, Dougherty Jr GG, Reddy RD, Keshavan MS, Montrose DM, Matson WR, McEvoy J, Kaddurah-Daouk R (2010) Homeostatic imbalance of purine catabolism in first-episode neuroleptic-naïve patients with schizophrenia. PLoS One 5(3):e9508
-
(2010)
PLoS One
, vol.5
, Issue.3
-
-
Yao, J.K.1
Dougherty, G.G.2
Reddy, R.D.3
Keshavan, M.S.4
Montrose, D.M.5
Matson, W.R.6
McEvoy, J.7
Kaddurah-Daouk, R.8
-
77
-
-
84875404700
-
Feature selection for high-dimensional imbalanced data
-
Yin L, Ge Y, Xiao K, Wang X, Quan X (2013) Feature selection for high-dimensional imbalanced data. Neurocomputing 105:3–11
-
(2013)
Neurocomputing
, vol.105
, pp. 3-11
-
-
Yin, L.1
Ge, Y.2
Xiao, K.3
Wang, X.4
Quan, X.5
-
78
-
-
1942451938
-
Feature selection for high-dimensional data: A fast correlation-based filter solution
-
Yu L, Liu H (2003) Feature selection for high-dimensional data: A fast correlation-based filter solution. In: ICML, vol 3, pp 856–863
-
(2003)
ICML
, vol.3
, pp. 856-863
-
-
Yu, L.1
Liu, H.2
-
79
-
-
25144492516
-
Efficient feature selection via analysis of relevance and redundancy
-
Yu L, Liu H (2004) Efficient feature selection via analysis of relevance and redundancy. The J Mach Learn Res 5:1205–1224
-
(2004)
The J Mach Learn Res
, vol.5
, pp. 1205-1224
-
-
Yu, L.1
Liu, H.2
-
81
-
-
16644402628
-
Feature selection for text categorization on imbalanced data
-
Zheng Z, Wu X, Srihari R (2004) Feature selection for text categorization on imbalanced data. ACM SIGKDD Explorations Newsletter 6(1):80–89
-
(2004)
ACM SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 80-89
-
-
Zheng, Z.1
Wu, X.2
Srihari, R.3
|