메뉴 건너뛰기




Volumn 80, Issue , 2015, Pages 24-33

Evolving connectionist systems for adaptive learning and knowledge discovery: Trends and directions

Author keywords

Computational neurogenetic systems; Evolving connectionist systems; Evolving spiking neural networks; Knowledge based systems; Neuro fuzzy systems; Quantum inspired spiking neural networks; Spatio temporal pattern recognition

Indexed keywords

ADAPTIVE SYSTEMS; EXPERT SYSTEMS; FUZZY INFERENCE; FUZZY SYSTEMS; KNOWLEDGE ACQUISITION; KNOWLEDGE BASED SYSTEMS; PATTERN RECOGNITION SYSTEMS;

EID: 84926158684     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2014.12.032     Document Type: Article
Times cited : (30)

References (41)
  • 1
    • 0000920843 scopus 로고
    • A theory of adaptive pattern classifiers
    • S. Amari A theory of adaptive pattern classifiers IEEE Trans. Electron. Comput. 16 1967 299 307
    • (1967) IEEE Trans. Electron. Comput. , vol.16 , pp. 299-307
    • Amari, S.1
  • 2
    • 0025488578 scopus 로고
    • Mathematical foundations of neurocomputing
    • S. Amari Mathematical foundations of neurocomputing Proc. IEEEE 78 1990 1143 1163
    • (1990) Proc. IEEEE , vol.78 , pp. 1143-1163
    • Amari, S.1
  • 6
    • 71549154408 scopus 로고    scopus 로고
    • Quantum-inspired evolutionary algorithm: A multi-model EDA
    • M. Defoin-Platel, S. Schliebs, and N. Kasabov Quantum-inspired evolutionary algorithm: a multi-model EDA IEEE Trans. Evol. Comput. 13 6 2009 1218 1232
    • (2009) IEEE Trans. Evol. Comput. , vol.13 , Issue.6 , pp. 1218-1232
    • Defoin-Platel, M.1    Schliebs, S.2    Kasabov, N.3
  • 10
    • 0000788367 scopus 로고
    • Time structure of the activity of neural network models
    • W. Gerstner Time structure of the activity of neural network models Phys. Rev. 51 1995 738 758
    • (1995) Phys. Rev. , vol.51 , pp. 738-758
    • Gerstner, W.1
  • 12
    • 35649001607 scopus 로고
    • A quantitative description of membrane current and its application to conduction and excitation in nerve
    • A.L. Hodgkin, and A.F. Huxley A quantitative description of membrane current and its application to conduction and excitation in nerve J. Physiol. 117 1952 500 544
    • (1952) J. Physiol. , vol.117 , pp. 500-544
    • Hodgkin, A.L.1    Huxley, A.F.2
  • 13
    • 4344661328 scopus 로고    scopus 로고
    • Which model to use for cortical spiking neurons?
    • E.M. Izhikevich Which model to use for cortical spiking neurons? IEEE TNN 15 5 2004 1063 1070
    • (2004) IEEE TNN , vol.15 , Issue.5 , pp. 1063-1070
    • Izhikevich, E.M.1
  • 14
    • 21344492246 scopus 로고
    • A connectionist production system with partial match and its use for approximate reasoning
    • N. Kasabov, and S. Shishkov A connectionist production system with partial match and its use for approximate reasoning Connection Sci. 5 3/4 1993 275 305
    • (1993) Connection Sci. , vol.5 , Issue.3-4 , pp. 275-305
    • Kasabov, N.1    Shishkov, S.2
  • 15
    • 84875520161 scopus 로고
    • Incorporating neural networks into production systems and a practical approach towards the realisation of fuzzy expert systems
    • N. Kasabov Incorporating neural networks into production systems and a practical approach towards the realisation of fuzzy expert systems Comput. Sci. Inform. 21 2 1991 26 34
    • (1991) Comput. Sci. Inform. , vol.21 , Issue.2 , pp. 26-34
    • Kasabov, N.1
  • 16
    • 84948049381 scopus 로고
    • Hybrid connectionist fuzzy production systems - Towards building comprehensive AI
    • N. Kasabov Hybrid connectionist fuzzy production systems - towards building comprehensive AI Intelligent Automat. Soft Comput. 1 4 1995 351 360
    • (1995) Intelligent Automat. Soft Comput. , vol.1 , Issue.4 , pp. 351-360
    • Kasabov, N.1
  • 17
    • 85028469520 scopus 로고
    • Connectionist fuzzy production systems
    • N. Kasabov Connectionist fuzzy production systems LNCS/AI 847 1994 114 128
    • (1994) LNCS/AI , vol.847 , pp. 114-128
    • Kasabov, N.1
  • 18
    • 84875505070 scopus 로고
    • Hybrid connectionist production systems
    • N. Kasabov Hybrid connectionist production systems J. Syst. Eng. 3 1 1993 15 21
    • (1993) J. Syst. Eng. , vol.3 , Issue.1 , pp. 15-21
    • Kasabov, N.1
  • 20
    • 0001961635 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks - Algorithms, applications and biological motivation
    • T. Yamakawa, G. Matsumoto, Springer
    • N. Kasabov Evolving fuzzy neural networks - algorithms, applications and biological motivation T. Yamakawa, G. Matsumoto, Methodologies for the Conception, Design and Application of Soft Computing 1998 Springer 271 274
    • (1998) Methodologies for the Conception, Design and Application of Soft Computing , pp. 271-274
    • Kasabov, N.1
  • 21
    • 0035670764 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks for on-line supervised/unsupervised, knowledge-based learning
    • N. Kasabov Evolving fuzzy neural networks for on-line supervised/unsupervised, knowledge-based learning IEEE Trans. SMC/B, Cybernet. 31 6 2001 902 918
    • (2001) IEEE Trans. SMC/B, Cybernet. , vol.31 , Issue.6 , pp. 902-918
    • Kasabov, N.1
  • 22
    • 0141629793 scopus 로고    scopus 로고
    • Springer Verlag, London, New York, Heidelberg (first ed. 2003; second ed. 2007)
    • N. Kasabov, Evolving connectionist systems, Springer Verlag, London, New York, Heidelberg, 2003, 2007 (first ed. 2003; second ed. 2007).
    • (2003) Evolving Connectionist Systems
    • Kasabov, N.1
  • 23
    • 0031253132 scopus 로고    scopus 로고
    • FuNN/2-A fuzzy neural network architecture for adaptive learning and knowledge acquisition
    • N. Kasabov, J.S. Kim, M. Watts, and A. Gray FuNN/2-A fuzzy neural network architecture for adaptive learning and knowledge acquisition Inform. Sci. - Appl. 101 3-4 1997 155 175
    • (1997) Inform. Sci. - Appl. , vol.101 , Issue.34 , pp. 155-175
    • Kasabov, N.1    Kim, J.S.2    Watts, M.3    Gray, A.4
  • 24
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic, evolving neural-fuzzy inference systems and its application for time-series prediction
    • N. Kasabov, and Q. Song DENFIS: dynamic, evolving neural-fuzzy inference systems and its application for time-series prediction IEEE Trans. Fuzzy Syst. 10 2002 144 154
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , pp. 144-154
    • Kasabov, N.1    Song, Q.2
  • 25
    • 80055044134 scopus 로고    scopus 로고
    • Integrated optimisation method for personalised modelling and case study applications
    • N. Kasabov, and Y. Hu Integrated optimisation method for personalised modelling and case study applications Int. J. Funct. Informat. Personal. Med. 3 3 2010 236 256
    • (2010) Int. J. Funct. Informat. Personal. Med. , vol.3 , Issue.3 , pp. 236-256
    • Kasabov, N.1    Hu, Y.2
  • 26
    • 78649583381 scopus 로고    scopus 로고
    • Knowledge extraction from evolving spiking neural networks with rank order population coding
    • S. Soltic, and N. Kasabov Knowledge extraction from evolving spiking neural networks with rank order population coding Int. J. Neural Syst. 20 6 2010 437 445
    • (2010) Int. J. Neural Syst. , vol.20 , Issue.6 , pp. 437-445
    • Soltic, S.1    Kasabov, N.2
  • 27
    • 84893643798 scopus 로고    scopus 로고
    • NeuCube: A Spiking Neural Network Architecture for Mapping, Learning and Understanding of Spatio-Temporal Brain Data
    • v.52,62-76
    • N. Kasabov, NeuCube: A Spiking Neural Network Architecture for Mapping, Learning and Understanding of Spatio-Temporal Brain Data, Neural Networks, 2014, v.52,62-76, < http://dx.doi.org/10.1016/j.neunet.2014.01.006 >.
    • (2014) Neural Networks
    • Kasabov, N.1
  • 28
    • 84896548177 scopus 로고    scopus 로고
    • Evolving spiking neural networks for personalised modelling of spatio-temporal data and early prediction of events: A case study on stroke
    • N. Kasabov, L. Liang, R. Krishnamurthi, V. Feigin, M. Othman, Z. Hou, and P. Parmar Evolving spiking neural networks for personalised modelling of spatio-temporal data and early prediction of events: a case study on stroke Neurocomputing 134 2014 269 279
    • (2014) Neurocomputing , vol.134 , pp. 269-279
    • Kasabov, N.1    Liang, L.2    Krishnamurthi, R.3    Feigin, V.4    Othman, M.5    Hou, Z.6    Parmar, P.7
  • 29
    • 84922218794 scopus 로고    scopus 로고
    • Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes
    • N. Kasabov, and E. Capecci Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes Inf. Sci. 294 565-575 2014 2015
    • (2014) Inf. Sci. , vol.294 , Issue.565-575 , pp. 2015
    • Kasabov, N.1    Capecci, E.2
  • 30
    • 84875878715 scopus 로고    scopus 로고
    • Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition
    • N. Kasabov, K. Dhoble, N. Nuntalid, and G. Indiveri Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition Neural Networks 41 2013 188 201
    • (2013) Neural Networks , vol.41 , pp. 188-201
    • Kasabov, N.1    Dhoble, K.2    Nuntalid, N.3    Indiveri, G.4
  • 31
    • 0033860923 scopus 로고    scopus 로고
    • Competitive Hebbian learning through spike-timing-dependent synaptic plasticity
    • S. Song, K. Miller, and L. Abbott Competitive Hebbian learning through spike-timing-dependent synaptic plasticity Nat. Neurosci. 3 2000 919 926
    • (2000) Nat. Neurosci. , vol.3 , pp. 919-926
    • Song, S.1    Miller, K.2    Abbott, L.3
  • 32
    • 33751249040 scopus 로고    scopus 로고
    • TWNFI-a transductive neuro-fuzzy inference system with weighted data normalisation for personalised modelling
    • Q. Song, and N. Kasabov TWNFI-a transductive neuro-fuzzy inference system with weighted data normalisation for personalised modelling Neural Networks 19 10 2006 1591 1596
    • (2006) Neural Networks , vol.19 , Issue.10 , pp. 1591-1596
    • Song, Q.1    Kasabov, N.2
  • 33
    • 0034766266 scopus 로고    scopus 로고
    • Spike-based strategies for rapid processing
    • S. Thorpe, and A. Delorme Spike-based strategies for rapid processing Neural Networks 14 6-7 2001 715 725
    • (2001) Neural Networks , vol.14 , Issue.67 , pp. 715-725
    • Thorpe, S.1    Delorme, A.2
  • 35
    • 67349253008 scopus 로고    scopus 로고
    • A decade of Kasabov's evolving connectionist systems: A review
    • M. Watts A decade of Kasabov's evolving connectionist systems: a review IEEE Trans., Syst., Man Cybernet. - Part C: Appl. Rev. 39 3 2009 253 269
    • (2009) IEEE Trans., Syst., Man Cybernet. - Part C: Appl. Rev. , vol.39 , Issue.3 , pp. 253-269
    • Watts, M.1
  • 36
    • 79957967889 scopus 로고    scopus 로고
    • Multiple time-series prediction through multiple time-series relationships profiling and clustered recurring trends
    • H. Widiputra, R. Pears, N. Kasabov, Multiple time-series prediction through multiple time-series relationships profiling and clustered recurring trends. Springer LNAI 6635 (Part 2), 2011, pp. 161-172.
    • (2011) Springer LNAI , vol.6635 , pp. 161-172
    • Widiputra, H.1    Pears, R.2    Kasabov, N.3
  • 37
    • 77955058561 scopus 로고    scopus 로고
    • Evolving spiking neural networks for audiovisual information processing
    • S. Wysoski, L. Benuskova, and N. Kasabov Evolving spiking neural networks for audiovisual information processing Neural Networks 23 7 2010 819 835
    • (2010) Neural Networks , vol.23 , Issue.7 , pp. 819-835
    • Wysoski, S.1    Benuskova, L.2    Kasabov, N.3
  • 38
    • 84974755191 scopus 로고
    • Generation of fuzzy rules by mountain clustering
    • R.R. Yager, and D. Filev Generation of fuzzy rules by mountain clustering J. Intelligent Fuzzy Syst. 2 1994 209 219
    • (1994) J. Intelligent Fuzzy Syst. , vol.2 , pp. 209-219
    • Yager, R.R.1    Filev, D.2
  • 40
    • 34248666540 scopus 로고
    • Fuzzy Sets
    • L. Zadeh Fuzzy Sets Inf. Control 8 1965 338 353
    • (1965) Inf. Control , vol.8 , pp. 338-353
    • Zadeh, L.1
  • 41
    • 0023999614 scopus 로고
    • Fuzzy logic
    • L.A. Zadeh Fuzzy logic IEEE Comput. 21 1988 83 93
    • (1988) IEEE Comput. , vol.21 , pp. 83-93
    • Zadeh, L.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.