메뉴 건너뛰기




Volumn 22, Issue 4, 2012, Pages

Span: Spike pattern association neuron for learning spatio-temporal spike patterns

Author keywords

learning; spike pattern association; Spiking Neural Network; temporal coding

Indexed keywords

ANALOG SIGNALS; CLASSIFICATION PERFORMANCE; EXPERIMENTAL ANALYSIS; INHERENT COMPLEXITY; INPUT/OUTPUT; LEARNING; LEARNING CAPABILITIES; LEARNING PHASE; MATHEMATICAL OPERATIONS; MEMORY CAPACITY; SPATIO-TEMPORAL; SPATIOTEMPORAL INFORMATION; SPIKE PATTERNS; SPIKE TRAIN; SPIKING NEURAL NETWORKS; SPIKING NEURON; SYNAPTIC WEIGHT; TEMPORAL CODING;

EID: 84864362117     PISSN: 01290657     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0129065712500128     Document Type: Article
Times cited : (272)

References (62)
  • 2
    • 0031472340 scopus 로고    scopus 로고
    • Networks of spiking neurons: The third generation of neural network models
    • DOI 10.1016/S0893-6080(97)00011-7, PII S0893608097000117
    • W. Maass, Networks of spiking neurons: The third generation of neural network models, Neural Networks 10(9) (1997) 1659-1671. (Pubitemid 28057273)
    • (1997) Neural Networks , vol.10 , Issue.9 , pp. 1659-1671
    • Maass, W.1
  • 4
    • 0004825357 scopus 로고    scopus 로고
    • Computing with spiking neurons
    • MIT Press, Cambridge, MA, USA
    • W. Maass, Computing with spiking neurons, in Pulsed Neural Networks (MIT Press, Cambridge, MA, USA, 1999), pp. 55-85.
    • (1999) Pulsed Neural Networks , pp. 55-85
    • Maass, W.1
  • 6
    • 0033561842 scopus 로고    scopus 로고
    • Dynamic stochastic synapses as computational units
    • W. Maass and A. M. Zador, Dynamic stochastic synapses as computational units, Neural Comput. 11(4) (1999) 903-917.
    • (1999) Neural Comput. , vol.11 , Issue.4 , pp. 903-917
    • Maass, W.1    Zador, A.M.2
  • 7
    • 0032523457 scopus 로고    scopus 로고
    • Neural Networks with Dynamic Synapses
    • M. Tsodyks, K. Pawelzik and H. Markram, Neural networks with dynamic synapses, Neural Comput. 10(4) (1998) 821-835. (Pubitemid 128463179)
    • (1998) Neural Computation , vol.10 , Issue.4 , pp. 821-835
    • Tsodyks, M.1    Pawelzik, K.2    Markram, H.3
  • 8
    • 4344671205 scopus 로고    scopus 로고
    • The evidence for neural information processing with precise spike-times: A survey
    • DOI 10.1023/B:NACO.0000027755.02868.60
    • S. M. Bohte, The evidence for neural information processing with precise spike-times: A survey, Nat. Comput. 3 (2004) 195-206. (Pubitemid 39127653)
    • (2004) Natural Computing , vol.3 , Issue.2 , pp. 195-206
    • Bohte, S.M.1
  • 9
    • 11144349546 scopus 로고    scopus 로고
    • Spike times make sense
    • DOI 10.1016/j.tins.2004.10.010, PII S0166223604003546
    • R. VanRullen, R. Guyonneau and S. J. Thorpe, Spike times make sense, Trends Neurosci. 28(1) (2005) 1-4. (Pubitemid 40038795)
    • (2005) Trends in Neurosciences , vol.28 , Issue.1 , pp. 1-4
    • VanRullen, R.1    Guyonneau, R.2    Thorpe, S.J.3
  • 10
    • 38349183038 scopus 로고    scopus 로고
    • Regulation of spike timing in visual cortical circuits
    • P. Tiesinga, J. Fellous and T. J. Sejnowski, Regulation of spike timing in visual cortical circuits, Nat. Rev. Neurosci. 9(2) (2008) 97-107.
    • (2008) Nat. Rev. Neurosci. , vol.9 , Issue.2 , pp. 97-107
    • Tiesinga, P.1    Fellous, J.2    Sejnowski, T.J.3
  • 11
    • 34548515491 scopus 로고    scopus 로고
    • Temporal precision in the neural code and the timescales of natural vision
    • DOI 10.1038/nature06105, PII NATURE06105
    • D. A. Butts, C. Weng, J. Jin, C. Yeh, N. A. Lesica, J. Alonso and G. B. Stanley, Temporal precision in the neural code and the timescales of natural vision, Nature 449(7158) (2007) 92-95. (Pubitemid 47373774)
    • (2007) Nature , vol.449 , Issue.7158 , pp. 92-95
    • Butts, D.A.1    Weng, C.2    Jin, J.3    Yeh, C.-I.4    Lesica, N.A.5    Alonso, J.-M.6    Stanley, G.B.7
  • 12
    • 78049416805 scopus 로고    scopus 로고
    • Spike-timing theory of working memory
    • B. Szatmry and E. M. Izhikevich, Spike-timing theory of working memory, PLoS Comput. Biol. 6(8) (2010) 1-11.
    • (2010) PLoS Comput. Biol. , vol.6 , Issue.8 , pp. 1-11
    • Szatmry, B.1    Izhikevich, E.M.2
  • 13
    • 0029637779 scopus 로고
    • Pattern recognition computation using action potential timing for stimulus representation
    • J. Hopfield, Pattern recognition computation using action potential timing for stimulus representation, Nature 376 (1995) 33-36.
    • (1995) Nature , vol.376 , pp. 33-36
    • Hopfield, J.1
  • 14
    • 0036826068 scopus 로고    scopus 로고
    • Error-backpropagation in temporally encoded networks of spiking neurons
    • DOI 10.1016/S0925-2312(01)00658-0, PII S0925231201006580
    • S. M. Bohte, J. N. Kok and J. A. L. Poutré, Errorbackpropagation in temporally encoded networks of spiking neurons, Neurocomputing 48(1-4) (2002) 17-37. (Pubitemid 36221486)
    • (2002) Neurocomputing , vol.48 , pp. 17-37
    • Bohte, S.M.1    Kok, J.N.2    La Poutre, H.3
  • 15
    • 79960039790 scopus 로고    scopus 로고
    • Testing of information condensation in a model reverberating spiking neural network
    • A. K. Vidybida, Testing of information condensation in a model reverberating spiking neural network, Int. J. Neural Syst. 21(3) (2011) 187-198.
    • (2011) Int. J. Neural Syst. , vol.21 , Issue.3 , pp. 187-198
    • Vidybida, A.K.1
  • 16
    • 81855183715 scopus 로고    scopus 로고
    • Probabilistic computational neurogenetic modelling: From cognitive systems to alzheimers disease
    • N. Kasabov, R. Schliebs and H. Kojima, Probabilistic computational neurogenetic modelling: From cognitive systems to alzheimers disease, IEEE Trans. Auton. Mental Develop.
    • IEEE Trans. Auton. Mental Develop
    • Kasabov, N.1    Schliebs, R.2    Kojima, H.3
  • 17
    • 79953195541 scopus 로고    scopus 로고
    • Phase resetting analysis of high potassium epileptiform activity in ca3 region of the rat hippocampus
    • A. Jahangiri and D. M. Durand, Phase resetting analysis of high potassium epileptiform activity in ca3 region of the rat hippocampus, Int. J. Neural Syst. 21(2) (2011) 127-138.
    • (2011) Int. J. Neural Syst. , vol.21 , Issue.2 , pp. 127-138
    • Jahangiri, A.1    Durand, D.M.2
  • 18
    • 80053344343 scopus 로고    scopus 로고
    • Adaptive cerebellar spiking model embedded in the control loop: Context switching and robustness against noise
    • N. R. Luque, J. A. Garrido, R. R. Carrillo, S. Tolu and E. Ros, Adaptive cerebellar spiking model embedded in the control loop: Context switching and robustness against noise, Int. J. Neural Syst. 21(5) (2011) 385-401.
    • (2011) Int. J. Neural Syst. , vol.21 , Issue.5 , pp. 385-401
    • Luque, N.R.1    Garrido, J.A.2    Carrillo, R.R.3    Tolu, S.4    Ros, E.5
  • 19
    • 78649560818 scopus 로고    scopus 로고
    • Analysis and automatic identification of sleep stages using higher order spectra
    • U. R. Acharya, E. C. Chua, K. C. Chua, L. C. Min and T. Tamura, Analysis and automatic identification of sleep stages using higher order spectra, Int. J. Neural Syst. 20(6) (2010) 509-521.
    • (2010) Int. J. Neural Syst. , vol.20 , Issue.6 , pp. 509-521
    • Acharya, U.R.1    Chua, E.C.2    Chua, K.C.3    Min, L.C.4    Tamura, T.5
  • 20
    • 51449107175 scopus 로고    scopus 로고
    • Emergence of preferred firing sequences in large spiking neural networks during simulated neuronal development
    • J. Iglesias and A. E. P. Villa, Emergence of preferred firing sequences in large spiking neural networks during simulated neuronal development, Int. J. Neural Syst. 18(4) (2008) 267-277.
    • (2008) Int. J. Neural Syst. , vol.18 , Issue.4 , pp. 267-277
    • Iglesias, J.1    Villa, A.E.P.2
  • 22
    • 78649706602 scopus 로고    scopus 로고
    • An stdp training algorithm for a spiking neural network with dynamic threshold neurons
    • T. J. Strain, L. J. McDaid, T. M. McGinnity, L. P. Maguire and H. M. Sayers, An stdp training algorithm for a spiking neural network with dynamic threshold neurons, Int. J. Neural Syst. 20(6) (2010) 463-480.
    • (2010) Int. J. Neural Syst. , vol.20 , Issue.6 , pp. 463-480
    • Strain, T.J.1    McDaid, L.J.2    McGinnity, T.M.3    Maguire, L.P.4    Sayers, H.M.5
  • 23
    • 77955058561 scopus 로고    scopus 로고
    • Evolving spiking neural networks for audiovisual information processing
    • S. G.Wysoski, L. Benuskova and N. Kasabov, Evolving spiking neural networks for audiovisual information processing, Neural Networks 23 (2010) 819-835.
    • (2010) Neural Networks , vol.23 , pp. 819-835
    • Wysoski, S.G.1    Benuskova, L.2    Kasabov, N.3
  • 24
    • 71049128082 scopus 로고    scopus 로고
    • A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection
    • S. Ghosh-Dastidar and H. Adeli, A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection, Neural Networks 22(10) (2009) 1419-1431.
    • (2009) Neural Networks , vol.22 , Issue.10 , pp. 1419-1431
    • Ghosh-Dastidar, S.1    Adeli, H.2
  • 26
    • 78649583381 scopus 로고    scopus 로고
    • Knowledge extraction from evolving spiking neural networks with rank order population coding
    • S. Soltic and N. K. Kasabov, Knowledge extraction from evolving spiking neural networks with rank order population coding, Int. J. Neural Syst. 20(6) (2010) 437-445.
    • (2010) Int. J. Neural Syst. , vol.20 , Issue.6 , pp. 437-445
    • Soltic, S.1    Kasabov, N.K.2
  • 27
    • 78649570922 scopus 로고    scopus 로고
    • An fpga hardware/software codesign towards evolvable spiking neural networks for robotics application
    • S. P. Johnston, G. Prasad, L. Maguire and T. M. McGinnity, An fpga hardware/software codesign towards evolvable spiking neural networks for robotics application, Int. J. Neural Syst. 20(6) (2010) 447-461.
    • (2010) Int. J. Neural Syst. , vol.20 , Issue.6 , pp. 447-461
    • Johnston, S.P.1    Prasad, G.2    Maguire, L.3    McGinnity, T.M.4
  • 28
    • 78649600776 scopus 로고    scopus 로고
    • Case study on a self-organizing spiking neural network for robot navigation
    • E. Nichols, L. J. McDaid and N. H. Siddique, Case study on a self-organizing spiking neural network for robot navigation, Int. J. Neural Syst. 20(6) (2010) 501-508.
    • (2010) Int. J. Neural Syst. , vol.20 , Issue.6 , pp. 501-508
    • Nichols, E.1    McDaid, L.J.2    Siddique, N.H.3
  • 29
    • 45849093286 scopus 로고    scopus 로고
    • Towards spike-based speech processing: A biologically plausible approach to simple acoustic classification
    • I. Uysal, H. Sathyendra and J. Harris, Towards spike-based speech processing: A biologically plausible approach to simple acoustic classification, Int. J. Appl. Math. Comput. Sci. 18 (2008) 129-137.
    • (2008) Int. J. Appl. Math. Comput. Sci. , vol.18 , pp. 129-137
    • Uysal, I.1    Sathyendra, H.2    Harris, J.3
  • 30
    • 37749042762 scopus 로고    scopus 로고
    • Bayesian spiking neurons i: Inference
    • S. Deneve, Bayesian spiking neurons i: Inference, Neural Comput. 20(1) (2008) 91-117.
    • (2008) Neural Comput. , vol.20 , Issue.1 , pp. 91-117
    • Deneve, S.1
  • 31
    • 34547597104 scopus 로고    scopus 로고
    • Improved spiking neural networks for EEG classification and epilepsy and seizure detection
    • S. Ghosh-Dastidar and H. Adeli, Improved spiking neural networks for eeg classification and epilepsy and seizure detection, Integrated. Comput.-Aided Eng. 14 (2007) 187-212. (Pubitemid 47191475)
    • (2007) Integrated Computer-Aided Engineering , vol.14 , Issue.3 , pp. 187-212
    • Ghosh-Dastidar, S.1    Adeli, H.2
  • 32
    • 77953884233 scopus 로고    scopus 로고
    • Real-time classification of datasets with hardware embedded neuromorphic neural networks
    • L. Bako, Real-time classification of datasets with hardware embedded neuromorphic neural networks, Brief. Bioinform. 11(3) (2010) 348-363.
    • (2010) Brief. Bioinform. , vol.11 , Issue.3 , pp. 348-363
    • Bako, L.1
  • 33
    • 0036834701 scopus 로고    scopus 로고
    • Realtime computing without stable states: A new framework for neural computation based on perturbations
    • W. Maass, T. Natschläger and H. Markram, Realtime computing without stable states: A new framework for neural computation based on perturbations, Neural Comput. 14(11) (2002) 2531-2560.
    • (2002) Neural Comput. , vol.14 , Issue.11 , pp. 2531-2560
    • Maass, W.1    Natschläger, T.2    Markram, H.3
  • 34
    • 2542445396 scopus 로고    scopus 로고
    • SpikeNet: Real-time visual processing with one spike per neuron
    • DOI 10.1016/j.neucom.2004.01.138, PII S0925231204001432
    • S. J. Thorpe, R. Guyonneau, N. Guilbaud, J.-M. Allegraud and R. VanRullen, SpikeNet: real-time visual processing with one spike per neuron, Neurocomputing 58-60 (2004) 857-864. (Pubitemid 38684343)
    • (2004) Neurocomputing , vol.58-60 , pp. 857-864
    • Thorpe, S.J.1    Guyonneau, R.2    Guilbaud, N.3    Allegraud, J.-M.4    VanRullen, R.5
  • 35
    • 0141518763 scopus 로고    scopus 로고
    • Spike-Prop: Backpropagation for networks of spiking neurons
    • S. M. Bohte, J. N. Kok and J. A. L. Poutré, Spike-Prop: backpropagation for networks of spiking neurons, in ESANN (2000), pp. 419-424.
    • (2000) ESANN , pp. 419-424
    • Bohte, S.M.1    Kok, J.N.2    Poutré, J.A.L.3
  • 36
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D. E. Rumelhart, G. E. Hinton and R. J. Williams, Learning representations by back-propagating errors, Nature 323 (1986) 533-536. (Pubitemid 16025374)
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 38
    • 33646716352 scopus 로고    scopus 로고
    • Improving SpikeProp: Enhancements to an error-backpropagation rule for spiking neural networks
    • B. Schrauwen and J. van Campenhout, Improving SpikeProp: Enhancements to an error-backpropagation rule for spiking neural networks, Proc. 15th ProRISC Workshop (2004).
    • (2004) Proc. 15th ProRISC Workshop
    • Schrauwen, B.1    Van Campenhout, J.2
  • 39
    • 33344478663 scopus 로고    scopus 로고
    • The tempotron: A neuron that learns spike timing-based decisions
    • DOI 10.1038/nn1643
    • R. Gutig and H. Sompolinsky, The tempotron: A neuron that learns spike timing-based decisions, Nat. Neurosci. 9(3) (2006) 420-428. (Pubitemid 43290972)
    • (2006) Nature Neuroscience , vol.9 , Issue.3 , pp. 420-428
    • Gutig, R.1    Sompolinsky, H.2
  • 40
    • 77649334232 scopus 로고    scopus 로고
    • Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification, and spike shifting
    • F. Ponulak and A. Kasiński, Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification, and spike shifting, Neural Comput. 22(2) (2010) 467-510.
    • (2010) Neural Comput. , vol.22 , Issue.2 , pp. 467-510
    • Ponulak, F.1    Kasiński, A.2
  • 42
    • 33646736422 scopus 로고    scopus 로고
    • Technical report, Institute of Control and Information Engineering, Poznań University of Technology, Poznań, Poland
    • F. Ponulak, ReSuMe -new supervised learning method for spiking neural networks, Technical report, Institute of Control and Information Engineering, Poznań University of Technology, Poznań, Poland (2005).
    • (2005) ReSuMe -New Supervised Learning Method For Spiking Neural Networks
    • Ponulak, F.1
  • 43
    • 25144452832 scopus 로고    scopus 로고
    • What can a neuron learn with spike-timing-dependent plasticity?
    • DOI 10.1162/0899766054796888
    • R. Legenstein, C. Naeger and W. Maass, What can a neuron learn with spike-timing-dependent plasticity? Neural Comput. 17(11) (2005) 2337-2382. (Pubitemid 41337039)
    • (2005) Neural Computation , vol.17 , Issue.11 , pp. 2337-2382
    • Legenstein, R.1    Naeger, C.2    Maass, W.3
  • 44
    • 0030916321 scopus 로고    scopus 로고
    • Synaptic plasticity in a cerebellum-like structure depends on temporal order
    • DOI 10.1038/387278a0
    • C. Bell, V. Z. Han, Y. Sugawara and K. Grant, Synaptic plasticity in a cerebellum-like structure depends on temporal order, Nature 387 (1997) 278-281. (Pubitemid 27220761)
    • (1997) Nature , vol.387 , Issue.6630 , pp. 278-281
    • Bell, C.C.1    Han, V.Z.2    Sugawara, Y.3    Grant, K.4
  • 45
    • 0025488663 scopus 로고
    • 30 years of adaptive neural networks: Perceptron, madaline, and backpropagation
    • B. Widrow and M. Lehr, 30 years of adaptive neural networks: Perceptron, madaline, and backpropagation, Proc. IEEE 78(9) (1990) 1415-1442.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1415-1442
    • Widrow, B.1    Lehr, M.2
  • 47
    • 34249708388 scopus 로고    scopus 로고
    • Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity
    • R. V. Florian, Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity, Neural Comput. 19(6) (2007) 1468-1502.
    • (2007) Neural Comput. , vol.19 , Issue.6 , pp. 1468-1502
    • Florian, R.V.1
  • 48
    • 0001175897 scopus 로고    scopus 로고
    • Metric-space analysis of spike trains: Theory, algorithms and application
    • PII S0954898X97807518
    • J. D. Victor and K. P. Purpura, Metric-space analysis of spike trains: Theory, algorithms and application, Network: Comput. Neural Syst. 8(2) (1997) 127-164. (Pubitemid 127719538)
    • (1997) Network: Computation in Neural Systems , vol.8 , Issue.2 , pp. 127-164
    • Victor, J.D.1    Purpura, K.P.2
  • 49
    • 0035319165 scopus 로고    scopus 로고
    • A novel spike distance
    • DOI 10.1162/089976601300014321
    • M. C. van Rossum, A novel spike distance, Neural Comput. 13(4) (2001) 751-763. (Pubitemid 33594302)
    • (2001) Neural Computation , vol.13 , Issue.4 , pp. 751-763
    • Van Rossum, M.C.W.1
  • 50
    • 80054767337 scopus 로고    scopus 로고
    • Optimization of spiking neural networks with dynamic synapses for spike sequence generation using PSO
    • San Jose, California, USA ( IEEE Press
    • A. Mohemmed, S. Schliebs, S. Matsuda, K. Dhoble and N. Kasabov, Optimization of spiking neural networks with dynamic synapses for spike sequence generation using PSO, in Int. Joint Conf. Neural Networks, IJCNN 2011, San Jose, California, USA (2011) IEEE Press, 2969-2974.
    • (2011) Int. Joint Conf. Neural Networks, IJCNN 2011 , pp. 2969-2974
    • Mohemmed, A.1    Schliebs, S.2    Matsuda, S.3    Dhoble, K.4    Kasabov, N.5
  • 51
    • 84864329060 scopus 로고    scopus 로고
    • Method for training a spiking neuron to associate input-output spike trains
    • to appear in Springer Verlag, Corfu, Greece
    • A. Mohemmed, S. Schliebs, S. Matsuda and N. Kasabov, Method for training a spiking neuron to associate input-output spike trains, to appear in Engineering Applications of Neural Networks, EANN 2011 (Springer Verlag, Corfu, Greece, 2011).
    • Engineering Applications of Neural Networks, 2011 , pp. 2011
    • Mohemmed, A.1    Schliebs, S.2    Matsuda, S.3    Kasabov, N.4
  • 52
    • 70049083053 scopus 로고    scopus 로고
    • Towards reproducible descriptions of neuronal network models
    • E. Nordlie, M.-O. Gewaltig and H. E. Plesser, Towards reproducible descriptions of neuronal network models, PLoS Comput. Biol. 5(8) (2009) e1000 456.
    • (2009) PLoS Comput. Biol. , vol.5 , Issue.8
    • Nordlie, E.1    Gewaltig, M.-O.2    Plesser, H.E.3
  • 53
    • 43949092150 scopus 로고    scopus 로고
    • Nest (neural simulation tool
    • M.-O. Gewaltig and M. Diesmann, Nest (neural simulation tool), Scholarpedia 2(4) (2007) 1430.
    • (2007) Scholarpedia , vol.2 , Issue.4 , pp. 1430
    • Gewaltig, M.-O.1    Diesmann, M.2
  • 54
    • 33847419845 scopus 로고    scopus 로고
    • Linking non-binned spike train kernels to several existing spike train metrics
    • DOI 10.1016/j.neucom.2006.11.017, PII S0925231206004966, Advances in Computational Intelligence and Learning 14th European Symposium on Artificial Neural Networks 2006
    • B. Schrauwen and J. V. Campenhout, Linking nonbinned spike train kernels to several existing spike train metrics, Neurocomputing 70 (2007) 1247-1253. (Pubitemid 46336787)
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1247-1253
    • Schrauwen, B.1    Campenhout, J.V.2
  • 55
    • 45849105552 scopus 로고    scopus 로고
    • Analysis of the resume learning process for spiking neural networks
    • F. Ponulak, Analysis of the resume learning process for spiking neural networks, Appl. Math. Comput. Sci. 18(2) (2008) 117-127.
    • (2008) Appl. Math. Comput. Sci. , vol.18 , Issue.2 , pp. 117-127
    • Ponulak, F.1
  • 56
    • 84869010348 scopus 로고    scopus 로고
    • Incremental learning algorithm for spike pattern classification
    • June 10-15,Brisbane, Australia, 2012
    • A. Mohemmed and N. Kasabov, Incremental learning algorithm for spike pattern classification, WCCI 2012 IEEE World Congress on Computational Intelligence, June 10-15, 2012 (Brisbane, Australia, 2012), pp. 1227-1232.
    • WCCI 2012 IEEE World Congress on Computational Intelligence , vol.2012 , pp. 1227-1232
    • Mohemmed, A.1    Kasabov, N.2
  • 57
    • 70649084995 scopus 로고    scopus 로고
    • To spike or not to spike: A probabilistic spiking neuron model
    • N. Kasabov, To spike or not to spike: A probabilistic spiking neuron model, Neural Netw. 23(1) (2010) 16-19.
    • (2010) Neural Netw. , vol.23 , Issue.1 , pp. 16-19
    • Kasabov, N.1
  • 58
    • 84865012572 scopus 로고    scopus 로고
    • Evolving spiking neural networks and neurogenetic systems for spatio-and spectrotemporal data modelling and pattern recognition
    • LNCS, eds. J. Liu et al. (Springer-Verlag, Berlin, Heidelberg
    • N. Kasabov, Evolving spiking neural networks and neurogenetic systems for spatio-and spectrotemporal data modelling and pattern recognition, IEEE WCCI 2012, LNCS, Vol. 7311, eds. J. Liu et al. (Springer-Verlag, Berlin, Heidelberg, 2012), pp. 234-260.
    • (2012) IEEE WCCI 2012 , vol.7311 , pp. 234-260
    • Kasabov, N.1
  • 59
    • 84865101997 scopus 로고    scopus 로고
    • On-line spatiotemporal pattern recognition with evolving spiking neural networks utilising address event representation, rank oder-and temporal spike learning
    • June 10-15, Brisbane, Australia, 2012
    • K. Dhoble, N. Nuntalid, G. Indivery and N. Kasabov, On-line spatiotemporal pattern recognition with evolving spiking neural networks utilising address event representation, rank oder-and temporal spike learning, WCCI 2012 IEEE World Congress on Computational Intelligence, June 10-15, 2012 (Brisbane, Australia, 2012), pp. 554-560.
    • (2012) WCCI 2012 IEEE World Congress on Computational Intelligence , pp. 554-560
    • Dhoble, K.1    Nuntalid, N.2    Indivery, G.3    Kasabov, N.4
  • 60
    • 38649083793 scopus 로고    scopus 로고
    • A behavior controller based on spiking neural networks for mobile robots
    • DOI 10.1016/j.neucom.2007.08.025, PII S0925231207003025
    • X. Wang, Z. G. Hou, A. Zou, M. Tan and L. Cheng, A behavior controller for mobile robot based on spiking neural networks, Neurocomputing 71(4-6) (2008) 655-666. (Pubitemid 351168455)
    • (2008) Neurocomputing , vol.71 , Issue.4-6 , pp. 655-666
    • Wang, X.1    Hou, Z.-G.2    Zou, A.3    Tan, M.4    Cheng, L.5
  • 61
    • 84855665544 scopus 로고    scopus 로고
    • A VLSI network of spiking neurons with an asynchronous static random access memory
    • IEEE Press
    • S. Moradi and G. Indiveri, A VLSI network of spiking neurons with an asynchronous static random access memory, in Biomedical Circuits and Systems Conference BIOCAS (IEEE Press, 2011).
    • (2011) Biomedical Circuits and Systems Conference BIOCAS
    • Moradi, S.1    Indiveri, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.