-
1
-
-
0004017463
-
-
Cambridge University Press, Cambridge, MA
-
W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge University Press, Cambridge, MA, 2002).
-
(2002)
Spiking Neuron Models: Single Neurons, Populations, Plasticity
-
-
Gerstner, W.1
Kistler, W.M.2
-
2
-
-
0031472340
-
Networks of spiking neurons: The third generation of neural network models
-
DOI 10.1016/S0893-6080(97)00011-7, PII S0893608097000117
-
W. Maass, Networks of spiking neurons: The third generation of neural network models, Neural Networks 10(9) (1997) 1659-1671. (Pubitemid 28057273)
-
(1997)
Neural Networks
, vol.10
, Issue.9
, pp. 1659-1671
-
-
Maass, W.1
-
4
-
-
0004825357
-
Computing with spiking neurons
-
MIT Press, Cambridge, MA, USA
-
W. Maass, Computing with spiking neurons, in Pulsed Neural Networks (MIT Press, Cambridge, MA, USA, 1999), pp. 55-85.
-
(1999)
Pulsed Neural Networks
, pp. 55-85
-
-
Maass, W.1
-
6
-
-
0033561842
-
Dynamic stochastic synapses as computational units
-
W. Maass and A. M. Zador, Dynamic stochastic synapses as computational units, Neural Comput. 11(4) (1999) 903-917.
-
(1999)
Neural Comput.
, vol.11
, Issue.4
, pp. 903-917
-
-
Maass, W.1
Zador, A.M.2
-
7
-
-
0032523457
-
Neural Networks with Dynamic Synapses
-
M. Tsodyks, K. Pawelzik and H. Markram, Neural networks with dynamic synapses, Neural Comput. 10(4) (1998) 821-835. (Pubitemid 128463179)
-
(1998)
Neural Computation
, vol.10
, Issue.4
, pp. 821-835
-
-
Tsodyks, M.1
Pawelzik, K.2
Markram, H.3
-
8
-
-
4344671205
-
The evidence for neural information processing with precise spike-times: A survey
-
DOI 10.1023/B:NACO.0000027755.02868.60
-
S. M. Bohte, The evidence for neural information processing with precise spike-times: A survey, Nat. Comput. 3 (2004) 195-206. (Pubitemid 39127653)
-
(2004)
Natural Computing
, vol.3
, Issue.2
, pp. 195-206
-
-
Bohte, S.M.1
-
9
-
-
11144349546
-
Spike times make sense
-
DOI 10.1016/j.tins.2004.10.010, PII S0166223604003546
-
R. VanRullen, R. Guyonneau and S. J. Thorpe, Spike times make sense, Trends Neurosci. 28(1) (2005) 1-4. (Pubitemid 40038795)
-
(2005)
Trends in Neurosciences
, vol.28
, Issue.1
, pp. 1-4
-
-
VanRullen, R.1
Guyonneau, R.2
Thorpe, S.J.3
-
10
-
-
38349183038
-
Regulation of spike timing in visual cortical circuits
-
P. Tiesinga, J. Fellous and T. J. Sejnowski, Regulation of spike timing in visual cortical circuits, Nat. Rev. Neurosci. 9(2) (2008) 97-107.
-
(2008)
Nat. Rev. Neurosci.
, vol.9
, Issue.2
, pp. 97-107
-
-
Tiesinga, P.1
Fellous, J.2
Sejnowski, T.J.3
-
11
-
-
34548515491
-
Temporal precision in the neural code and the timescales of natural vision
-
DOI 10.1038/nature06105, PII NATURE06105
-
D. A. Butts, C. Weng, J. Jin, C. Yeh, N. A. Lesica, J. Alonso and G. B. Stanley, Temporal precision in the neural code and the timescales of natural vision, Nature 449(7158) (2007) 92-95. (Pubitemid 47373774)
-
(2007)
Nature
, vol.449
, Issue.7158
, pp. 92-95
-
-
Butts, D.A.1
Weng, C.2
Jin, J.3
Yeh, C.-I.4
Lesica, N.A.5
Alonso, J.-M.6
Stanley, G.B.7
-
12
-
-
78049416805
-
Spike-timing theory of working memory
-
B. Szatmry and E. M. Izhikevich, Spike-timing theory of working memory, PLoS Comput. Biol. 6(8) (2010) 1-11.
-
(2010)
PLoS Comput. Biol.
, vol.6
, Issue.8
, pp. 1-11
-
-
Szatmry, B.1
Izhikevich, E.M.2
-
13
-
-
0029637779
-
Pattern recognition computation using action potential timing for stimulus representation
-
J. Hopfield, Pattern recognition computation using action potential timing for stimulus representation, Nature 376 (1995) 33-36.
-
(1995)
Nature
, vol.376
, pp. 33-36
-
-
Hopfield, J.1
-
14
-
-
0036826068
-
Error-backpropagation in temporally encoded networks of spiking neurons
-
DOI 10.1016/S0925-2312(01)00658-0, PII S0925231201006580
-
S. M. Bohte, J. N. Kok and J. A. L. Poutré, Errorbackpropagation in temporally encoded networks of spiking neurons, Neurocomputing 48(1-4) (2002) 17-37. (Pubitemid 36221486)
-
(2002)
Neurocomputing
, vol.48
, pp. 17-37
-
-
Bohte, S.M.1
Kok, J.N.2
La Poutre, H.3
-
15
-
-
79960039790
-
Testing of information condensation in a model reverberating spiking neural network
-
A. K. Vidybida, Testing of information condensation in a model reverberating spiking neural network, Int. J. Neural Syst. 21(3) (2011) 187-198.
-
(2011)
Int. J. Neural Syst.
, vol.21
, Issue.3
, pp. 187-198
-
-
Vidybida, A.K.1
-
16
-
-
81855183715
-
Probabilistic computational neurogenetic modelling: From cognitive systems to alzheimers disease
-
N. Kasabov, R. Schliebs and H. Kojima, Probabilistic computational neurogenetic modelling: From cognitive systems to alzheimers disease, IEEE Trans. Auton. Mental Develop.
-
IEEE Trans. Auton. Mental Develop
-
-
Kasabov, N.1
Schliebs, R.2
Kojima, H.3
-
17
-
-
79953195541
-
Phase resetting analysis of high potassium epileptiform activity in ca3 region of the rat hippocampus
-
A. Jahangiri and D. M. Durand, Phase resetting analysis of high potassium epileptiform activity in ca3 region of the rat hippocampus, Int. J. Neural Syst. 21(2) (2011) 127-138.
-
(2011)
Int. J. Neural Syst.
, vol.21
, Issue.2
, pp. 127-138
-
-
Jahangiri, A.1
Durand, D.M.2
-
18
-
-
80053344343
-
Adaptive cerebellar spiking model embedded in the control loop: Context switching and robustness against noise
-
N. R. Luque, J. A. Garrido, R. R. Carrillo, S. Tolu and E. Ros, Adaptive cerebellar spiking model embedded in the control loop: Context switching and robustness against noise, Int. J. Neural Syst. 21(5) (2011) 385-401.
-
(2011)
Int. J. Neural Syst.
, vol.21
, Issue.5
, pp. 385-401
-
-
Luque, N.R.1
Garrido, J.A.2
Carrillo, R.R.3
Tolu, S.4
Ros, E.5
-
19
-
-
78649560818
-
Analysis and automatic identification of sleep stages using higher order spectra
-
U. R. Acharya, E. C. Chua, K. C. Chua, L. C. Min and T. Tamura, Analysis and automatic identification of sleep stages using higher order spectra, Int. J. Neural Syst. 20(6) (2010) 509-521.
-
(2010)
Int. J. Neural Syst.
, vol.20
, Issue.6
, pp. 509-521
-
-
Acharya, U.R.1
Chua, E.C.2
Chua, K.C.3
Min, L.C.4
Tamura, T.5
-
20
-
-
51449107175
-
Emergence of preferred firing sequences in large spiking neural networks during simulated neuronal development
-
J. Iglesias and A. E. P. Villa, Emergence of preferred firing sequences in large spiking neural networks during simulated neuronal development, Int. J. Neural Syst. 18(4) (2008) 267-277.
-
(2008)
Int. J. Neural Syst.
, vol.18
, Issue.4
, pp. 267-277
-
-
Iglesias, J.1
Villa, A.E.P.2
-
21
-
-
79952181750
-
Spiking neural networks for breast cancer classification in a dielectrically heterogeneous breas
-
M. O'Halloran, B. McGinley, R. C. Conceicao, F. Morgan, E. Jones and M. Glavin, Spiking neural networks for breast cancer classification in a dielectrically heterogeneous breas, Prog. Electromagn. Res. C 113 (2011) 413-428.
-
(2011)
Prog. Electromagn. Res. C
, vol.113
, pp. 413-428
-
-
O'Halloran, M.1
McGinley, B.2
Conceicao, R.C.3
Morgan, F.4
Jones, E.5
Glavin, M.6
-
22
-
-
78649706602
-
An stdp training algorithm for a spiking neural network with dynamic threshold neurons
-
T. J. Strain, L. J. McDaid, T. M. McGinnity, L. P. Maguire and H. M. Sayers, An stdp training algorithm for a spiking neural network with dynamic threshold neurons, Int. J. Neural Syst. 20(6) (2010) 463-480.
-
(2010)
Int. J. Neural Syst.
, vol.20
, Issue.6
, pp. 463-480
-
-
Strain, T.J.1
McDaid, L.J.2
McGinnity, T.M.3
Maguire, L.P.4
Sayers, H.M.5
-
23
-
-
77955058561
-
Evolving spiking neural networks for audiovisual information processing
-
S. G.Wysoski, L. Benuskova and N. Kasabov, Evolving spiking neural networks for audiovisual information processing, Neural Networks 23 (2010) 819-835.
-
(2010)
Neural Networks
, vol.23
, pp. 819-835
-
-
Wysoski, S.G.1
Benuskova, L.2
Kasabov, N.3
-
24
-
-
71049128082
-
A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection
-
S. Ghosh-Dastidar and H. Adeli, A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection, Neural Networks 22(10) (2009) 1419-1431.
-
(2009)
Neural Networks
, vol.22
, Issue.10
, pp. 1419-1431
-
-
Ghosh-Dastidar, S.1
Adeli, H.2
-
25
-
-
78149477279
-
Spike-based convolutional network for real-time processing
-
IEEE Computer Society, Washington, DC, USA
-
J. Peandrez-Carrasco, C. Serrano, B. Acha, T. Serrano-Gotarredona and B. Linares-Barranco, Spike-based convolutional network for real-time processing, in Proc. 2010 20th Int. Conf. Pattern Recognition, ICPR '10 (IEEE Computer Society, Washington, DC, USA, 2010), pp. 3085-3088.
-
(2010)
Proc. 2010 20th Int. Conf. Pattern Recognition, ICPR '10
, pp. 3085-3088
-
-
Peandrez-Carrasco, J.1
Serrano, C.2
Acha, B.3
Serrano-Gotarredona, T.4
Linares-Barranco, B.5
-
26
-
-
78649583381
-
Knowledge extraction from evolving spiking neural networks with rank order population coding
-
S. Soltic and N. K. Kasabov, Knowledge extraction from evolving spiking neural networks with rank order population coding, Int. J. Neural Syst. 20(6) (2010) 437-445.
-
(2010)
Int. J. Neural Syst.
, vol.20
, Issue.6
, pp. 437-445
-
-
Soltic, S.1
Kasabov, N.K.2
-
27
-
-
78649570922
-
An fpga hardware/software codesign towards evolvable spiking neural networks for robotics application
-
S. P. Johnston, G. Prasad, L. Maguire and T. M. McGinnity, An fpga hardware/software codesign towards evolvable spiking neural networks for robotics application, Int. J. Neural Syst. 20(6) (2010) 447-461.
-
(2010)
Int. J. Neural Syst.
, vol.20
, Issue.6
, pp. 447-461
-
-
Johnston, S.P.1
Prasad, G.2
Maguire, L.3
McGinnity, T.M.4
-
28
-
-
78649600776
-
Case study on a self-organizing spiking neural network for robot navigation
-
E. Nichols, L. J. McDaid and N. H. Siddique, Case study on a self-organizing spiking neural network for robot navigation, Int. J. Neural Syst. 20(6) (2010) 501-508.
-
(2010)
Int. J. Neural Syst.
, vol.20
, Issue.6
, pp. 501-508
-
-
Nichols, E.1
McDaid, L.J.2
Siddique, N.H.3
-
29
-
-
45849093286
-
Towards spike-based speech processing: A biologically plausible approach to simple acoustic classification
-
I. Uysal, H. Sathyendra and J. Harris, Towards spike-based speech processing: A biologically plausible approach to simple acoustic classification, Int. J. Appl. Math. Comput. Sci. 18 (2008) 129-137.
-
(2008)
Int. J. Appl. Math. Comput. Sci.
, vol.18
, pp. 129-137
-
-
Uysal, I.1
Sathyendra, H.2
Harris, J.3
-
30
-
-
37749042762
-
Bayesian spiking neurons i: Inference
-
S. Deneve, Bayesian spiking neurons i: Inference, Neural Comput. 20(1) (2008) 91-117.
-
(2008)
Neural Comput.
, vol.20
, Issue.1
, pp. 91-117
-
-
Deneve, S.1
-
31
-
-
34547597104
-
Improved spiking neural networks for EEG classification and epilepsy and seizure detection
-
S. Ghosh-Dastidar and H. Adeli, Improved spiking neural networks for eeg classification and epilepsy and seizure detection, Integrated. Comput.-Aided Eng. 14 (2007) 187-212. (Pubitemid 47191475)
-
(2007)
Integrated Computer-Aided Engineering
, vol.14
, Issue.3
, pp. 187-212
-
-
Ghosh-Dastidar, S.1
Adeli, H.2
-
32
-
-
77953884233
-
Real-time classification of datasets with hardware embedded neuromorphic neural networks
-
L. Bako, Real-time classification of datasets with hardware embedded neuromorphic neural networks, Brief. Bioinform. 11(3) (2010) 348-363.
-
(2010)
Brief. Bioinform.
, vol.11
, Issue.3
, pp. 348-363
-
-
Bako, L.1
-
33
-
-
0036834701
-
Realtime computing without stable states: A new framework for neural computation based on perturbations
-
W. Maass, T. Natschläger and H. Markram, Realtime computing without stable states: A new framework for neural computation based on perturbations, Neural Comput. 14(11) (2002) 2531-2560.
-
(2002)
Neural Comput.
, vol.14
, Issue.11
, pp. 2531-2560
-
-
Maass, W.1
Natschläger, T.2
Markram, H.3
-
34
-
-
2542445396
-
SpikeNet: Real-time visual processing with one spike per neuron
-
DOI 10.1016/j.neucom.2004.01.138, PII S0925231204001432
-
S. J. Thorpe, R. Guyonneau, N. Guilbaud, J.-M. Allegraud and R. VanRullen, SpikeNet: real-time visual processing with one spike per neuron, Neurocomputing 58-60 (2004) 857-864. (Pubitemid 38684343)
-
(2004)
Neurocomputing
, vol.58-60
, pp. 857-864
-
-
Thorpe, S.J.1
Guyonneau, R.2
Guilbaud, N.3
Allegraud, J.-M.4
VanRullen, R.5
-
35
-
-
0141518763
-
Spike-Prop: Backpropagation for networks of spiking neurons
-
S. M. Bohte, J. N. Kok and J. A. L. Poutré, Spike-Prop: backpropagation for networks of spiking neurons, in ESANN (2000), pp. 419-424.
-
(2000)
ESANN
, pp. 419-424
-
-
Bohte, S.M.1
Kok, J.N.2
Poutré, J.A.L.3
-
36
-
-
0022471098
-
Learning representations by back-propagating errors
-
D. E. Rumelhart, G. E. Hinton and R. J. Williams, Learning representations by back-propagating errors, Nature 323 (1986) 533-536. (Pubitemid 16025374)
-
(1986)
Nature
, vol.323
, Issue.6088
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
37
-
-
0034862761
-
Supervised learning with spiking neural networks
-
J. Xin and M. Embrechts, Supervised learning with spiking neural networks, Int. Joint Conf. Neural Networks, IJCNN '01, Vol. 3 (IEEE Press, 2001), pp. 1772-1777. (Pubitemid 32805167)
-
(2001)
Proceedings of the International Joint Conference on Neural Networks
, vol.3
, pp. 1772-1777
-
-
Xin, J.1
Embrechts, M.J.2
-
38
-
-
33646716352
-
Improving SpikeProp: Enhancements to an error-backpropagation rule for spiking neural networks
-
B. Schrauwen and J. van Campenhout, Improving SpikeProp: Enhancements to an error-backpropagation rule for spiking neural networks, Proc. 15th ProRISC Workshop (2004).
-
(2004)
Proc. 15th ProRISC Workshop
-
-
Schrauwen, B.1
Van Campenhout, J.2
-
39
-
-
33344478663
-
The tempotron: A neuron that learns spike timing-based decisions
-
DOI 10.1038/nn1643
-
R. Gutig and H. Sompolinsky, The tempotron: A neuron that learns spike timing-based decisions, Nat. Neurosci. 9(3) (2006) 420-428. (Pubitemid 43290972)
-
(2006)
Nature Neuroscience
, vol.9
, Issue.3
, pp. 420-428
-
-
Gutig, R.1
Sompolinsky, H.2
-
40
-
-
77649334232
-
Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification, and spike shifting
-
F. Ponulak and A. Kasiński, Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification, and spike shifting, Neural Comput. 22(2) (2010) 467-510.
-
(2010)
Neural Comput.
, vol.22
, Issue.2
, pp. 467-510
-
-
Ponulak, F.1
Kasiński, A.2
-
42
-
-
33646736422
-
-
Technical report, Institute of Control and Information Engineering, Poznań University of Technology, Poznań, Poland
-
F. Ponulak, ReSuMe -new supervised learning method for spiking neural networks, Technical report, Institute of Control and Information Engineering, Poznań University of Technology, Poznań, Poland (2005).
-
(2005)
ReSuMe -New Supervised Learning Method For Spiking Neural Networks
-
-
Ponulak, F.1
-
43
-
-
25144452832
-
What can a neuron learn with spike-timing-dependent plasticity?
-
DOI 10.1162/0899766054796888
-
R. Legenstein, C. Naeger and W. Maass, What can a neuron learn with spike-timing-dependent plasticity? Neural Comput. 17(11) (2005) 2337-2382. (Pubitemid 41337039)
-
(2005)
Neural Computation
, vol.17
, Issue.11
, pp. 2337-2382
-
-
Legenstein, R.1
Naeger, C.2
Maass, W.3
-
44
-
-
0030916321
-
Synaptic plasticity in a cerebellum-like structure depends on temporal order
-
DOI 10.1038/387278a0
-
C. Bell, V. Z. Han, Y. Sugawara and K. Grant, Synaptic plasticity in a cerebellum-like structure depends on temporal order, Nature 387 (1997) 278-281. (Pubitemid 27220761)
-
(1997)
Nature
, vol.387
, Issue.6630
, pp. 278-281
-
-
Bell, C.C.1
Han, V.Z.2
Sugawara, Y.3
Grant, K.4
-
45
-
-
0025488663
-
30 years of adaptive neural networks: Perceptron, madaline, and backpropagation
-
B. Widrow and M. Lehr, 30 years of adaptive neural networks: Perceptron, madaline, and backpropagation, Proc. IEEE 78(9) (1990) 1415-1442.
-
(1990)
Proc. IEEE
, vol.78
, Issue.9
, pp. 1415-1442
-
-
Widrow, B.1
Lehr, M.2
-
46
-
-
45849084489
-
ReSuMe learning method for spiking neural networks dedicated to neuroprostheses control
-
Lusanne, Switzerland
-
F. Ponulak and A. Kasinski, ReSuMe learning method for spiking neural networks dedicated to neuroprostheses control, Proc. EPFL LATSIS Symposium 2006, Dynamical Principles for Neuroscience and Intelligent Biomimetic Devices, Lusanne, Switzerland (2006) 119-120.
-
(2006)
Proc. EPFL LATSIS Symposium 2006, Dynamical Principles for Neuroscience and Intelligent Biomimetic Devices
, pp. 119-120
-
-
Ponulak, F.1
Kasinski, A.2
-
47
-
-
34249708388
-
Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity
-
R. V. Florian, Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity, Neural Comput. 19(6) (2007) 1468-1502.
-
(2007)
Neural Comput.
, vol.19
, Issue.6
, pp. 1468-1502
-
-
Florian, R.V.1
-
48
-
-
0001175897
-
Metric-space analysis of spike trains: Theory, algorithms and application
-
PII S0954898X97807518
-
J. D. Victor and K. P. Purpura, Metric-space analysis of spike trains: Theory, algorithms and application, Network: Comput. Neural Syst. 8(2) (1997) 127-164. (Pubitemid 127719538)
-
(1997)
Network: Computation in Neural Systems
, vol.8
, Issue.2
, pp. 127-164
-
-
Victor, J.D.1
Purpura, K.P.2
-
49
-
-
0035319165
-
A novel spike distance
-
DOI 10.1162/089976601300014321
-
M. C. van Rossum, A novel spike distance, Neural Comput. 13(4) (2001) 751-763. (Pubitemid 33594302)
-
(2001)
Neural Computation
, vol.13
, Issue.4
, pp. 751-763
-
-
Van Rossum, M.C.W.1
-
50
-
-
80054767337
-
Optimization of spiking neural networks with dynamic synapses for spike sequence generation using PSO
-
San Jose, California, USA ( IEEE Press
-
A. Mohemmed, S. Schliebs, S. Matsuda, K. Dhoble and N. Kasabov, Optimization of spiking neural networks with dynamic synapses for spike sequence generation using PSO, in Int. Joint Conf. Neural Networks, IJCNN 2011, San Jose, California, USA (2011) IEEE Press, 2969-2974.
-
(2011)
Int. Joint Conf. Neural Networks, IJCNN 2011
, pp. 2969-2974
-
-
Mohemmed, A.1
Schliebs, S.2
Matsuda, S.3
Dhoble, K.4
Kasabov, N.5
-
51
-
-
84864329060
-
Method for training a spiking neuron to associate input-output spike trains
-
to appear in Springer Verlag, Corfu, Greece
-
A. Mohemmed, S. Schliebs, S. Matsuda and N. Kasabov, Method for training a spiking neuron to associate input-output spike trains, to appear in Engineering Applications of Neural Networks, EANN 2011 (Springer Verlag, Corfu, Greece, 2011).
-
Engineering Applications of Neural Networks, 2011
, pp. 2011
-
-
Mohemmed, A.1
Schliebs, S.2
Matsuda, S.3
Kasabov, N.4
-
52
-
-
70049083053
-
Towards reproducible descriptions of neuronal network models
-
E. Nordlie, M.-O. Gewaltig and H. E. Plesser, Towards reproducible descriptions of neuronal network models, PLoS Comput. Biol. 5(8) (2009) e1000 456.
-
(2009)
PLoS Comput. Biol.
, vol.5
, Issue.8
-
-
Nordlie, E.1
Gewaltig, M.-O.2
Plesser, H.E.3
-
53
-
-
43949092150
-
Nest (neural simulation tool
-
M.-O. Gewaltig and M. Diesmann, Nest (neural simulation tool), Scholarpedia 2(4) (2007) 1430.
-
(2007)
Scholarpedia
, vol.2
, Issue.4
, pp. 1430
-
-
Gewaltig, M.-O.1
Diesmann, M.2
-
54
-
-
33847419845
-
Linking non-binned spike train kernels to several existing spike train metrics
-
DOI 10.1016/j.neucom.2006.11.017, PII S0925231206004966, Advances in Computational Intelligence and Learning 14th European Symposium on Artificial Neural Networks 2006
-
B. Schrauwen and J. V. Campenhout, Linking nonbinned spike train kernels to several existing spike train metrics, Neurocomputing 70 (2007) 1247-1253. (Pubitemid 46336787)
-
(2007)
Neurocomputing
, vol.70
, Issue.7-9
, pp. 1247-1253
-
-
Schrauwen, B.1
Campenhout, J.V.2
-
55
-
-
45849105552
-
Analysis of the resume learning process for spiking neural networks
-
F. Ponulak, Analysis of the resume learning process for spiking neural networks, Appl. Math. Comput. Sci. 18(2) (2008) 117-127.
-
(2008)
Appl. Math. Comput. Sci.
, vol.18
, Issue.2
, pp. 117-127
-
-
Ponulak, F.1
-
56
-
-
84869010348
-
Incremental learning algorithm for spike pattern classification
-
June 10-15,Brisbane, Australia, 2012
-
A. Mohemmed and N. Kasabov, Incremental learning algorithm for spike pattern classification, WCCI 2012 IEEE World Congress on Computational Intelligence, June 10-15, 2012 (Brisbane, Australia, 2012), pp. 1227-1232.
-
WCCI 2012 IEEE World Congress on Computational Intelligence
, vol.2012
, pp. 1227-1232
-
-
Mohemmed, A.1
Kasabov, N.2
-
57
-
-
70649084995
-
To spike or not to spike: A probabilistic spiking neuron model
-
N. Kasabov, To spike or not to spike: A probabilistic spiking neuron model, Neural Netw. 23(1) (2010) 16-19.
-
(2010)
Neural Netw.
, vol.23
, Issue.1
, pp. 16-19
-
-
Kasabov, N.1
-
58
-
-
84865012572
-
Evolving spiking neural networks and neurogenetic systems for spatio-and spectrotemporal data modelling and pattern recognition
-
LNCS, eds. J. Liu et al. (Springer-Verlag, Berlin, Heidelberg
-
N. Kasabov, Evolving spiking neural networks and neurogenetic systems for spatio-and spectrotemporal data modelling and pattern recognition, IEEE WCCI 2012, LNCS, Vol. 7311, eds. J. Liu et al. (Springer-Verlag, Berlin, Heidelberg, 2012), pp. 234-260.
-
(2012)
IEEE WCCI 2012
, vol.7311
, pp. 234-260
-
-
Kasabov, N.1
-
59
-
-
84865101997
-
On-line spatiotemporal pattern recognition with evolving spiking neural networks utilising address event representation, rank oder-and temporal spike learning
-
June 10-15, Brisbane, Australia, 2012
-
K. Dhoble, N. Nuntalid, G. Indivery and N. Kasabov, On-line spatiotemporal pattern recognition with evolving spiking neural networks utilising address event representation, rank oder-and temporal spike learning, WCCI 2012 IEEE World Congress on Computational Intelligence, June 10-15, 2012 (Brisbane, Australia, 2012), pp. 554-560.
-
(2012)
WCCI 2012 IEEE World Congress on Computational Intelligence
, pp. 554-560
-
-
Dhoble, K.1
Nuntalid, N.2
Indivery, G.3
Kasabov, N.4
-
60
-
-
38649083793
-
A behavior controller based on spiking neural networks for mobile robots
-
DOI 10.1016/j.neucom.2007.08.025, PII S0925231207003025
-
X. Wang, Z. G. Hou, A. Zou, M. Tan and L. Cheng, A behavior controller for mobile robot based on spiking neural networks, Neurocomputing 71(4-6) (2008) 655-666. (Pubitemid 351168455)
-
(2008)
Neurocomputing
, vol.71
, Issue.4-6
, pp. 655-666
-
-
Wang, X.1
Hou, Z.-G.2
Zou, A.3
Tan, M.4
Cheng, L.5
-
61
-
-
84855665544
-
A VLSI network of spiking neurons with an asynchronous static random access memory
-
IEEE Press
-
S. Moradi and G. Indiveri, A VLSI network of spiking neurons with an asynchronous static random access memory, in Biomedical Circuits and Systems Conference BIOCAS (IEEE Press, 2011).
-
(2011)
Biomedical Circuits and Systems Conference BIOCAS
-
-
Moradi, S.1
Indiveri, G.2
|