-
1
-
-
84907212907
-
Cell biology. Metabolic control of cell death
-
Green DR, Galluzzi L, Kroemer G. Cell biology. Metabolic control of cell death. Science 2014; 345: 1250256.
-
(2014)
Science
, vol.345
-
-
Green, D.R.1
Galluzzi, L.2
Kroemer, G.3
-
2
-
-
84925969707
-
Metabolic pathways promoting cancer cell survival and growth
-
Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol 2015; 17: 351–359.
-
(2015)
Nat Cell Biol
, vol.17
, pp. 351-359
-
-
Boroughs, L.K.1
Deberardinis, R.J.2
-
3
-
-
84858604270
-
Metabolic reprogramming: A cancer hallmark even warburg did not anticipate
-
Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 2012; 21: 297–308.
-
(2012)
Cancer Cell
, vol.21
, pp. 297-308
-
-
Ward, P.S.1
Thompson, C.B.2
-
4
-
-
84875465199
-
Cancer metabolism: Fatty acid oxidation in the limelight
-
Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer 2013; 13: 227–232.
-
(2013)
Nat Rev Cancer
, vol.13
, pp. 227-232
-
-
Carracedo, A.1
Cantley, L.C.2
Pandolfi, P.P.3
-
5
-
-
84881372774
-
Cellular fatty acid metabolism and cancer
-
Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. Cellular fatty acid metabolism and cancer. Cell Metab 2013; 18: 153–161.
-
(2013)
Cell Metab
, vol.18
, pp. 153-161
-
-
Currie, E.1
Schulze, A.2
Zechner, R.3
Walther, T.C.4
Farese, R.V.5
-
6
-
-
84904732950
-
Hypoxia, lipids, and cancer: Surviving the harsh tumor microenvironment
-
Ackerman D, Simon MC. Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment. Trends Cell Biol 2014; 24: 472–478.
-
(2014)
Trends Cell Biol
, vol.24
, pp. 472-478
-
-
Ackerman, D.1
Simon, M.C.2
-
7
-
-
84954190444
-
Autophagy, Metabolism, and cancer
-
White E, Mehnert JM, Chan CS. Autophagy, Metabolism, and cancer. Clin Cancer Res 2015; 21: 5037–5046.
-
(2015)
Clin Cancer Res
, vol.21
, pp. 5037-5046
-
-
White, E.1
Mehnert, J.M.2
Chan, C.S.3
-
8
-
-
84879780600
-
Autophagy: Shaping the tumor microenvironment and therapeutic response
-
Maes H, Rubio N, Garg AD, Agostinis P. Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol Med 2013; 19: 428–446.
-
(2013)
Trends Mol Med
, vol.19
, pp. 428-446
-
-
Maes, H.1
Rubio, N.2
Garg, A.D.3
Agostinis, P.4
-
9
-
-
84879777723
-
Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis
-
Guo JY, Karsli-Uzunbas G, Mathew R, Aisner SC, Kamphorst JJ, Strohecker AM et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 2013; 27: 1447–1461.
-
(2013)
Genes Dev
, vol.27
, pp. 1447-1461
-
-
Guo, J.Y.1
Karsli-Uzunbas, G.2
Mathew, R.3
Aisner, S.C.4
Kamphorst, J.J.5
Strohecker, A.M.6
-
10
-
-
1542283816
-
Phospholipase D2 localizes to the plasma membrane and regulates angiotensin II receptor endocytosis
-
Du G, Huang P, Liang BT, Frohman MA. Phospholipase D2 localizes to the plasma membrane and regulates angiotensin II receptor endocytosis. Mol Biol Cell 2004; 15: 1024–1030.
-
(2004)
Mol Biol Cell
, vol.15
, pp. 1024-1030
-
-
Du, G.1
Huang, P.2
Liang, B.T.3
Frohman, M.A.4
-
11
-
-
29044435623
-
RhoA-mediated phospholipase D1 signaling is not required for the formation of stress fibers and focal adhesions
-
Su W, Chardin P, Yamazaki M, Kanaho Y, Du G. RhoA-mediated phospholipase D1 signaling is not required for the formation of stress fibers and focal adhesions. Cell Signal 2006; 18: 469–478.
-
(2006)
Cell Signal
, vol.18
, pp. 469-478
-
-
Su, W.1
Chardin, P.2
Yamazaki, M.3
Kanaho, Y.4
Du, G.5
-
12
-
-
84862295360
-
Guidelines for the use and interpretation of assays for monitoring autophagy
-
Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012; 8: 445–544.
-
(2012)
Autophagy
, vol.8
, pp. 445-544
-
-
Klionsky, D.J.1
Abdalla, F.C.2
Abeliovich, H.3
Abraham, R.T.4
Acevedo-Arozena, A.5
Adeli, K.6
-
13
-
-
84918827750
-
Cellular and metabolic functions for autophagy in cancer cells
-
Kenific CM, Debnath J. Cellular and metabolic functions for autophagy in cancer cells. Trends Cell Biol 2015; 25: 37–45.
-
(2015)
Trends Cell Biol
, vol.25
, pp. 37-45
-
-
Kenific, C.M.1
Debnath, J.2
-
14
-
-
28544435485
-
Lysosomes and autophagy in cell death control
-
Kroemer G, Jaattela M. Lysosomes and autophagy in cell death control. Nat Rev Cancer 2005; 5: 886–897.
-
(2005)
Nat Rev Cancer
, vol.5
, pp. 886-897
-
-
Kroemer, G.1
Jaattela, M.2
-
15
-
-
84908428703
-
A super-ecliptic, pHluorin-mKate2, tandem fluorescent protein-tagged human LC3 for the monitoring of mammalian autophagy
-
Tanida I, Ueno T, Uchiyama Y. A super-ecliptic, pHluorin-mKate2, tandem fluorescent protein-tagged human LC3 for the monitoring of mammalian autophagy. PLoS One 2014; 9: e110600.
-
(2014)
Plos One
, vol.9
-
-
Tanida, I.1
Ueno, T.2
Uchiyama, Y.3
-
16
-
-
34548259958
-
P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
-
Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007; 282: 24131–24145.
-
(2007)
J Biol Chem
, vol.282
, pp. 24131-24145
-
-
Pankiv, S.1
Clausen, T.H.2
Lamark, T.3
Brech, A.4
Bruun, J.A.5
Outzen, H.6
-
17
-
-
34548077575
-
Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3
-
Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 2007; 3: 452–460.
-
(2007)
Autophagy
, vol.3
, pp. 452-460
-
-
Kimura, S.1
Noda, T.2
Yoshimori, T.3
-
18
-
-
0032474821
-
Phospholipase D1 localises to secretory granules and lysosomes and is plasma-membrane translocated on cellular stimulation
-
Brown FD, Thompson N, Saqib KM, Clark JM, Powner D, Thompson NT et al. Phospholipase D1 localises to secretory granules and lysosomes and is plasma-membrane translocated on cellular stimulation. Curr Biol 1998; 8: 835–838.
-
(1998)
Curr Biol
, vol.8
, pp. 835-838
-
-
Brown, F.D.1
Thompson, N.2
Saqib, K.M.3
Clark, J.M.4
Powner, D.5
Thompson, N.T.6
-
19
-
-
0041671075
-
Regulation of phospholipase D1 subcellular cycling through coordination of multiple membrane association motifs
-
Du G, Altshuller YM, Vitale N, Huang P, Chasserot-Golaz S, Morris AJ et al. Regulation of phospholipase D1 subcellular cycling through coordination of multiple membrane association motifs. J Cell Biol 2003; 162: 305–315.
-
(2003)
J Cell Biol
, vol.162
, pp. 305-315
-
-
Du, G.1
Altshuller, Y.M.2
Vitale, N.3
Huang, P.4
Chasserot-Golaz, S.5
Morris, A.J.6
-
20
-
-
84857260144
-
Lysosomal acidification mechanisms
-
Mindell JA. Lysosomal acidification mechanisms. Annu Rev Physiol 2012; 74: 69–86.
-
(2012)
Annu Rev Physiol
, vol.74
, pp. 69-86
-
-
Mindell, J.A.1
-
21
-
-
84922906807
-
Measuring lysosomal pH by fluorescence microscopy
-
Canton J, Grinstein S. Measuring lysosomal pH by fluorescence microscopy. Methods Cell Biol 2015; 126: 85–99.
-
(2015)
Methods Cell Biol
, vol.126
, pp. 85-99
-
-
Canton, J.1
Grinstein, S.2
-
22
-
-
77954412381
-
A cation counterflux supports lysosomal acidification
-
Steinberg BE, Huynh KK, Brodovitch A, Jabs S, Stauber T, Jentsch TJ et al. A cation counterflux supports lysosomal acidification. J Cell Biol 2010; 189: 1171–1186.
-
(2010)
J Cell Biol
, vol.189
, pp. 1171-1186
-
-
Steinberg, B.E.1
Huynh, K.K.2
Brodovitch, A.3
Jabs, S.4
Stauber, T.5
Jentsch, T.J.6
-
23
-
-
20544449673
-
The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation
-
Buzzai M, Bauer DE, Jones RG, Deberardinis RJ, Hatzivassiliou G, Elstrom RL et al. The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 2005; 24: 4165–4173.
-
(2005)
Oncogene
, vol.24
, pp. 4165-4173
-
-
Buzzai, M.1
Bauer, D.E.2
Jones, R.G.3
Deberardinis, R.J.4
Hatzivassiliou, G.5
Elstrom, R.L.6
-
24
-
-
84926185279
-
FAT FLUX: Enzymes, regulators, and pathophysiology of intracellular lipolysis
-
Zechner R. FAT FLUX: enzymes, regulators, and pathophysiology of intracellular lipolysis. EMBO Mol Med 2015; 7: 359–362.
-
(2015)
EMBO Mol Med
, vol.7
, pp. 359-362
-
-
Zechner, R.1
-
25
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M et al. Autophagy regulates lipid metabolism. Nature 2009; 458: 1131–1135.
-
(2009)
Nature
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
Kaushik, S.2
Wang, Y.3
Xiang, Y.4
Novak, I.5
Komatsu, M.6
-
26
-
-
84908012698
-
Fatty acid uptake and lipid storage induced by HIF-1alpha contribute to cell growth and survival after hypoxia-reoxygenation
-
Bensaad K, Favaro E, Lewis CA, Peck B, Lord S, Collins JM et al. Fatty acid uptake and lipid storage induced by HIF-1alpha contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep 2014; 9: 349–365.
-
(2014)
Cell Rep
, vol.9
, pp. 349-365
-
-
Bensaad, K.1
Favaro, E.2
Lewis, C.A.3
Peck, B.4
Lord, S.5
Collins, J.M.6
-
27
-
-
84980050613
-
HIF2alpha-dependent lipid storage promotes endoplasmic reticulum homeostasis in clear-cell renal cell carcinoma
-
Qiu B, Ackerman D, Sanchez DJ, Li B, Ochocki JD, Grazioli A et al. HIF2alpha-dependent lipid storage promotes endoplasmic reticulum homeostasis in clear-cell renal cell carcinoma. Cancer Discov 2015; 5: 652–667.
-
(2015)
Cancer Discov
, vol.5
, pp. 652-667
-
-
Qiu, B.1
Ackerman, D.2
Sanchez, D.J.3
Li, B.4
Ochocki, J.D.5
Grazioli, A.6
-
28
-
-
84925324049
-
Fatty acid trafficking in starved cells: Regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics
-
Rambold AS, Cohen S, Lippincott-Schwartz J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell 2015; 32: 678–692.
-
(2015)
Dev Cell
, vol.32
, pp. 678-692
-
-
Rambold, A.S.1
Cohen, S.2
Lippincott-Schwartz, J.3
-
29
-
-
84862166355
-
The phospholipase D1 pathway modulates macroautophagy
-
Dall'Armi C, Hurtado-Lorenzo A, Tian H, Morel E, Nezu A, Chan RB et al. The phospholipase D1 pathway modulates macroautophagy. Nat Commun 2010; 1: 142.
-
(2010)
Nat Commun
, vol.1
, pp. 142
-
-
Dall'armi, C.1
Hurtado-Lorenzo, A.2
Tian, H.3
Morel, E.4
Nezu, A.5
Chan, R.B.6
-
30
-
-
84903363448
-
Phospholipase D-mediated autophagic regulation is a potential target for cancer therapy
-
Jang YH, Choi KY, Min DS. Phospholipase D-mediated autophagic regulation is a potential target for cancer therapy. Cell Death Differ 2014; 21: 533–546.
-
(2014)
Cell Death Differ
, vol.21
, pp. 533-546
-
-
Jang, Y.H.1
Choi, K.Y.2
Min, D.S.3
-
31
-
-
84902266821
-
Phospholipase D1 regulates autophagic flux and clearance of alpha-synuclein aggregates
-
Bae EJ, Lee HJ, Jang YH, Michael S, Masliah E, Min DS et al. Phospholipase D1 regulates autophagic flux and clearance of alpha-synuclein aggregates. Cell Death Differ 2014; 21: 1132–1141.
-
(2014)
Cell Death Differ
, vol.21
, pp. 1132-1141
-
-
Bae, E.J.1
Lee, H.J.2
Jang, Y.H.3
Michael, S.4
Masliah, E.5
Min, D.S.6
-
32
-
-
84891947916
-
Phospholipase D2 mediates survival signaling through direct regulation of Akt in glioblastoma cells
-
Bruntz RC, Taylor HE, Lindsley CW, Brown HA. Phospholipase D2 mediates survival signaling through direct regulation of Akt in glioblastoma cells. J Biol Chem 2014; 289: 600–616.
-
(2014)
J Biol Chem
, vol.289
, pp. 600-616
-
-
Bruntz, R.C.1
Taylor, H.E.2
Lindsley, C.W.3
Brown, H.A.4
-
33
-
-
33947401472
-
Autophagosome-lysosome fusion depends on the pH in acidic compartments in CHO cells
-
Kawai A, Uchiyama H, Takano S, Nakamura N, Ohkuma S. Autophagosome-lysosome fusion depends on the pH in acidic compartments in CHO cells. Autophagy 2007; 3: 154–157.
-
(2007)
Autophagy
, vol.3
, pp. 154-157
-
-
Kawai, A.1
Uchiyama, H.2
Takano, S.3
Nakamura, N.4
Ohkuma, S.5
-
34
-
-
84959348868
-
Vps34 and PLD1 take center stage in nutrient signaling: Their dual roles in regulating autophagy
-
Yoon MS. Vps34 and PLD1 take center stage in nutrient signaling: their dual roles in regulating autophagy. Cell Commun Signal 2015; 13: 44.
-
(2015)
Cell Commun Signal
, vol.13
, pp. 44
-
-
Yoon, M.S.1
-
35
-
-
84922768569
-
Phosphoinositide control of membrane protein function: A frontier led by studies on ion channels
-
Logothetis DE, Petrou VI, Zhang M, Mahajan R, Meng XY, Adney SK et al. Phosphoinositide control of membrane protein function: a frontier led by studies on ion channels. Annu Rev Physiol 2015; 77: 81–104.
-
(2015)
Annu Rev Physiol
, vol.77
, pp. 81-104
-
-
Logothetis, D.E.1
Petrou, V.I.2
Zhang, M.3
Mahajan, R.4
Meng, X.Y.5
Adney, S.K.6
-
36
-
-
84887527969
-
Lipid droplet breakdown requires dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes
-
Schulze RJ, Weller SG, Schroeder B, Krueger EW, Chi S, Casey CA et al. Lipid droplet breakdown requires dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes. J Cell Biol 2013; 203: 315–326.
-
(2013)
J Cell Biol
, vol.203
, pp. 315-326
-
-
Schulze, R.J.1
Weller, S.G.2
Schroeder, B.3
Krueger, E.W.4
Chi, S.5
Casey, C.A.6
-
37
-
-
79955631150
-
Autophagy in the cellular energetic balance
-
Singh R, Cuervo AM. Autophagy in the cellular energetic balance. Cell Metab 2011; 13: 495–504.
-
(2011)
Cell Metab
, vol.13
, pp. 495-504
-
-
Singh, R.1
Cuervo, A.M.2
-
38
-
-
84911861458
-
Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function
-
Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sanchez N, Marchesini M et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 2014; 514: 628–632.
-
(2014)
Nature
, vol.514
, pp. 628-632
-
-
Viale, A.1
Pettazzoni, P.2
Lyssiotis, C.A.3
Ying, H.4
Sanchez, N.5
Marchesini, M.6
-
39
-
-
84900013820
-
STAT3-mediated autophagy dependence identifies subtypes of breast cancer where autophagy inhibition can be efficacious
-
Maycotte P, Gearheart CM, Barnard R, Aryal S, Mulcahy Levy JM, Fosmire SP et al. STAT3-mediated autophagy dependence identifies subtypes of breast cancer where autophagy inhibition can be efficacious. Cancer Res 2014; 74: 2579–2590.
-
(2014)
Cancer Res
, vol.74
, pp. 2579-2590
-
-
Maycotte, P.1
Gearheart, C.M.2
Barnard, R.3
Aryal, S.4
Mulcahy Levy, J.M.5
Fosmire, S.P.6
-
40
-
-
0034638599
-
Increased activity and intranuclear expression of phospholipase D2 in human renal cancer
-
Zhao Y, Ehara H, Akao Y, Shamoto M, Nakagawa Y, Banno Y et al. Increased activity and intranuclear expression of phospholipase D2 in human renal cancer. Biochem Biophys Res Comm 2000; 278: 140–143.
-
(2000)
Biochem Biophys Res Comm
, vol.278
, pp. 140-143
-
-
Zhao, Y.1
Ehara, H.2
Akao, Y.3
Shamoto, M.4
Nakagawa, Y.5
Banno, Y.6
-
41
-
-
84891437205
-
Temporal production of the signaling lipid phosphatidic acid by phospholipase D2 determines the output of extracellular signal-regulated kinase signaling in cancer cells
-
Zhang F, Wang Z, Lu M, Yonekubo Y, Liang X, Zhang Y et al. Temporal production of the signaling lipid phosphatidic acid by phospholipase D2 determines the output of extracellular signal-regulated kinase signaling in cancer cells. Mol Cell Biol 2014; 34: 84–95.
-
(2014)
Mol Cell Biol
, vol.34
, pp. 84-95
-
-
Zhang, F.1
Wang, Z.2
Lu, M.3
Yonekubo, Y.4
Liang, X.5
Zhang, Y.6
-
42
-
-
43049165453
-
The epithelial-mesenchymal transition generates cells with properties of stem cells
-
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.
-
(2008)
Cell
, vol.133
, pp. 704-715
-
-
Mani, S.A.1
Guo, W.2
Liao, M.J.3
Eaton, E.N.4
Ayyanan, A.5
Zhou, A.Y.6
-
43
-
-
62449309815
-
A lipid-signaled myosin phosphatase surge disperses cortical contractile force early in cell spreading
-
Du G, Frohman MA. A lipid-signaled myosin phosphatase surge disperses cortical contractile force early in cell spreading. Mol Biol Cell 2009; 20: 200–208.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 200-208
-
-
Du, G.1
Frohman, M.A.2
|