메뉴 건너뛰기




Volumn 237, Issue , 2017, Pages 332-341

Choroid segmentation from Optical Coherence Tomography with graph-edge weights learned from deep convolutional neural networks

Author keywords

Choroid; CNN; Image segmentation; Learning; OCT

Indexed keywords

CONVOLUTION; DEEP NEURAL NETWORKS; IMAGE SEGMENTATION; NETWORK ARCHITECTURE; NEURAL NETWORKS; SCALES (WEIGHING INSTRUMENTS); TOMOGRAPHY;

EID: 85011310997     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2017.01.023     Document Type: Article
Times cited : (124)

References (43)
  • 1
    • 84888816372 scopus 로고    scopus 로고
    • Automatic segmentation of choroidal thickness in optical coherence tomography
    • [1] Alonso-Caneiro, D., Read, S.A., Collins, M.J., Automatic segmentation of choroidal thickness in optical coherence tomography. Biomed. Opt. Express 4:12 (2013), 2795–2812.
    • (2013) Biomed. Opt. Express , vol.4 , Issue.12 , pp. 2795-2812
    • Alonso-Caneiro, D.1    Read, S.A.2    Collins, M.J.3
  • 2
    • 0001751050 scopus 로고
    • Central serous retinopathy
    • [2] Bennett, G., Central serous retinopathy. Br. J. Ophthalmol., 39(10), 1955, 605.
    • (1955) Br. J. Ophthalmol. , vol.39 , Issue.10 , pp. 605
    • Bennett, G.1
  • 4
    • 84883761490 scopus 로고    scopus 로고
    • Analysis of choroidal morphologic features and vasculature in healthy eyes using spectral-domain optical coherence tomography
    • [4] Branchini, L.A., Adhi, M., Regatieri, C.V., Nandakumar, N., Liu, J.J., Laver, N., Fujimoto, J.G., Duker, J.S., Analysis of choroidal morphologic features and vasculature in healthy eyes using spectral-domain optical coherence tomography. Ophthalmology 120:9 (2013), 1901–1908.
    • (2013) Ophthalmology , vol.120 , Issue.9 , pp. 1901-1908
    • Branchini, L.A.1    Adhi, M.2    Regatieri, C.V.3    Nandakumar, N.4    Liu, J.J.5    Laver, N.6    Fujimoto, J.G.7    Duker, J.S.8
  • 5
    • 0003543057 scopus 로고    scopus 로고
    • Wolff's Anatomy of the Eye and Orbit
    • [5] A.J. Bron, et al., Wolff's Anatomy of the Eye and Orbit, 1997.
    • (1997)
    • Bron, A.J.1
  • 6
    • 84928042446 scopus 로고    scopus 로고
    • Automated choroid segmentation based on gradual intensity distance in hd-oct images
    • [6] Chen, Q., Fan, W., Niu, S., Shi, J., Shen, H., Yuan, S., Automated choroid segmentation based on gradual intensity distance in hd-oct images. Opt. Express 23:7 (2015), 8974–8994.
    • (2015) Opt. Express , vol.23 , Issue.7 , pp. 8974-8994
    • Chen, Q.1    Fan, W.2    Niu, S.3    Shi, J.4    Shen, H.5    Yuan, S.6
  • 7
    • 77956360101 scopus 로고    scopus 로고
    • Automatic segmentation of seven retinal layers in sdoct images congruent with expert manual segmentation
    • [7] Chiu, S.J., Li, X.T., Nicholas, P., Toth, C.A., Izatt, J.A., Farsiu, S., Automatic segmentation of seven retinal layers in sdoct images congruent with expert manual segmentation. Opt. Express 18:18 (2010), 19413–19428.
    • (2010) Opt. Express , vol.18 , Issue.18 , pp. 19413-19428
    • Chiu, S.J.1    Li, X.T.2    Nicholas, P.3    Toth, C.A.4    Izatt, J.A.5    Farsiu, S.6
  • 9
    • 84896274894 scopus 로고    scopus 로고
    • Segmentation of choroidal boundary in enhanced depth imaging octs using a multiresolution texture based modeling in graph cuts
    • [9] Danesh, H., Kafieh, R., Rabbani, H., Hajizadeh, F., Segmentation of choroidal boundary in enhanced depth imaging octs using a multiresolution texture based modeling in graph cuts. Comput. Math. Methods Med., 2014 http://dx.doi.org/10.1155/2014/479268.
    • (2014) Comput. Math. Methods Med.
    • Danesh, H.1    Kafieh, R.2    Rabbani, H.3    Hajizadeh, F.4
  • 10
    • 34147120474 scopus 로고
    • A note on two problems in connexion with graphs
    • [10] Dijkstra, E.W., A note on two problems in connexion with graphs. Numer. Math. 1:1 (1959), 269–271.
    • (1959) Numer. Math. , vol.1 , Issue.1 , pp. 269-271
    • Dijkstra, E.W.1
  • 11
    • 84973897611 scopus 로고    scopus 로고
    • Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
    • Proceedings of the IEEE International Conference on Computer Vision, pp.
    • [11] D. Eigen, R. Fergus, Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture, in: Proceedings of the IEEE International Conference on Computer Vision 2015, pp. 2650–2658.
    • (2015) , pp. 2650-2658
    • Eigen, D.1    Fergus, R.2
  • 13
    • 84875444572 scopus 로고    scopus 로고
    • Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans semiautomated choroid segmentation in sd-oct
    • [13] Hu, Z., Wu, X., Ouyang, Y., Ouyang, Y., Sadda, S.R., Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans semiautomated choroid segmentation in sd-oct. Investig. Ophthalmol. Vis. Sci. 54:3 (2013), 1722–1729.
    • (2013) Investig. Ophthalmol. Vis. Sci. , vol.54 , Issue.3 , pp. 1722-1729
    • Hu, Z.1    Wu, X.2    Ouyang, Y.3    Ouyang, Y.4    Sadda, S.R.5
  • 16
    • 84865642319 scopus 로고    scopus 로고
    • Choroidal thickness, vascular hyperpermeability, and complement factor h in age-related macular degeneration and polypoidal choroidal vasculopathychoroidal thickness in amd and pcv
    • [16] Jirarattanasopa, P., Ooto, S., Nakata, I., Tsujikawa, A., Yamashiro, K., Oishi, A., Yoshimura, N., Choroidal thickness, vascular hyperpermeability, and complement factor h in age-related macular degeneration and polypoidal choroidal vasculopathychoroidal thickness in amd and pcv. Investig. Ophthalmol. Vis. Sci. 53:7 (2012), 3663–3672.
    • (2012) Investig. Ophthalmol. Vis. Sci. , vol.53 , Issue.7 , pp. 3663-3672
    • Jirarattanasopa, P.1    Ooto, S.2    Nakata, I.3    Tsujikawa, A.4    Yamashiro, K.5    Oishi, A.6    Yoshimura, N.7
  • 17
    • 84856445072 scopus 로고    scopus 로고
    • Automated choroidal segmentation of 1060 nm oct in healthy and pathologic eyes using a statistical model
    • [17] Kajić, V., Esmaeelpour, M., Považay, B., Marshall, D., Rosin, P.L., Drexler, W., Automated choroidal segmentation of 1060 nm oct in healthy and pathologic eyes using a statistical model. Biomed. Opt. Express 3:1 (2012), 86–103.
    • (2012) Biomed. Opt. Express , vol.3 , Issue.1 , pp. 86-103
    • Kajić, V.1    Esmaeelpour, M.2    Považay, B.3    Marshall, D.4    Rosin, P.L.5    Drexler, W.6
  • 19
    • 33644824640 scopus 로고    scopus 로고
    • Optimal surface segmentation in volumetric images: a graph-theoretic approach
    • [19] Li, K., Wu, X., Chen, D.Z., Sonka, M., Optimal surface segmentation in volumetric images: a graph-theoretic approach. IEEE Trans. Pattern Anal. Mach. Intell. 28:1 (2006), 119–134.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.1 , pp. 119-134
    • Li, K.1    Wu, X.2    Chen, D.Z.3    Sonka, M.4
  • 20
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
    • [20] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2015, pp. 3431–3440.
    • (2015) , pp. 3431-3440
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 21
    • 80053323209 scopus 로고    scopus 로고
    • Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography
    • [21] Manjunath, V., Goren, J., Fujimoto, J.G., Duker, J.S., Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography. Am. J. Ophthalmol. 152:4 (2011), 663–668.
    • (2011) Am. J. Ophthalmol. , vol.152 , Issue.4 , pp. 663-668
    • Manjunath, V.1    Goren, J.2    Fujimoto, J.G.3    Duker, J.S.4
  • 22
    • 77956063976 scopus 로고    scopus 로고
    • Choroidal thickness in normal eyes measured using cirrus hd optical coherence tomography
    • [22] Manjunath, V., Taha, M., Fujimoto, J.G., Duker, J.S., Choroidal thickness in normal eyes measured using cirrus hd optical coherence tomography. Am. J. Ophthalmol. 150:3 (2010), 325–329.
    • (2010) Am. J. Ophthalmol. , vol.150 , Issue.3 , pp. 325-329
    • Manjunath, V.1    Taha, M.2    Fujimoto, J.G.3    Duker, J.S.4
  • 23
    • 85011280482 scopus 로고    scopus 로고
    • Dense volume-to-volume vascular boundary detection, 2016
    • arXiv:1605.08401
    • [23] J. Merkow, D. Kriegman, A. Marsden, Z. Tu, Dense volume-to-volume vascular boundary detection, 2016, arXiv:1605.08401.
    • Merkow, J.1    Kriegman, D.2    Marsden, A.3    Tu, Z.4
  • 24
    • 77249168118 scopus 로고    scopus 로고
    • The multifunctional choroid
    • [24] Nickla, D.L., Wallman, J., The multifunctional choroid. Prog. Retinal Eye Res. 29:2 (2010), 144–168.
    • (2010) Prog. Retinal Eye Res. , vol.29 , Issue.2 , pp. 144-168
    • Nickla, D.L.1    Wallman, J.2
  • 26
    • 0034431849 scopus 로고    scopus 로고
    • Stereotaxic display of brain lesions
    • [26] Rorden, C., Brett, M., Stereotaxic display of brain lesions. Behav. Neurol. 12:4 (2000), 191–200.
    • (2000) Behav. Neurol. , vol.12 , Issue.4 , pp. 191-200
    • Rorden, C.1    Brett, M.2
  • 27
    • 84951869843 scopus 로고    scopus 로고
    • Supervised discrete hashing
    • in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
    • [27] F. Shen, C. Shen, W. Liu, H. Tao Shen, Supervised discrete hashing, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 37–45.
    • (2015) , pp. 37-45
    • Shen, F.1    Shen, C.2    Liu, W.3    Tao Shen, H.4
  • 29
    • 64449084891 scopus 로고    scopus 로고
    • Age-related choroidal atrophy
    • [29] Spaide, R.F., Age-related choroidal atrophy. Am. J. Ophthalmol. 147:5 (2009), 801–810.
    • (2009) Am. J. Ophthalmol. , vol.147 , Issue.5 , pp. 801-810
    • Spaide, R.F.1
  • 30
    • 51849121006 scopus 로고    scopus 로고
    • Enhanced depth imaging spectral-domain optical coherence tomography
    • [30] Spaide, R.F., Koizumi, H., Pozonni, M.C., Enhanced depth imaging spectral-domain optical coherence tomography. Am. J. Ophthalmol. 146:4 (2008), 496–500.
    • (2008) Am. J. Ophthalmol. , vol.146 , Issue.4 , pp. 496-500
    • Spaide, R.F.1    Koizumi, H.2    Pozonni, M.C.3
  • 31
    • 84874713988 scopus 로고    scopus 로고
    • Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images
    • [31] Tian, J., Marziliano, P., Baskaran, M., Tun, T.A., Aung, T., Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images. Biomed. Opt. Express 4:3 (2013), 397–411.
    • (2013) Biomed. Opt. Express , vol.4 , Issue.3 , pp. 397-411
    • Tian, J.1    Marziliano, P.2    Baskaran, M.3    Tun, T.A.4    Aung, T.5
  • 32
    • 85014318909 scopus 로고    scopus 로고
    • Scalable High Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning
    • [32] G. Wu, M.-J. Kim, Q. Wang, B. Munsell, D. Shen, Scalable High Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning, 2015.
    • (2015)
    • Wu, G.1    Kim, M.-J.2    Wang, Q.3    Munsell, B.4    Shen, D.5
  • 33
    • 82355182888 scopus 로고    scopus 로고
    • Choroidal imaging with spectral-domain optical coherence tomography, enhanced depth imaging may lead to a broader understanding of the pathogenesis of several eye diseases
    • [33] Wu, L., Masis, M., Hernandez-Bogantes, E., Choroidal imaging with spectral-domain optical coherence tomography, enhanced depth imaging may lead to a broader understanding of the pathogenesis of several eye diseases. Retina Surg. Glob. Perspect. 114 (2011), 39–42.
    • (2011) Retina Surg. Glob. Perspect. , vol.114 , pp. 39-42
    • Wu, L.1    Masis, M.2    Hernandez-Bogantes, E.3
  • 36
    • 84977845763 scopus 로고    scopus 로고
    • A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images
    • [36] Xu, J., Luo, X., Wang, G., Gilmore, H., Madabhushi, A., A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing 191 (2016), 214–223.
    • (2016) Neurocomputing , vol.191 , pp. 214-223
    • Xu, J.1    Luo, X.2    Wang, G.3    Gilmore, H.4    Madabhushi, A.5
  • 37
    • 84959375736 scopus 로고    scopus 로고
    • Stacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology images
    • [37] Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., Madabhushi, A., Stacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 35:1 (2016), 119–130.
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.1 , pp. 119-130
    • Xu, J.1    Xiang, L.2    Liu, Q.3    Gilmore, H.4    Wu, J.5    Tang, J.6    Madabhushi, A.7
  • 38
    • 1842478123 scopus 로고    scopus 로고
    • Current concepts in the pathogenesis of age-related macular degeneration
    • [38] Zarbin, M.A., Current concepts in the pathogenesis of age-related macular degeneration. Arch. Ophthalmol. 122:4 (2004), 598–614.
    • (2004) Arch. Ophthalmol. , vol.122 , Issue.4 , pp. 598-614
    • Zarbin, M.A.1
  • 40
    • 84893381680 scopus 로고    scopus 로고
    • Representative discovery of structure cues for weakly-supervised image segmentation
    • [40] Zhang, L., Gao, Y., Xia, Y., Lu, K., Shen, J., Ji, R., Representative discovery of structure cues for weakly-supervised image segmentation. IEEE Trans. Multimed. 16:2 (2014), 470–479.
    • (2014) IEEE Trans. Multimed. , vol.16 , Issue.2 , pp. 470-479
    • Zhang, L.1    Gao, Y.2    Xia, Y.3    Lu, K.4    Shen, J.5    Ji, R.6
  • 41
    • 84921492033 scopus 로고    scopus 로고
    • Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
    • [41] Zhang, W., Li, R., Deng, H., Wang, L., Lin, W., Ji, S., Shen, D., Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108 (2015), 214–224.
    • (2015) NeuroImage , vol.108 , pp. 214-224
    • Zhang, W.1    Li, R.2    Deng, H.3    Wang, L.4    Lin, W.5    Ji, S.6    Shen, D.7
  • 42
    • 84958981335 scopus 로고    scopus 로고
    • Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation
    • [42] Zhen, X., Wang, Z., Islam, A., Bhaduri, M., Chan, I., Li, S., Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation. Med. Image Anal. 30 (2016), 120–129.
    • (2016) Med. Image Anal. , vol.30 , pp. 120-129
    • Zhen, X.1    Wang, Z.2    Islam, A.3    Bhaduri, M.4    Chan, I.5    Li, S.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.