메뉴 건너뛰기




Volumn 3, Issue 2, 2013, Pages 121-145

The Virtual Brain Integrates Computational Modeling and Multimodal Neuroimaging

Author keywords

brain connectivity; brain model; brain networks; modeling; space time structure

Indexed keywords


EID: 85018936667     PISSN: 21580014     EISSN: 21580022     Source Type: Journal    
DOI: 10.1089/brain.2012.0120     Document Type: Article
Times cited : (184)

References (137)
  • 1
    • 0038825237 scopus 로고    scopus 로고
    • Stochastic proximity embedding
    • Agrafiotis DK. 2003. Stochastic proximity embedding. J Comput Chem 24:1215-1221.
    • (2003) J Comput Chem , vol.24 , pp. 1215-1221
    • Agrafiotis, D.K.1
  • 2
    • 0017713690 scopus 로고
    • Dynamics of pattern formation in lateral-inhibition type neural fields.
    • Amari, S.-i. (1977). “Dynamics of pattern formation in lateral-inhibition type neural fields.” Biological cybernetics 27:77-87.
    • (1977) Biological cybernetics , vol.27 , pp. 77-87
    • Amari, S.-I.1
  • 3
    • 84861147148 scopus 로고    scopus 로고
    • Hemodynamic traveling waves in human visual cortex
    • Aquino K.M., Schira M.M., et al. 2012. Hemodynamic traveling waves in human visual cortex. PLoS Comput Biol 8:e1002435.
    • (2012) PLoS Comput Biol , vol.8 , pp. e1002435
    • Aquino, K.M.1    Schira, M.M.2
  • 4
    • 18144421246 scopus 로고    scopus 로고
    • Synchrony and clustering in heterogeneous networks with global coupling and parameter dispersion
    • Assisi C.G., Jirsa V.K., et al. 2005. Synchrony and clustering in heterogeneous networks with global coupling and parameter dispersion. Phys Rev Lett 94:018106.
    • (2005) Phys Rev Lett , vol.94 , pp. 018106
    • Assisi, C.G.1    Jirsa, V.K.2
  • 5
    • 0036889792 scopus 로고    scopus 로고
    • The neural basis of functional brain imaging signals
    • Attwell D, Iadecola C. 2002. The neural basis of functional brain imaging signals. Trends Neurosci 25:621-625.
    • (2002) Trends Neurosci , vol.25 , pp. 621-625
    • Attwell, D.1    Iadecola, C.2
  • 6
    • 0034784359 scopus 로고    scopus 로고
    • An energy budget for signaling in the grey matter of the brain
    • Attwell D, Laughlin SB. 2001. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133-1145.
    • (2001) J Cereb Blood Flow Metab , vol.21 , pp. 1133-1145
    • Attwell, D.1    Laughlin, S.B.2
  • 7
    • 1542301025 scopus 로고    scopus 로고
    • Empirical mode decomposition to approach the problem of detecting sources from a reduced number of mixtures
    • Balocchi R, Menicucci D, et al. 2003. Empirical mode decomposition to approach the problem of detecting sources from a reduced number of mixtures. IEEE.
    • (2003) IEEE
    • Balocchi, R.1    Menicucci, D.2
  • 8
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • Baudat G, Anouar F. 2000. Generalized discriminant analysis using a kernel approach. Neural Comput 12:2385-2404.
    • (2000) Neural Comput , vol.12 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 9
    • 79960944028 scopus 로고    scopus 로고
    • How ongoing neuronal oscillations account for evoked fMRI variability
    • Becker R, Reinacher M, et al. 2011. How ongoing neuronal oscillations account for evoked fMRI variability. J Neurosci 31:11016-11027.
    • (2011) J Neurosci , vol.31 , pp. 11016-11027
    • Becker, R.1    Reinacher, M.2
  • 10
    • 0043278893 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • Belkin M, Niyogi P. 2001. Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inf Process Syst 14:585-591.
    • (2001) Adv Neural Inf Process Syst , vol.14 , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 11
    • 84861619908 scopus 로고    scopus 로고
    • Hundreds of brain maps in one atlas: registering coordinate-independent primate neuro-anatomical data to a standard brain
    • Bezgin G, Vakorin V.A., et al. 2012. Hundreds of brain maps in one atlas: registering coordinate-independent primate neuro-anatomical data to a standard brain. Neuroimage 62:67-76.
    • (2012) Neuroimage , vol.62 , pp. 67-76
    • Bezgin, G.1    Vakorin, V.A.2
  • 12
    • 85018910674 scopus 로고    scopus 로고
    • What structure underlies the human brain function? Combining human DTI data with axonal tract tracing animal studies
    • Annual Meeting of the Society for Neuroscience Washington DC
    • Bezgin G.Y., Gibson E, et al. 2011. What structure underlies the human brain function? Combining human DTI data with axonal tract tracing animal studies. Annual Meeting of the Society for Neuroscience, Washington DC.
    • (2011)
    • Bezgin, G.Y.1    Gibson, E.2
  • 13
    • 77954534490 scopus 로고    scopus 로고
    • Connecting mean field models of neural activity to EEG and fMRI data
    • Bojak I, Oostendorp T.F., et al. 2010. Connecting mean field models of neural activity to EEG and fMRI data. Brain Topogr 23:139-149.
    • (2010) Brain Topogr , vol.23 , pp. 139-149
    • Bojak, I.1    Oostendorp, T.F.2
  • 14
    • 84898990205 scopus 로고    scopus 로고
    • Charting a manifold. Advances in Neural Information Processing Systems 15 (NIPS'02)
    • MIT Press 2003
    • Brand M. 2003. Charting a manifold. Advances in Neural Information Processing Systems 15 (NIPS'02), (S. Becker, S. Thrun, and K. Obermayer, eds.), pp. 961-968, MIT Press, 2003.
    • (2003) , pp. 961-968
    • Brand, M.1    Becker, S.2    Thrun, S.3    Obermayer, K.4
  • 16
    • 0346365199 scopus 로고    scopus 로고
    • Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics
    • Breakspear M, Terry J.R., et al. 2003. Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics. Network 14:703-732.
    • (2003) Network , vol.14 , pp. 703-732
    • Breakspear, M.1    Terry, J.R.2
  • 17
    • 0000728412 scopus 로고
    • Optimization using simulated annealing
    • Brooks S, Morgan B. 1995. Optimization using simulated annealing. Statistician 44:241-257.
    • (1995) Statistician , vol.44 , pp. 241-257
    • Brooks, S.1    Morgan, B.2
  • 18
    • 0038162289 scopus 로고    scopus 로고
    • What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance
    • Brunel N, Wang XJ. 2003. What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol 90:415-430.
    • (2003) J Neurophysiol , vol.90 , pp. 415-430
    • Brunel, N.1    Wang, X.J.2
  • 19
    • 0031809018 scopus 로고    scopus 로고
    • Dynamics of blood flow and oxygenation changes during brain activation: the balloon model
    • Buxton R.B., Wong E.C., et al. 1998. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med 39:855-864.
    • (1998) Magn Reson Med , vol.39 , pp. 855-864
    • Buxton, R.B.1    Wong, E.C.2
  • 20
    • 84912057909 scopus 로고    scopus 로고
    • Rhythms of the Brain
    • New York Oxford University Press
    • Buzsaki G. 2006. Rhythms of the Brain. New York: Oxford University Press.
    • (2006)
    • Buzsaki, G.1
  • 21
    • 84862101988 scopus 로고    scopus 로고
    • The origin of extracellular fields and currentsâEEG, ECoG, LFP and spikes
    • Buzsãki G, Anastassiou C.A., et al. 2012. The origin of extracellular fields and currentsâEEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407-420.
    • (2012) Nat Rev Neurosci , vol.13 , pp. 407-420
    • Buzsãki, G.1    Anastassiou, C.A.2
  • 22
    • 35348888375 scopus 로고    scopus 로고
    • Parameter space analysis suggests multi-site plasticity contributes to motor pattern initiation in Tritonia
    • Calin-Jageman R.J., Tunstall M.J., et al. 2007. Parameter space analysis suggests multi-site plasticity contributes to motor pattern initiation in Tritonia. J Neurophysiol 98:2382-2398.
    • (2007) J Neurophysiol , vol.98 , pp. 2382-2398
    • Calin-Jageman, R.J.1    Tunstall, M.J.2
  • 23
    • 0142025120 scopus 로고    scopus 로고
    • Data dimensionality estimation methods: a survey
    • Camastra F. 2003. Data dimensionality estimation methods: a survey. Pattern Recognit 36:2945-2954.
    • (2003) Pattern Recognit , vol.36 , pp. 2945-2954
    • Camastra, F.1
  • 24
    • 69849100669 scopus 로고    scopus 로고
    • Lead field space projection for spatiotemporal imaging of independent brain activities
    • Wuhan, China ISNN
    • Chan H, Chen Y.S., et al. 2009. Lead field space projection for spatiotemporal imaging of independent brain activities. In: Yu W, He H, Zhang N (eds.) Advances in Neural Networks. Wuhan, China: ISNN; pp. 512-519.
    • (2009) Advances in Neural Networks , pp. 512-519
    • Chan, H.1    Chen, Y.S.2    Yu, W.3    He, H.4    Zhang, N.5
  • 27
    • 80051748187 scopus 로고    scopus 로고
    • Dynamic causal modelling: a critical review of the biophysical and statistical foundations
    • Daunizeau J, David O, et al. 2011. Dynamic causal modelling: a critical review of the biophysical and statistical foundations. Neuroimage 58:312-322.
    • (2011) Neuroimage , vol.58 , pp. 312-322
    • Daunizeau, J.1    David, O.2
  • 28
    • 84857802687 scopus 로고    scopus 로고
    • Ongoing cortical activity at rest: criticality, multistability, and ghost attractors
    • Deco G, Jirsa VK. 2012. Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J Neurosci 32:3366-3375.
    • (2012) J Neurosci , vol.32 , pp. 3366-3375
    • Deco, G.1    Jirsa, V.K.2
  • 29
    • 78650339790 scopus 로고    scopus 로고
    • Emerging concepts for the dynamical organization of resting-state activity in the brain
    • Deco G, Jirsa V.K., et al. 2010. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neurosci 12:43-56.
    • (2010) Nat Rev Neurosci , vol.12 , pp. 43-56
    • Deco, G.1    Jirsa, V.K.2
  • 30
    • 79959800651 scopus 로고    scopus 로고
    • A database of computational models of a half-center oscillator for analyzing how neuronal parameters influence network activity
    • Doloc-Mihu A, Calabrese RL. 2011. A database of computational models of a half-center oscillator for analyzing how neuronal parameters influence network activity. J Biol Phys 37:263-283.
    • (2011) J Biol Phys , vol.37 , pp. 263-283
    • Doloc-Mihu, A.1    Calabrese, R.L.2
  • 31
    • 0037948870 scopus 로고    scopus 로고
    • Hessian eigenmaps: locally linear embedding techniques for high-dimensional data
    • Donoho D.L., Grimes C. 2003. Hessian eigenmaps: locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A 100:5591-5596.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 5591-5596
    • Donoho, D.L.1    Grimes, C.2
  • 32
    • 0035504028 scopus 로고    scopus 로고
    • Uncertainty principles and ideal atomic decomposition
    • Donoho D.L., Huo X. 2001. Uncertainty principles and ideal atomic decomposition. IEEE Trans Inf Theory 47:2845-2862.
    • (2001) IEEE Trans Inf Theory , vol.47 , pp. 2845-2862
    • Donoho, D.L.1    Huo, X.2
  • 34
    • 77954463951 scopus 로고    scopus 로고
    • Spatiotemporal BOLD dynamics from a poroelastic hemodynamic model
    • Drysdale P.M., Huber J.P., et al. 2010. Spatiotemporal BOLD dynamics from a poroelastic hemodynamic model. J Theor Biol 265:524-534.
    • (2010) J Theor Biol , vol.265 , pp. 524-534
    • Drysdale, P.M.1    Huber, J.P.2
  • 35
    • 0000295471 scopus 로고
    • The relative vascularity of various parts of the central and peripheral nervous system of the cat and its relation to function
    • Dunning H.S., Wolff HG. 1937. The relative vascularity of various parts of the central and peripheral nervous system of the cat and its relation to function. J Comp Neurol 67:433-450.
    • (1937) J Comp Neurol , vol.67 , pp. 433-450
    • Dunning, H.S.1    Wolff, H.G.2
  • 36
    • 84889630460 scopus 로고    scopus 로고
    • Evolutionary Computation: Toward a New Philosophy of Machine Intelligence
    • Hoboken, New Jersey Wiley-IEEE Press
    • Fogel DB. 2005. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. Hoboken, New Jersey: Wiley-IEEE Press.
    • (2005)
    • Fogel, D.B.1
  • 37
    • 67649993154 scopus 로고    scopus 로고
    • Bistability and non-Gaussian fluctuations in spontaneous cortical activity
    • Freyer F, Aquino K, et al. 2009. Bistability and non-Gaussian fluctuations in spontaneous cortical activity. J Neurosci 29:8512-8524.
    • (2009) J Neurosci , vol.29 , pp. 8512-8524
    • Freyer, F.1    Aquino, K.2
  • 38
    • 67949083429 scopus 로고    scopus 로고
    • Ultrahigh-frequency EEG during fMRI: pushing the limits of imaging-artifact correction
    • Freyer F, Becker R, et al. 2009. Ultrahigh-frequency EEG during fMRI: pushing the limits of imaging-artifact correction. Neuroimage 48:94-108.
    • (2009) Neuroimage , vol.48 , pp. 94-108
    • Freyer, F.1    Becker, R.2
  • 39
    • 84873641226 scopus 로고    scopus 로고
    • State-Dependent Perceptual Learning.
    • Freyer F, Becker R, et al. (2013). “State-Dependent Perceptual Learning.” The Journal of Neuroscience 33:2900-2907.
    • (2013) The Journal of Neuroscience , vol.33 , pp. 2900-2907
    • Freyer, F.1    Becker, R.2
  • 41
    • 84866102100 scopus 로고    scopus 로고
    • A canonical model of multistability and scale-invariance in biological systems
    • Freyer F, Roberts J.A., et al. 2012. A canonical model of multistability and scale-invariance in biological systems. PLoS Comput Biol 8:e1002634.
    • (2012) PLoS Comput Biol , vol.8 , pp. e1002634
    • Freyer, F.1    Roberts, J.A.2
  • 42
    • 0041924877 scopus 로고    scopus 로고
    • Dynamic causal modelling
    • Friston K.J., Harrison L, et al. 2003. Dynamic causal modelling. Neuroimage 19:1273-1302.
    • (2003) Neuroimage , vol.19 , pp. 1273-1302
    • Friston, K.J.1    Harrison, L.2
  • 43
    • 0000063846 scopus 로고    scopus 로고
    • The analysis of functional MRI time-series
    • Wiley
    • Friston K.J., Jezzard P, et al. 1998. The analysis of functional MRI time-series. Hum Brain Mapping 269-78. Wiley.
    • (1998) Hum Brain Mapping , pp. 269-278
    • Friston, K.J.1    Jezzard, P.2
  • 44
    • 0033778839 scopus 로고    scopus 로고
    • Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics
    • Friston K.J., Mechelli A, et al. 2000. Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and other hemodynamics. Neuroimage 12:466-477.
    • (2000) Neuroimage , vol.12 , pp. 466-477
    • Friston, K.J.1    Mechelli, A.2
  • 45
    • 55449107481 scopus 로고    scopus 로고
    • Noise during rest enables the exploration of the brain's dynamic repertoire
    • Ghosh A, Rho Y, et al. 2008. Noise during rest enables the exploration of the brain's dynamic repertoire. PLoS Comput Biol 4:e1000196.
    • (2008) PLoS Comput Biol , vol.4 , pp. e1000196
    • Ghosh, A.1    Rho, Y.2
  • 46
    • 75649138386 scopus 로고    scopus 로고
    • Astroglial networks: a step further in neuroglial and gliovascular interactions
    • Giaume C, Koulakoff A, et al. 2010. Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11:87-99.
    • (2010) Nat Rev Neurosci , vol.11 , pp. 87-99
    • Giaume, C.1    Koulakoff, A.2
  • 47
    • 58149084000 scopus 로고    scopus 로고
    • Review on solving the inverse problem in EEG source analysis
    • Grech R, Cassar T, et al. 2008. Review on solving the inverse problem in EEG source analysis. J Neuroeng Rehabil 5:25.
    • (2008) J Neuroeng Rehabil , vol.5 , pp. 25
    • Grech, R.1    Cassar, T.2
  • 48
    • 0037422586 scopus 로고    scopus 로고
    • Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
    • Greicius M.D., Krasnow B, et al. 2003. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100:253-258.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 253-258
    • Greicius, M.D.1    Krasnow, B.2
  • 49
    • 50549104705 scopus 로고    scopus 로고
    • Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach
    • Günay C, Edgerton J.R., et al. 2008. Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. J Neurosci 28:7476-7491.
    • (2008) J Neurosci , vol.28 , pp. 7476-7491
    • Günay, C.1    Edgerton, J.R.2
  • 50
    • 67651229652 scopus 로고    scopus 로고
    • Database analysis of simulated and recorded electrophysiological datasets with PANDORA's toolbox
    • Günay C, Edgerton J.R., et al. 2009. Database analysis of simulated and recorded electrophysiological datasets with PANDORA's toolbox. Neuroinformatics 7:93-111.
    • (2009) Neuroinformatics , vol.7 , pp. 93-111
    • Günay, C.1    Edgerton, J.R.2
  • 51
    • 76149091190 scopus 로고    scopus 로고
    • Model calcium sensors for network homeostasis: sensor and readout parameter analysis from a database of model neuronal networks
    • Günay C, Prinz AA. 2010. Model calcium sensors for network homeostasis: sensor and readout parameter analysis from a database of model neuronal networks. J Neurosci 30:1686-1698.
    • (2010) J Neurosci , vol.30 , pp. 1686-1698
    • Günay, C.1    Prinz, A.A.2
  • 52
    • 0035486838 scopus 로고    scopus 로고
    • Searching for a baseline: functional imaging and the resting human brain
    • Gusnard D.A., Raichle ME. 2001. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685-694.
    • (2001) Nat Rev Neurosci , vol.2 , pp. 685-694
    • Gusnard, D.A.1    Raichle, M.E.2
  • 53
    • 35949030064 scopus 로고
    • Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems.
    • Haken, H. (1975). “Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems.” Reviews of Modern Physics 47:67.
    • (1975) Reviews of Modern Physics , vol.47 , pp. 67
    • Haken, H.1
  • 54
    • 0024615692 scopus 로고
    • Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data
    • Hãmãlãinen M, and Sarvas J. 1989. “Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data,” IEEE Trans Biomed Eng 36:165-171.
    • (1989) IEEE Trans Biomed Eng , vol.36 , pp. 165-171
    • Hãmãlãinen, M.1    Sarvas, J.2
  • 55
    • 26244462082 scopus 로고
    • Magnetoencephalography-Theory, instrumentation and applications to noninvasive studies of the working human brain
    • Hãmãlãinen M, Hari R, Ilmoniemi R.J., Knuutila J, and Lounasmaa OV. 1993. “Magnetoencephalography-Theory, instrumentation and applications to noninvasive studies of the working human brain,” Rev Mod Phys 65:413-497.
    • (1993) Rev Mod Phys , vol.65 , pp. 413-497
    • Hãmãlãinen, M.1    Hari, R.2    Ilmoniemi, R.J.3    Knuutila, J.4    Lounasmaa, O.V.5
  • 56
    • 0027083167 scopus 로고
    • Magnetoencephalography: a tool for functional brain imaging
    • Hamalainen MS. 1992. Magnetoencephalography: a tool for functional brain imaging. Brain Topogr 5:95-102.
    • (1992) Brain Topogr , vol.5 , pp. 95-102
    • Hamalainen, M.S.1
  • 57
    • 65249142211 scopus 로고    scopus 로고
    • Multimodal functional neuroimaging: integrating functional MRI and EEG/MEG
    • He B, Liu Z. 2008. Multimodal functional neuroimaging: integrating functional MRI and EEG/MEG. IEEE Rev Biomed Eng 1:23-40.
    • (2008) IEEE Rev Biomed Eng , vol.1 , pp. 23-40
    • He, B.1    Liu, Z.2
  • 58
    • 84927180526 scopus 로고
    • Ueber einige Gesetze der Vertheilung elektrischer Strãme in kãrperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche
    • Helmholtz H. 1853. Ueber einige Gesetze der Vertheilung elektrischer Strãme in kãrperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Annalen der Physik 165:211-233.
    • (1853) Annalen der Physik , vol.165 , pp. 211-233
    • Helmholtz, H.1
  • 59
    • 0021768729 scopus 로고
    • A model of neuronal bursting using three coupled first order differential equations
    • Hindmarsh J, Rose R. 1984. A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond B Biol Sci 221:87-102.
    • (1984) Proc R Soc Lond B Biol Sci , vol.221 , pp. 87-102
    • Hindmarsh, J.1    Rose, R.2
  • 60
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G.E., Salakhutdinov RR. 2006. Reducing the dimensionality of data with neural networks. Science 313:504-507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 61
    • 0036724474 scopus 로고    scopus 로고
    • How can EEG/MEG and fMRI/PET data be combined?
    • Horwitz B, Poeppel D. 2002. How can EEG/MEG and fMRI/PET data be combined? Hum Brain Mapp 17:1-3.
    • (2002) Hum Brain Mapp , vol.17 , pp. 1-3
    • Horwitz, B.1    Poeppel, D.2
  • 62
    • 2342614850 scopus 로고    scopus 로고
    • Neurovascular regulation in the normal brain and in Alzheimer's disease
    • Iadecola C. 2004. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci 5:347-360.
    • (2004) Nat Rev Neurosci , vol.5 , pp. 347-360
    • Iadecola, C.1
  • 64
    • 0000456175 scopus 로고    scopus 로고
    • Field theory of electromagnetic brain activity
    • Jirsa V.K., Haken H. 1996. Field theory of electromagnetic brain activity. Phys Rev Lett 77:960-963.
    • (1996) Phys Rev Lett , vol.77 , pp. 960-963
    • Jirsa, V.K.1    Haken, H.2
  • 65
    • 0036557911 scopus 로고    scopus 로고
    • Spatiotemporal forward solution of the EEG and MEG using network modeling
    • Jirsa V.K., Jantzen K.J., et al. 2002. Spatiotemporal forward solution of the EEG and MEG using network modeling. IEEE Trans Med Imaging 21:493-504.
    • (2002) IEEE Trans Med Imaging , vol.21 , pp. 493-504
    • Jirsa, V.K.1    Jantzen, K.J.2
  • 66
    • 79952107080 scopus 로고    scopus 로고
    • Neural population modes capture biologically realistic large scale network dynamics
    • Jirsa V.K., Stefanescu RA. 2011. Neural population modes capture biologically realistic large scale network dynamics. Bull Math Biol 73:325-343.
    • (2011) Bull Math Biol , vol.73 , pp. 325-343
    • Jirsa, V.K.1    Stefanescu, R.A.2
  • 67
    • 0003931304 scopus 로고
    • Dynamic Patterns: The Self-Organization of Brain and Behavior
    • Cambridge The MIT Press
    • Kelso JAS. 1995. Dynamic Patterns: The Self-Organization of Brain and Behavior. Cambridge: The MIT Press.
    • (1995)
    • Kelso, J.1
  • 68
    • 69549095714 scopus 로고    scopus 로고
    • The effects of physiologically plausible connectivity structure on local and global dynamics in large scale brain models
    • Knock S, McIntosh A, et al. 2009. The effects of physiologically plausible connectivity structure on local and global dynamics in large scale brain models. J Neurosci Methods 183:86-94.
    • (2009) J Neurosci Methods , vol.183 , pp. 86-94
    • Knock, S.1    McIntosh, A.2
  • 70
    • 33746476985 scopus 로고    scopus 로고
    • Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization
    • Lafon S, Lee AB. 2006. Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization. IEEE Trans Pattern Anal Mach Intell 28:1393-1403.
    • (2006) IEEE Trans Pattern Anal Mach Intell , vol.28 , pp. 1393-1403
    • Lafon, S.1    Lee, A.B.2
  • 71
    • 0033196391 scopus 로고    scopus 로고
    • A coupled ordinary differential equation lattice model for the simulation of epileptic seizures
    • Larter R, Speelman B, et al. 1999. A coupled ordinary differential equation lattice model for the simulation of epileptic seizures. Chaos 9:795-804.
    • (1999) Chaos , vol.9 , pp. 795-804
    • Larter, R.1    Speelman, B.2
  • 72
    • 77950841799 scopus 로고    scopus 로고
    • Parameter estimation and model selection in computational biology
    • Lillacci G, Khammash M. 2010. Parameter estimation and model selection in computational biology. PLoS Comput Biol 6:e1000696.
    • (2010) PLoS Comput Biol , vol.6 , pp. e1000696
    • Lillacci, G.1    Khammash, M.2
  • 74
    • 37849037991 scopus 로고    scopus 로고
    • fMRI-EEG integrated cortical source imaging by use of time-variant spatial constraints
    • Liu Z, He B. 2008. fMRI-EEG integrated cortical source imaging by use of time-variant spatial constraints. Neuroimage 39:1198-1214.
    • (2008) Neuroimage , vol.39 , pp. 1198-1214
    • Liu, Z.1    He, B.2
  • 75
    • 0035849892 scopus 로고    scopus 로고
    • Neurophysiological investigation of the basis of the fMRI signal
    • Logothetis N.K., Pauls J, et al. 2001. Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150-157.
    • (2001) Nature , vol.412 , pp. 150-157
    • Logothetis, N.K.1    Pauls, J.2
  • 76
    • 84860009343 scopus 로고    scopus 로고
    • State-space solutions to the dynamic magnetoencephalography inverse problem using high performance computing
    • Long C.J., Purdon P.L., et al. 2011. State-space solutions to the dynamic magnetoencephalography inverse problem using high performance computing. Ann Appl Stat 5:1207-1228.
    • (2011) Ann Appl Stat , vol.5 , pp. 1207-1228
    • Long, C.J.1    Purdon, P.L.2
  • 78
    • 0033496190 scopus 로고    scopus 로고
    • Evidence of a cerebrovascular postarteriole windkessel with delayed compliance
    • Mandeville J.B., Marota J.J., et al. 1999. Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J Cereb Blood Flow Metab 19:679-689.
    • (1999) J Cereb Blood Flow Metab , vol.19 , pp. 679-689
    • Mandeville, J.B.1    Marota, J.J.2
  • 79
    • 34548797958 scopus 로고    scopus 로고
    • Electrophysiological signatures of resting state networks in the human brain
    • Mantini D, Perrucci M.G., et al. 2007. Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A 104:13170-13175.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 13170-13175
    • Mantini, D.1    Perrucci, M.G.2
  • 81
    • 77955908188 scopus 로고    scopus 로고
    • Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis
    • Mijovic B, De Vos M, et al. 2010. Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis. IEEE Trans Biomed Eng 57:2188-2196.
    • (2010) IEEE Trans Biomed Eng , vol.57 , pp. 2188-2196
    • Mijovic, B.1    De Vos, M.2
  • 82
    • 0242574982 scopus 로고    scopus 로고
    • Parameter estimation in biochemical pathways: a comparison of global optimization methods
    • Moles C.G., Mendes P, et al. 2003. Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res 13:2467-2474.
    • (2003) Genome Res , vol.13 , pp. 2467-2474
    • Moles, C.G.1    Mendes, P.2
  • 83
    • 0141869892 scopus 로고    scopus 로고
    • Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy
    • Moosmann M, Ritter P, et al. 2003. Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage 20:145-158.
    • (2003) Neuroimage , vol.20 , pp. 145-158
    • Moosmann, M.1    Ritter, P.2
  • 84
    • 72849113577 scopus 로고    scopus 로고
    • Exact Discovery of Time Series Motifs
    • SIAM Proceedings Proc. of 2009 SIAM International Conference on Data Mining: SDM
    • Mueen A, Koegh E, et al. 2009. Exact Discovery of Time Series Motifs. SIAM Proceedings Proc. of 2009 SIAM International Conference on Data Mining: SDM.
    • (2009)
    • Mueen, A.1    Koegh, E.2
  • 85
    • 0016251737 scopus 로고
    • The brain wave equation: A model for the EEG.
    • Nunez, P. L. (1974). “The brain wave equation: A model for the EEG.” Mathematical Biosciences 21:279-297.
    • (1974) Mathematical Biosciences , vol.21 , pp. 279-297
    • Nunez, P.L.1
  • 86
    • 0034523805 scopus 로고    scopus 로고
    • On the relationship of synaptic activity to macroscopic measurements: does co-registration of EEG with fMRI make sense?
    • Nunez P.L., Silberstein RB. 2000. On the relationship of synaptic activity to macroscopic measurements: does co-registration of EEG with fMRI make sense? Brain Topogr 13:79-96.
    • (2000) Brain Topogr , vol.13 , pp. 79-96
    • Nunez, P.L.1    Silberstein, R.B.2
  • 87
    • 84920188336 scopus 로고    scopus 로고
    • Electric Fields of the Brain: The Neurophysics of EEG
    • New York Oxford University Press
    • Nunez P.L., Srinivasan R. 2006. Electric Fields of the Brain: The Neurophysics of EEG. New York: Oxford University Press.
    • (2006)
    • Nunez, P.L.1    Srinivasan, R.2
  • 88
    • 80051615860 scopus 로고    scopus 로고
    • Regression on manifolds with implications for system identification
    • Linkãping University Electronic Press Karlstad University
    • Ohlsson H. 2008. Regression on manifolds with implications for system identification. Linkãping University Electronic Press: Karlstad University.
    • (2008)
    • Ohlsson, H.1
  • 89
    • 85184634263 scopus 로고    scopus 로고
    • Gray-Box Identification for High-Dimensional Manifold Constrained Regression
    • In Proceedings of the 15th IFAC Symposium on System Identification, SYSID
    • Ohlsson H, Ljung L. 2009. Gray-Box Identification for High-Dimensional Manifold Constrained Regression. In Proceedings of the 15th IFAC Symposium on System Identification, SYSID.
    • (2009)
    • Ohlsson, H.1    Ljung, L.2
  • 90
    • 79960969154 scopus 로고    scopus 로고
    • Using Manifold Learning for Nonlinear System Identification
    • In Proceedings of the 7th IFAC Symposium on Nonlinear Control Systems (NOLCOS) Pretoria, South Africa Saint-Malo France
    • Ohlsson H, Roll J, et al. 2007. Using Manifold Learning for Nonlinear System Identification. In Proceedings of the 7th IFAC Symposium on Nonlinear Control Systems (NOLCOS), Pretoria, South Africa Saint-Malo France.
    • (2007)
    • Ohlsson, H.1    Roll, J.2
  • 91
    • 0033759355 scopus 로고    scopus 로고
    • The conductivity of the human skull: results of in vivo and in vitro measurements
    • Oostendorp T.F., Delbeke J, et al. 2000. The conductivity of the human skull: results of in vivo and in vitro measurements. IEEE Trans Biomed Eng 47:1487-1492.
    • (2000) IEEE Trans Biomed Eng , vol.47 , pp. 1487-1492
    • Oostendorp, T.F.1    Delbeke, J.2
  • 92
    • 0001787597 scopus 로고    scopus 로고
    • Review of methods for solving the EEG inverse problem
    • Pascual-Marqui RD. 1999. Review of methods for solving the EEG inverse problem. Int J Bioelectromagn 1:75-86.
    • (1999) Int J Bioelectromagn , vol.1 , pp. 75-86
    • Pascual-Marqui, R.D.1
  • 93
    • 80053456319 scopus 로고    scopus 로고
    • Time scale hierarchies in the functional organization of complex behaviors
    • Perdikis D, Huys R, et al. 2011. Time scale hierarchies in the functional organization of complex behaviors. PLoS Comput Biol 7:e1002198.
    • (2011) PLoS Comput Biol , vol.7 , pp. e1002198
    • Perdikis, D.1    Huys, R.2
  • 94
    • 45249086342 scopus 로고    scopus 로고
    • Coupling of neural activity to blood flow in olfactory glomeruli is mediated by astrocytic pathways
    • Petzold G.C., Albeanu D.F., et al. 2008. Coupling of neural activity to blood flow in olfactory glomeruli is mediated by astrocytic pathways. Neuron 58:897-910.
    • (2008) Neuron , vol.58 , pp. 897-910
    • Petzold, G.C.1    Albeanu, D.F.2
  • 95
    • 38649116354 scopus 로고    scopus 로고
    • EEG source localization in focal epilepsy: where are we now?
    • Plummer C, Harvey A.S., et al. 2008. EEG source localization in focal epilepsy: where are we now? Epilepsia 49:201-218.
    • (2008) Epilepsia , vol.49 , pp. 201-218
    • Plummer, C.1    Harvey, A.S.2
  • 96
    • 0348012925 scopus 로고    scopus 로고
    • Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons
    • Prinz A.A., Billimoria C.P., et al. 2003. Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. J Neurophysiol 90:3998-4015.
    • (2003) J Neurophysiol , vol.90 , pp. 3998-4015
    • Prinz, A.A.1    Billimoria, C.P.2
  • 97
    • 85143578341 scopus 로고    scopus 로고
    • A state space approach to multimodal integration of simultaneously recorded EEG and fMRI
    • In Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference o.n., IEEE Dallas Texas, USA
    • Purdon P, Lamus C, et al. 2010. A state space approach to multimodal integration of simultaneously recorded EEG and fMRI. In Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference o.n., IEEE Dallas, Texas, USA.
    • (2010)
    • Purdon, P.1    Lamus, C.2
  • 98
    • 36549012683 scopus 로고    scopus 로고
    • Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference
    • Quach M, Brunel N, et al. 2007. Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference. Bioinformatics 23:3209-3216.
    • (2007) Bioinformatics , vol.23 , pp. 3209-3216
    • Quach, M.1    Brunel, N.2
  • 100
    • 69549121618 scopus 로고    scopus 로고
    • Oscillatory brain states interact with late cognitive components of the somatosensory evoked potential
    • Reinacher M, Becker R, et al. 2009. Oscillatory brain states interact with late cognitive components of the somatosensory evoked potential. J Neurosci Methods.
    • (2009) J Neurosci Methods
    • Reinacher, M.1    Becker, R.2
  • 101
    • 77954620470 scopus 로고    scopus 로고
    • Brain oscillations: ideal scenery to understand the neurovascular coupling
    • Riera J.J., Sumiyoshi A. 2010. Brain oscillations: ideal scenery to understand the neurovascular coupling. Curr Opin Neurol 23:374-381.
    • (2010) Curr Opin Neurol , vol.23 , pp. 374-381
    • Riera, J.J.1    Sumiyoshi, A.2
  • 102
    • 67349234074 scopus 로고    scopus 로고
    • Detecting alpha rhythm phase reset by phase sorting: caveats to consider
    • Ritter P, Becker R. 2009. Detecting alpha rhythm phase reset by phase sorting: caveats to consider. Neuroimage 47:1-4.
    • (2009) Neuroimage , vol.47 , pp. 1-4
    • Ritter, P.1    Becker, R.2
  • 103
    • 34447570612 scopus 로고    scopus 로고
    • Evaluating gradient artifact correction of EEG data acquired simultaneously with fMRI
    • Ritter P, Becker R, et al. 2007. Evaluating gradient artifact correction of EEG data acquired simultaneously with fMRI. Magn Reson Imaging 25:923-932.
    • (2007) Magn Reson Imaging , vol.25 , pp. 923-932
    • Ritter, P.1    Becker, R.2
  • 105
    • 47949114707 scopus 로고    scopus 로고
    • High-frequency (600 Hz) population spikes in human EEG delineate thalamic and cortical fMRI activation sites
    • Ritter P, Freyer F, et al. 2008. High-frequency (600 Hz) population spikes in human EEG delineate thalamic and cortical fMRI activation sites. Neuroimage 42:483-490.
    • (2008) Neuroimage , vol.42 , pp. 483-490
    • Ritter, P.1    Freyer, F.2
  • 106
    • 63849256403 scopus 로고    scopus 로고
    • Rolandic alpha and beta EEG rhythms' strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex
    • Ritter P, Moosmann M, et al. 2009. Rolandic alpha and beta EEG rhythms' strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Hum Brain Mapp 30:1168-1187.
    • (2009) Hum Brain Mapp , vol.30 , pp. 1168-1187
    • Ritter, P.1    Moosmann, M.2
  • 109
    • 0001545699 scopus 로고    scopus 로고
    • Propagation and stability of waves of electrical activity in the cerebral cortex.
    • Robinson P.A., Rennie C.J., et al. (1997). “Propagation and stability of waves of electrical activity in the cerebral cortex.” Physical Review E 56:826.
    • (1997) Physical Review E , vol.56 , pp. 826
    • Robinson, P.A.1    Rennie, C.J.2
  • 110
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding.
    • Roweis, S. T. and L. K. Saul (2000). “Nonlinear dimensionality reduction by locally linear embedding.” Science 290(5500): 2323-2326.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 111
    • 0026335501 scopus 로고
    • Use of prior knowledge in brain electromagnetic source analysis
    • Scherg M, Berg P. 1991. Use of prior knowledge in brain electromagnetic source analysis. Brain Topogr 4:143-150.
    • (1991) Brain Topogr , vol.4 , pp. 143-150
    • Scherg, M.1    Berg, P.2
  • 113
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schãlkopf B, Smola A, et al. 1998. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10:1299-1319.
    • (1998) Neural Comput , vol.10 , pp. 1299-1319
    • Schãlkopf, B.1    Smola, A.2
  • 114
    • 1942456813 scopus 로고    scopus 로고
    • An integrative MEG-fMRI study of the primary somatosensory cortex using cross-modal correspondence analysis
    • Schulz M, Chau W, et al. 2004. An integrative MEG-fMRI study of the primary somatosensory cortex using cross-modal correspondence analysis. Neuroimage 22:120-133.
    • (2004) Neuroimage , vol.22 , pp. 120-133
    • Schulz, M.1    Chau, W.2
  • 115
    • 0036245315 scopus 로고    scopus 로고
    • Kalman filtering with state equality constraints
    • Simon D, Chia TL. 2002. Kalman filtering with state equality constraints. IEEE Trans Aerosp Electron Syst 38:128-136.
    • (2002) IEEE Trans Aerosp Electron Syst , vol.38 , pp. 128-136
    • Simon, D.1    Chia, T.L.2
  • 116
    • 19144364093 scopus 로고    scopus 로고
    • Aircraft turbofan engine health estimation using constrained Kalman filtering. DTIC Document
    • Simon D, Simon DL. 2003. Aircraft turbofan engine health estimation using constrained Kalman filtering. DTIC Document. ASME Journal of Engineering for Gas Turbine and Power, 127, 323-328.
    • (2003) ASME Journal of Engineering for Gas Turbine and Power , vol.127 , pp. 323-328
    • Simon, D.1    Simon, D.L.2
  • 117
    • 36148967688 scopus 로고    scopus 로고
    • Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism
    • Sotero R.C., Trujillo-Barreto NJ. 2008. Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism. Neuroimage 39:290-309.
    • (2008) Neuroimage , vol.39 , pp. 290-309
    • Sotero, R.C.1    Trujillo-Barreto, N.J.2
  • 118
    • 0013025914 scopus 로고    scopus 로고
    • Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control
    • Hoboken, New Jersey Wiley-Interscience
    • Spall JC. 2003. Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. Hoboken, New Jersey: Wiley-Interscience.
    • (2003)
    • Spall, J.C.1
  • 119
    • 57149111292 scopus 로고    scopus 로고
    • A low dimensional description of globally coupled heterogeneous neural networks of excitatory and inhibitory neurons
    • Stefanescu R.A., Jirsa VK. 2008. A low dimensional description of globally coupled heterogeneous neural networks of excitatory and inhibitory neurons. PLoS Comput Biol 4:e1000219.
    • (2008) PLoS Comput Biol , vol.4 , pp. e1000219
    • Stefanescu, R.A.1    Jirsa, V.K.2
  • 120
    • 79952524603 scopus 로고    scopus 로고
    • Reduced representations of heterogeneous mixed neural networks with synaptic coupling
    • Stefanescu R.A., Jirsa VK. 2011. Reduced representations of heterogeneous mixed neural networks with synaptic coupling. Phys Rev E Stat Nonlin Soft Matter Phys 83(2 Pt 2):026204.
    • (2011) Phys Rev E Stat Nonlin Soft Matter Phys , vol.83 , Issue.2
    • Stefanescu, R.A.1    Jirsa, V.K.2
  • 122
    • 56649104989 scopus 로고    scopus 로고
    • Extended Kalman filter for estimation of parameters in nonlinear state-space models of biochemical networks
    • Sun X, Jin L, et al. 2008. Extended Kalman filter for estimation of parameters in nonlinear state-space models of biochemical networks. PloS One 3:e3758.
    • (2008) PloS One , vol.3 , pp. e3758
    • Sun, X.1    Jin, L.2
  • 123
    • 84890995320 scopus 로고    scopus 로고
    • Automatic alignment of local representations
    • Teh Y.W., Roweis S. 2002. Automatic alignment of local representations. Adv Neural Inf Process Syst 15:841-848.
    • (2002) Adv Neural Inf Process Syst , vol.15 , pp. 841-848
    • Teh, Y.W.1    Roweis, S.2
  • 124
    • 84898986732 scopus 로고    scopus 로고
    • Mapping a manifold of perceptual observations
    • Adv Neural Inf Process Syst Proceedings of the 1997 conference on Advances in neural Information processing systems 10 MIT Press
    • Tenenbaum JB. 1998. Mapping a manifold of perceptual observations. Adv Neural Inf Process Syst Proceedings of the 1997 conference on Advances in neural Information processing systems 10, MIT Press. 682-688.
    • (1998) , pp. 682-688
    • Tenenbaum, J.B.1
  • 125
    • 69249083221 scopus 로고    scopus 로고
    • Model driven EEG/fMRI fusion of brain oscillations
    • Valdes-Sosa P.A., Sanchez-Bornot J.M., et al. 2009. Model driven EEG/fMRI fusion of brain oscillations. Hum Brain Mapp 30:2701-2721.
    • (2009) Hum Brain Mapp , vol.30 , pp. 2701-2721
    • Valdes-Sosa, P.A.1    Sanchez-Bornot, J.M.2
  • 126
    • 48249119263 scopus 로고    scopus 로고
    • An introduction to dimensionality reduction using matlab
    • Van der Maaten L. 2007. An introduction to dimensionality reduction using matlab. Report 1201:07-07.
    • (2007) Report , vol.1201 , pp. 07
    • Van der Maaten, L.1
  • 127
    • 70350487954 scopus 로고    scopus 로고
    • Dimensionality reduction: a comparative review
    • Van der Maaten L, Postma E, et al. 2009. Dimensionality reduction: a comparative review. J Mach Learn Res 10:1-41.
    • (2009) J Mach Learn Res , vol.10 , pp. 1-41
    • Van der Maaten, L.1    Postma, E.2
  • 128
    • 36348988250 scopus 로고    scopus 로고
    • Surface-based and probabilistic atlases of primate cerebral cortex
    • Van Essen D.C., Dierker DL. 2007. Surface-based and probabilistic atlases of primate cerebral cortex. Neuron 56:209-225.
    • (2007) Neuron , vol.56 , pp. 209-225
    • Van Essen, D.C.1    Dierker, D.L.2
  • 129
    • 0034848268 scopus 로고    scopus 로고
    • An integrated software suite for surface-based analyses of cerebral cortex
    • Van Essen D.C., Drury H.A., et al. 2001. An integrated software suite for surface-based analyses of cerebral cortex. J Am Med Inform Assoc 8:443-459.
    • (2001) J Am Med Inform Assoc , vol.8 , pp. 443-459
    • Van Essen, D.C.1    Drury, H.A.2
  • 130
    • 33748149588 scopus 로고    scopus 로고
    • Learning nonlinear image manifolds by global alignment of local linear models
    • Verbeek J. 2006. Learning nonlinear image manifolds by global alignment of local linear models. IEEE Trans Pattern Anal Mach Intell 28:1236-1250.
    • (2006) IEEE Trans Pattern Anal Mach Intell , vol.28 , pp. 1236-1250
    • Verbeek, J.1
  • 131
    • 68649105450 scopus 로고    scopus 로고
    • An extended Kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via short gene expression time series
    • Wang Z, Liu X, et al. 2009. An extended Kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via short gene expression time series. IEEE/ACM Trans Comput Biol Bioinform 6:410-419.
    • (2009) IEEE/ACM Trans Comput Biol Bioinform , vol.6 , pp. 410-419
    • Wang, Z.1    Liu, X.2
  • 132
    • 14344251006 scopus 로고    scopus 로고
    • Learning a Kernel Matrix for Nonlinear Dimensionality Reduction
    • In Proceedings of the Twenty First International Conference on Machine Learning, ACM Banff Canada
    • Weinberger K.Q., Sha F, et al. 2004. Learning a Kernel Matrix for Nonlinear Dimensionality Reduction. In Proceedings of the Twenty-First International Conference on Machine Learning, ACM Banff, Canada.
    • (2004)
    • Weinberger, K.Q.1    Sha, F.2
  • 133
    • 0015260274 scopus 로고
    • Excitatory and inhibitory interactions in localized populations of model neurons.“
    • Wilson, H. R. and J. D. Cowan (1972). “Excitatory and inhibitory interactions in localized populations of model neurons.“ Biophysical journal 12(1): 1-24.
    • (1972) Biophysical journal , vol.12 , Issue.1 , pp. 1-24
    • Wilson, H.R.1    Cowan, J.D.2
  • 134
    • 0035721661 scopus 로고    scopus 로고
    • Linear aspects of changes in deoxygenated hemoglobin concentration and cytochrome oxidase oxidation during brain activation
    • Wobst P, Wenzel R, et al. 2001. Linear aspects of changes in deoxygenated hemoglobin concentration and cytochrome oxidase oxidation during brain activation. Neuroimage 13:520-530.
    • (2001) Neuroimage , vol.13 , pp. 520-530
    • Wobst, P.1    Wenzel, R.2
  • 135
    • 67649515596 scopus 로고    scopus 로고
    • A DTI-derived measure of cortico-cortical connectivity
    • Zalesky A, Fornito A. 2009. A DTI-derived measure of cortico-cortical connectivity. IEEE Trans Med Imaging 28:1023-1036.
    • (2009) IEEE Trans Med Imaging , vol.28 , pp. 1023-1036
    • Zalesky, A.1    Fornito, A.2
  • 136
    • 84867920399 scopus 로고    scopus 로고
    • Principal manifolds and nonlinear dimensionality reduction via tangent space alignment
    • Zhang Z, Zha H. 2004. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. J Shanghai Univ (English Edition) 8:406-424.
    • (2004) J Shanghai Univ (English Edition) , vol.8 , pp. 406-424
    • Zhang, Z.1    Zha, H.2
  • 137
    • 0000660321 scopus 로고    scopus 로고
    • Blind source separation by sparse decomposition in a signal dictionary
    • Zibulevsky M, Pearlmutter BA. 2001. Blind source separation by sparse decomposition in a signal dictionary. Neural Comput 13:863-882.
    • (2001) Neural Comput , vol.13 , pp. 863-882
    • Zibulevsky, M.1    Pearlmutter, B.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.