메뉴 건너뛰기




Volumn 23, Issue 23, 2007, Pages 3209-3216

Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference

Author keywords

[No Author keywords available]

Indexed keywords

JANUS KINASE; STAT PROTEIN;

EID: 36549012683     PISSN: 13674803     EISSN: 13674811     Source Type: Journal    
DOI: 10.1093/bioinformatics/btm510     Document Type: Article
Times cited : (123)

References (29)
  • 1
    • 13844253637 scopus 로고    scopus 로고
    • A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
    • Beal,M. et al. (2005) A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics, 21, 349-356.
    • (2005) Bioinformatics , vol.21 , pp. 349-356
    • Beal, M.1
  • 3
    • 0001789769 scopus 로고    scopus 로고
    • Modeling gene expression with differential equations
    • Chen,T. et al. (1999) Modeling gene expression with differential equations. In Pacific Symposium of Biocomputing.
    • (1999) Pacific Symposium of Biocomputing
    • Chen, T.1
  • 4
    • 33749340654 scopus 로고    scopus 로고
    • Parameter estimation in biochemical systems models with alternating regression
    • Chou,I.-C. et al. (2006) Parameter estimation in biochemical systems models with alternating regression. Theor. Biol. Med. Model 3, 1-15.
    • (2006) Theor. Biol. Med. Model , vol.3 , pp. 1-15
    • Chou, I.-C.1
  • 6
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: A literature review
    • de Jong,H. (2002) Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol., 9, 67-103.
    • (2002) J. Comput. Biol , vol.9 , pp. 67-103
    • de Jong, H.1
  • 8
    • 0034688173 scopus 로고    scopus 로고
    • A synthetic oscillatory network of transcriptional regulators
    • Elowitz,M. and Leibler,S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335-338.
    • (2000) Nature , vol.403 , pp. 335-338
    • Elowitz, M.1    Leibler, S.2
  • 9
    • 33746660425 scopus 로고    scopus 로고
    • Identification of genome-scale metabolic network models using experimentally measured flux profiles
    • Herrgard,M. J. et al. (2006) Identification of genome-scale metabolic network models using experimentally measured flux profiles. PLoS Comput. Biol., 2, 676-686.
    • (2006) PLoS Comput. Biol , vol.2 , pp. 676-686
    • Herrgard, M.J.1
  • 10
    • 0033723743 scopus 로고    scopus 로고
    • A new method for the nonlinear transformation of means and covariances in filters and estimators
    • Julier,S. et al. (2000) A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Automat. Contr., 45, 477-482.
    • (2000) IEEE Trans. Automat. Contr , vol.45 , pp. 477-482
    • Julier, S.1
  • 11
    • 34548049053 scopus 로고    scopus 로고
    • Mathematical modeling of intracellular signaling pathways
    • Klipp,E. and Liebermeister,W. (2006) Mathematical modeling of intracellular signaling pathways. BMC Neurosci., 7 (Suppl. 1).
    • (2006) BMC Neurosci , vol.7 , Issue.SUPPL. 1
    • Klipp, E.1    Liebermeister, W.2
  • 12
    • 33747876155 scopus 로고    scopus 로고
    • A decompositional approach to parameter estimation in pathway modeling: A case study of the Akt and MAPK pathways and their crosstalk
    • Koh,G. et al. (2006) A decompositional approach to parameter estimation in pathway modeling: A case study of the Akt and MAPK pathways and their crosstalk. Bioinformatics, 22, 271-280.
    • (2006) Bioinformatics , vol.22 , pp. 271-280
    • Koh, G.1
  • 13
    • 25844445254 scopus 로고    scopus 로고
    • Parameter estimation of ordinary differential equations
    • Li,Z. et al. (2005) Parameter estimation of ordinary differential equations. IMA J. Numer. Anal., 25, 264-285.
    • (2005) IMA J. Numer. Anal , vol.25 , pp. 264-285
    • Li, Z.1
  • 14
    • 0033083733 scopus 로고    scopus 로고
    • It's a noisy business! Genetic regulation at the nanomolar scale
    • McAdams,H. and Arkin,A. (1999) It's a noisy business! Genetic regulation at the nanomolar scale. Trends Genet., 15, 65-69.
    • (1999) Trends Genet , vol.15 , pp. 65-69
    • McAdams, H.1    Arkin, A.2
  • 15
    • 0242574982 scopus 로고    scopus 로고
    • Parameter estimation in biochemical pathways: A comparison of global optimization methods
    • Moles,C. et al. (2003) Parameter estimation in biochemical pathways: A comparison of global optimization methods. Genome Res. 13, 2467-2474.
    • (2003) Genome Res , vol.13 , pp. 2467-2474
    • Moles, C.1
  • 16
    • 14844307159 scopus 로고    scopus 로고
    • Inferring quantitative models of regulatory networks from expression data
    • Nachman,I. et al. (2004) Inferring quantitative models of regulatory networks from expression data. Bioinformatics, 20 (Suppl. 1), 248-256.
    • (2004) Bioinformatics , vol.20 , Issue.SUPPL. 1 , pp. 248-256
    • Nachman, I.1
  • 17
    • 36549060902 scopus 로고    scopus 로고
    • Inference of gene regulatory network with Dynamic Bayesian Network
    • Perrin,B.-E. et al. (2003) Inference of gene regulatory network with Dynamic Bayesian Network. Bioinformatics, 19, i386-i49.
    • (2003) Bioinformatics , vol.19
    • Perrin, B.-E.1
  • 18
    • 33646364037 scopus 로고    scopus 로고
    • Identification of metabolic system parameters using global optimization methods
    • Polisetty,P. K. et al. (2006) Identification of metabolic system parameters using global optimization methods. Theor. Biol. Med. Model., 3, 1-15.
    • (2006) Theor. Biol. Med. Model , vol.3 , pp. 1-15
    • Polisetty, P.K.1
  • 20
    • 3142744689 scopus 로고    scopus 로고
    • Modeling T-cell activation using gene expression profiling and state-space models
    • Rangel,C. et al. (2004) Modeling T-cell activation using gene expression profiling and state-space models. Bioinformatics, 20 1361-1372.
    • (2004) Bioinformatics , vol.20 , pp. 1361-1372
    • Rangel, C.1
  • 22
    • 18444388867 scopus 로고    scopus 로고
    • Identification of small scale biochemical networks based on general type system perturbations
    • Schmidt,H. et al. (2005) Identification of small scale biochemical networks based on general type system perturbations. FEBS J., 272, 2141-2151.
    • (2005) FEBS J , vol.272 , pp. 2141-2151
    • Schmidt, H.1
  • 23
    • 37649031765 scopus 로고    scopus 로고
    • Estimation of parameters and unobserved components for nonlinear systems from noisy time series
    • Sitz,A. et al. (2002) Estimation of parameters and unobserved components for nonlinear systems from noisy time series. Phys. Rev. E 66, 016210.
    • (2002) Phys. Rev. E , vol.66 , pp. 016210
    • Sitz, A.1
  • 24
    • 0033782304 scopus 로고    scopus 로고
    • Modeling transcriptional control in gene networks - methods, recent results, and future directions
    • Smolen,P. et al. (2000) Modeling transcriptional control in gene networks - methods, recent results, and future directions. Bull. Math. Biol., 62, 247-292.
    • (2000) Bull. Math. Biol , vol.62 , pp. 247-292
    • Smolen, P.1
  • 25
    • 0037417886 scopus 로고    scopus 로고
    • Identification of nucleocytoplasmic cycling as remote sensor in signaling by databased modeling
    • Swameye, et al. (2003) Identification of nucleocytoplasmic cycling as remote sensor in signaling by databased modeling. Proc. Natl. Acad. Sci. USA, 100, 1028-1033.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 1028-1033
    • Swameye1
  • 26
    • 33746604865 scopus 로고    scopus 로고
    • Parameter estimation in models combining signal transduction and metabolic pathways: The dependent input approach
    • van Riel,N. and Sontag,E. (2006) Parameter estimation in models combining signal transduction and metabolic pathways: The dependent input approach. IEE Proc. Syst. Biol., 153, 263-274.
    • (2006) IEE Proc. Syst. Biol , vol.153 , pp. 263-274
    • van Riel, N.1    Sontag, E.2
  • 27
    • 0003359612 scopus 로고    scopus 로고
    • The Unscented Kalman Filter. Series in adaptive and Learning Systems for Signal Processing, Communications, and Control
    • Haykin,S, ed, Wiley, pp
    • Wan,E. A. and van der Merwe,R. (2001) The Unscented Kalman Filter. Series in adaptive and Learning Systems for Signal Processing, Communications, and Control. In Haykin,S. (ed.), Kalman Filtering and Neural Networks. Wiley, pp. 221-283.
    • (2001) Kalman Filtering and Neural Networks , pp. 221-283
    • Wan, E.A.1    van der Merwe, R.2
  • 29
    • 33750415038 scopus 로고    scopus 로고
    • SBML-PET: A systems biology mark-up language-based parameter estimation tool
    • Zi,Z. and Klipp,E. (2006) SBML-PET: A systems biology mark-up language-based parameter estimation tool. Bioinformatics, 22 2704-2705.
    • (2006) Bioinformatics , vol.22 , pp. 2704-2705
    • Zi, Z.1    Klipp, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.