메뉴 건너뛰기




Volumn 10, Issue 1, 2017, Pages 17-29

Predicting student performance from LMS data: A comparison of 17 blended courses using moodle LMS

Author keywords

Learning analytics; learning management systems; portability; predictive modeling; student performance

Indexed keywords

BEHAVIORAL RESEARCH; COMPUTER SOFTWARE PORTABILITY; EDUCATION; FORECASTING; ONLINE SYSTEMS; PREDICTIVE ANALYTICS; STUDENTS;

EID: 85017609008     PISSN: 19391382     EISSN: None     Source Type: Journal    
DOI: 10.1109/TLT.2016.2616312     Document Type: Article
Times cited : (276)

References (60)
  • 1
    • 60549108749 scopus 로고    scopus 로고
    • A blended learning approach to course design and implementation
    • Feb
    • N. Hoic-Bozic, V. Mornar, and I. Boticki, "A blended learning approach to course design and implementation," IEEE Trans. Educ, vol. 52, no. 1, pp. 19-30, Feb. 2009.
    • (2009) IEEE Trans. Educ , vol.52 , Issue.1 , pp. 19-30
    • Hoic-Bozic, N.1    Mornar, V.2    Boticki, I.3
  • 4
    • 84864685081 scopus 로고    scopus 로고
    • Learning analytics and educational data mining: Towards communication and collaboration
    • G. Siemens and R. S. Baker, "Learning analytics and educational data mining: Towards communication and collaboration," in Proc. 2nd Int. Conf. Learn. Analytics Knowl., 2012, pp. 252-254.
    • (2012) Proc. 2nd Int. Conf. Learn. Analytics Knowl , pp. 252-254
    • Siemens, G.1    Baker, R.S.2
  • 6
    • 77958153220 scopus 로고    scopus 로고
    • Educational data mining: A review of the state of the art
    • Nov
    • C. Romero and S. Ventura, "Educational data mining: A review of the state of the art," IEEE Trans. Syst. Man Cybern. Part C Appl. Rev, vol. 40, no. 6, pp. 601-618, Nov. 2010.
    • (2010) IEEE Trans. Syst. Man Cybern. Part C Appl. Rev , vol.40 , Issue.6 , pp. 601-618
    • Romero, C.1    Ventura, S.2
  • 7
    • 84873838796 scopus 로고    scopus 로고
    • Social learning analytics
    • S. B. Shum and R. Ferguson, "Social learning analytics," Educ. Technol. Soc, vol. 15, no. 3, pp. 3-26, 2012.
    • (2012) Educ. Technol. Soc , vol.15 , Issue.3 , pp. 3-26
    • Shum, S.B.1    Ferguson, R.2
  • 8
    • 77954605151 scopus 로고    scopus 로고
    • The state of educational data mining in 2009: A review and future visions
    • Oct
    • R. S. J. d Baker and K. Yacef, "The state of educational data mining in 2009: A review and future visions," J. Educ. Data Min, vol. 1, no. 1, pp. 3-17, Oct. 2009.
    • (2009) J. Educ. Data Min , vol.1 , Issue.1 , pp. 3-17
    • Baker, R.S.J.D.1    Yacef, K.2
  • 9
    • 77949986135 scopus 로고    scopus 로고
    • Epistemic network analysis: A prototype for 21st- century assessment of learning
    • D. W. Shaffer,, et al., "Epistemic network analysis: A prototype for 21st-century assessment of learning," Int. J. Learn. Media, vol. 1, no. 2, pp. 33-53, 2009.
    • (2009) Int. J. Learn. Media , vol.1 , Issue.2 , pp. 33-53
    • Shaffer, D.W.1
  • 10
    • 84944809984 scopus 로고    scopus 로고
    • Learning analytics should not promote one size fits all: The effects of instructional conditions in predicting academic success
    • Jan
    • D. Gašević, S. Dawson, T. Rogers, and D. Gasevic, "Learning analytics should not promote one size fits all: The effects of instructional conditions in predicting academic success," Internet High. Educ, vol. 28, pp. 68-84, Jan. 2016.
    • (2016) Internet High. Educ , vol.28 , pp. 68-84
    • Gašević, D.1    Dawson, S.2    Rogers, T.3    Gasevic, D.4
  • 11
    • 84937562034 scopus 로고    scopus 로고
    • Learning at distance: Effects of interaction traces on academic achievement
    • Sep
    • S. Joksimović, D. Gašević, T. M. Loughin, V. Kovanović, and M. Hatala, "Learning at distance: Effects of interaction traces on academic achievement," Comput. Educ, vol. 87, pp. 204-217, Sep. 2015.
    • (2015) Comput. Educ , vol.87 , pp. 204-217
    • Joksimović, S.1    Gašević, D.2    Loughin, T.M.3    Kovanović, V.4    Hatala, M.5
  • 12
    • 71549141667 scopus 로고    scopus 로고
    • Academic analytics
    • J. P. Campbell and D. G. Oblinger, "Academic analytics," Educause, vol. 42, pp. 40-42, 2007.
    • (2007) Educause , vol.42 , pp. 40-42
    • Campbell, J.P.1    Oblinger, D.G.2
  • 13
    • 85027932823 scopus 로고    scopus 로고
    • In search for the most informative data for feedback generation: Learning analytics in a data-rich context
    • Jun
    • D. T. Tempelaar, B. Rienties, and B. Giesbers, "In search for the most informative data for feedback generation: Learning analytics in a data-rich context," Comput. Human Behavior, vol. 47, pp. 157-167, Jun. 2015.
    • (2015) Comput. Human Behavior , vol.47 , pp. 157-167
    • Tempelaar, D.T.1    Rienties, B.2    Giesbers, B.3
  • 14
    • 84884289320 scopus 로고    scopus 로고
    • An overview of learning analytics
    • D. Clow, "An overview of learning analytics," Teach. High. Educ, vol. 18, no. 6, pp. 683-695, 2013.
    • (2013) Teach. High. Educ , vol.18 , Issue.6 , pp. 683-695
    • Clow, D.1
  • 15
    • 84860564127 scopus 로고    scopus 로고
    • Psychological correlates of university students? Academic performance: A systematic review and meta-Analysis
    • M. Richardson, C. Abraham, and R. Bond, "Psychological correlates of university students? academic performance: A systematic review and meta-Analysis," Psychol. Bull, vol. 138, no. 2, pp. 353-387, 2012.
    • (2012) Psychol. Bull , vol.138 , Issue.2 , pp. 353-387
    • Richardson, M.1    Abraham, C.2    Bond, R.3
  • 16
    • 0004111892 scopus 로고
    • Editorial: Three types of interaction
    • Jan
    • M. G. Moore, "Editorial: Three types of interaction," Amer. J. Distance Educ, vol. 3, no. 3, pp. 1-6, Jan. 1989.
    • (1989) Amer. J. Distance Educ , vol.3 , Issue.3 , pp. 1-6
    • Moore, M.G.1
  • 17
    • 84892436720 scopus 로고    scopus 로고
    • Can we predict success from log data in VLEs? Classification of interactions for learning analytics and their relation with performance in VLE-supported F2F and online learning
    • Feb
    • - A. F. Agudo-Peregrina, S. Iglesias-Pradas, M. - A. Conde-Gonzǎlez, and - A. Hernǎndez-Garcǐa, "Can we predict success from log data in VLEs? Classification of interactions for learning analytics and their relation with performance in VLE-supported F2F and online learning," Comput. Hum. Behav, vol. 31, pp. 542-550, Feb. 2014.
    • (2014) Comput. Hum. Behav , vol.31 , pp. 542-550
    • Agudo-Peregrina, A.F.1    Iglesias-Pradas, S.-A.2    Conde-Gonzǎlez, M.3    Hernǎndez-Garcǐa, A.4
  • 18
    • 85017633313 scopus 로고    scopus 로고
    • Importance of theory in learning analytics in formal and workplace settings
    • Dec
    • S. Dawson, N. Mirriahi, and D. Gasevic, "Importance of theory in learning analytics in formal and workplace settings," J. Learn. Anal, vol. 2, no. 2, pp. 1-4, Dec. 2015.
    • (2015) J. Learn. Anal , vol.2 , Issue.2 , pp. 1-4
    • Dawson, S.1    Mirriahi, N.2    Gasevic, D.3
  • 19
    • 0002118954 scopus 로고    scopus 로고
    • Constructivism: Implications for the design and delivery of instruction
    • New York: McMillan
    • D. Cunningham and T. Duffy, "Constructivism: Implications for the design and delivery of instruction," Handbook Res. Educ. Commun. Technol., New York: McMillan, pp. 170-198, 1996.
    • (1996) Handbook Res. Educ. Commun. Technol , pp. 170-198
    • Cunningham, D.1    Duffy, T.2
  • 20
    • 20444435495 scopus 로고    scopus 로고
    • Foundations of educational theory for online learning
    • Athabasca, AB: Athabasca Univ
    • M. Ally, "Foundations of educational theory for online learning," Theory and Practice of Online Learning. Athabasca, AB: Athabasca Univ., pp. 15-44, 2004.
    • (2004) Theory and Practice of Online Learning , pp. 15-44
    • Ally, M.1
  • 21
    • 17744382012 scopus 로고    scopus 로고
    • A critical examination of the effects of learning management systems on university teaching and learning
    • Mar
    • H. Coates, R. James, and G. Baldwin, "A critical examination of the effects of learning management systems on university teaching and learning," Tertiary Educ. Manage, vol. 11, no. 1, pp. 19-36, Mar. 2005.
    • (2005) Tertiary Educ. Manage , vol.11 , Issue.1 , pp. 19-36
    • Coates, H.1    James, R.2    Baldwin, G.3
  • 22
    • 0030528664 scopus 로고    scopus 로고
    • A metacognitive view of individual differences in self-regulated learning
    • P. H. Winne, "A metacognitive view of individual differences in self-regulated learning," Learn. Individual Differences, vol. 8, no. 4, pp. 327-353, 1996.
    • (1996) Learn. Individual Differences , vol.8 , Issue.4 , pp. 327-353
    • Winne, P.H.1
  • 24
    • 84965520752 scopus 로고
    • Situated cognition and the culture of learning
    • J. S. Brown, A. Collins, and P. Duguid, "Situated cognition and the culture of learning," Educ. Res, vol. 18, no. 1, pp. 32-42, 1989.
    • (1989) Educ. Res , vol.18 , Issue.1 , pp. 32-42
    • Brown, J.S.1    Collins, A.2    Duguid, P.3
  • 25
    • 84864697012 scopus 로고    scopus 로고
    • Learning dispositions and transferable competencies: Pedagogy, modelling and learning analytics
    • S. Buckingham Shum and R. D. Crick, "Learning dispositions and transferable competencies: Pedagogy, modelling and learning analytics," in Proc. 2nd Int. Conf. Learn. Analytics Knowl., 2012, pp. 92-101.
    • (2012) Proc. 2nd Int. Conf. Learn. Analytics Knowl , pp. 92-101
    • Buckingham Shum, S.1    Crick, R.D.2
  • 26
    • 2942604656 scopus 로고    scopus 로고
    • Online, web-based learning environment for an information systems course: Access logs, linearity and performance
    • S. Rafaeli and G. Ravid, "Online, web-based learning environment for an information systems course: Access logs, linearity and performance," in Proc. Inf. Syst. Educ. Conf., 1997, vol. 97, pp. 92-99.
    • (1997) Proc. Inf. Syst. Educ. Conf , vol.97 , pp. 92-99
    • Rafaeli, S.1    Ravid, G.2
  • 27
    • 24344504039 scopus 로고    scopus 로고
    • Tracking student behavior, persistence, and achievement in online courses
    • L. V. Morris, C. Finnegan, and S.-S. Wu, "Tracking student behavior, persistence, and achievement in online courses," Internet High. Educ, vol. 8, no. 3, pp. 221-231, 2005.
    • (2005) Internet High. Educ , vol.8 , Issue.3 , pp. 221-231
    • Morris, L.V.1    Finnegan, C.2    Wu, S.-S.3
  • 28
    • 71549171729 scopus 로고    scopus 로고
    • Mining LMS data to develop an ?early warning system? for educators: A proof of concept
    • Feb
    • L. Macfadyen and S. Dawson, "Mining LMS data to develop an ?early warning system? for educators: A proof of concept," Comput. Educ, vol. 54, no. 2, pp. 588-599, Feb. 2010.
    • (2010) Comput. Educ , vol.54 , Issue.2 , pp. 588-599
    • Macfadyen, L.1    Dawson, S.2
  • 31
    • 84898770423 scopus 로고    scopus 로고
    • Educational technology approach toward learning analytics: Relationship between student online behavior and learning performance in higher education
    • T. Yu and I.-H. Jo, "Educational technology approach toward learning analytics: Relationship between student online behavior and learning performance in higher education," in Proc. 4th Int. Conf. Learn. Anal. Knowl., 2014, pp. 269-270.
    • (2014) Proc. 4th Int. Conf. Learn. Anal. Knowl , pp. 269-270
    • Yu, T.1    Jo, I.-H.2
  • 32
    • 84929643228 scopus 로고    scopus 로고
    • A multivariate approach to predicting student outcomes in web-enabled blended learning courses
    • Oct
    • N. Z. Zacharis, "A multivariate approach to predicting student outcomes in web-enabled blended learning courses," Internet High. Educ, vol. 27, pp. 44-53, Oct. 2015.
    • (2015) Internet High. Educ , vol.27 , pp. 44-53
    • Zacharis, N.Z.1
  • 35
    • 84919819479 scopus 로고    scopus 로고
    • Early alert of academically at-risk students: An open source analytics initiative
    • S. M. Jayaprakash, E. W. Moody, E. J. Lauría, J. R. Regan, and J. D. Baron, "Early alert of academically at-risk students: An open source analytics initiative," J. Learn.Anal, vol. 1, no. 1, pp. 6-47, 2014.
    • (2014) J. Learn.Anal , vol.1 , Issue.1 , pp. 6-47
    • Jayaprakash, S.M.1    Moody, E.W.2    Lauría, E.J.3    Regan, J.R.4    Baron, J.D.5
  • 37
    • 84955620058 scopus 로고    scopus 로고
    • Scaling up? Learning design: Impact of learning design activities on LMS behavior and performance
    • B. Rienties, L. Toetenel, and A. Bryan, "?Scaling up? learning design: Impact of learning design activities on LMS behavior and performance," in Proc. 5th Int. Conf. Learn. Anal. Knowl., 2015, pp. 315-319.
    • (2015) Proc. 5th Int. Conf. Learn. Anal. Knowl , pp. 315-319
    • Rienties, B.1    Toetenel, L.2    Bryan, A.3
  • 39
    • 84899842763 scopus 로고    scopus 로고
    • Developing early warning systems to predict students? Online learning performance
    • Jul
    • Y.-H. Hu, C.-L. Lo, and S.-P. Shih, "Developing early warning systems to predict students? online learning performance," Comput. Hum. Behav, vol. 36, pp. 469-478, Jul. 2014.
    • (2014) Comput. Hum. Behav , vol.36 , pp. 469-478
    • Hu, Y.-H.1    Lo, C.-L.2    Shih, S.-P.3
  • 40
    • 85017606536 scopus 로고    scopus 로고
    • Using early warning signs to predict academic risk in interactive, blended teaching environments
    • Art. no. 6
    • J. Schell, B. Lukoff, and C. Alvarado, "Using early warning signs to predict academic risk in interactive, blended teaching environments," Internet Learn, vol. 3, no. 2, 2014, Art. no. 6.
    • (2014) Internet Learn , vol.3 , Issue.2
    • Schell, J.1    Lukoff, B.2    Alvarado, C.3
  • 41
    • 84948152990 scopus 로고    scopus 로고
    • Clustering blended learning courses by online behavior data: A case study in a Korean higher education institute
    • Apr
    • Y. Park, J. H. Yu, and I.-H. Jo, "Clustering blended learning courses by online behavior data: A case study in a Korean higher education institute," Internet High. Educ, vol. 29, pp. 1-11, Apr. 2016.
    • (2016) Internet High. Educ , vol.29 , pp. 1-11
    • Park, Y.1    Yu, J.H.2    Jo, I.-H.3
  • 42
    • 44149126465 scopus 로고    scopus 로고
    • Which factors best account for academic success: Those which college students can control or those they cannot?
    • Aug
    • S. J. Dollinger, A. M. Matyja, and J. L. Huber, "Which factors best account for academic success: Those which college students can control or those they cannot?" J. Res. Personality, vol. 42, no. 4, pp. 872-885, Aug. 2008.
    • (2008) J. Res. Personality , vol.42 , Issue.4 , pp. 872-885
    • Dollinger, S.J.1    Matyja, A.M.2    Huber, J.L.3
  • 43
    • 77955466176 scopus 로고    scopus 로고
    • Student behavior and interaction patterns with an LMS as motivation predictors in e-learning settings
    • Aug
    • M. Munoz-Organero, P. J. Munoz-Merino, and C. D. Kloos, "Student behavior and interaction patterns with an LMS as motivation predictors in e-learning settings," IEEE Trans. Educ, vol. 53, no. 3, pp. 463-470, Aug. 2010.
    • (2010) IEEE Trans. Educ , vol.53 , Issue.3 , pp. 463-470
    • Munoz-Organero, M.1    Munoz-Merino, P.J.2    Kloos, C.D.3
  • 44
    • 84949658759 scopus 로고    scopus 로고
    • Identifying significant indicators using LMS data to predict course achievement in online learning
    • Apr
    • J. W. You, "Identifying significant indicators using LMS data to predict course achievement in online learning," Internet High. Educ, vol. 29, pp. 23-30, Apr. 2016.
    • (2016) Internet High. Educ , vol.29 , pp. 23-30
    • You, J.W.1
  • 45
    • 84903819926 scopus 로고    scopus 로고
    • System, scholar or students? Which most influences online MBA course effectiveness?
    • J. B. Arbaugh, "System, scholar or students? Which most influences online MBA course effectiveness?" J. Comput. Assist. Learn, vol. 30, no. 4, pp. 349-362, 2014.
    • (2014) J. Comput. Assist. Learn , vol.30 , Issue.4 , pp. 349-362
    • Arbaugh, J.B.1
  • 46
    • 33745211181 scopus 로고    scopus 로고
    • Performance in e-learning: Online participation and student grades
    • J. Davies and M. Graff, "Performance in e-learning: Online participation and student grades," Brit. J. Educ. Technol, vol. 36, no. 4, pp. 657-663, 2005.
    • (2005) Brit. J. Educ. Technol , vol.36 , Issue.4 , pp. 657-663
    • Davies, J.1    Graff, M.2
  • 47
    • 34447267250 scopus 로고    scopus 로고
    • Big five personality predictors of post-secondary academic performance
    • Oct
    • M. C. O?Connor and S. V. Paunonen, "Big five personality predictors of post-secondary academic performance," Personality Individual Differences, vol. 43, no. 5, pp. 971-990, Oct. 2007.
    • (2007) Personality Individual Differences , vol.43 , Issue.5 , pp. 971-990
    • O'Connor, M.C.1    Paunonen, S.V.2
  • 48
    • 58149372279 scopus 로고
    • Achievement motivation: Conceptions of ability, subjective experience, task choice, and performance
    • J. G. Nicholls, "Achievement motivation: Conceptions of ability, subjective experience, task choice, and performance," Psychol. Rev, vol. 91, no. 3, pp. 328-346, 1984.
    • (1984) Psychol. Rev , vol.91 , Issue.3 , pp. 328-346
    • Nicholls, J.G.1
  • 50
    • 61849186005 scopus 로고    scopus 로고
    • Determination of factors influencing the achievement of the first-year university students using data mining methods
    • J. F. Superby, J.-P. Vandamme, and N. Meskens, "Determination of factors influencing the achievement of the first-year university students using data mining methods," in Proc. 8th Int. Conf. Intell. Tutoring Syst., 2006, pp. 37-44.
    • (2006) Proc. 8th Int. Conf. Intell. Tutoring Syst , pp. 37-44
    • Superby, J.F.1    Vandamme, J.-P.2    Meskens, N.3
  • 51
    • 33646436457 scopus 로고    scopus 로고
    • Aptitude is not enough: How personality and behavior predict academic performance
    • Jun
    • M. A. Conard, "Aptitude is not enough: How personality and behavior predict academic performance," J. Res. Personality, vol. 40, no. 3, pp. 339-346, Jun. 2006.
    • (2006) J. Res. Personality , vol.40 , Issue.3 , pp. 339-346
    • Conard, M.A.1
  • 52
    • 77749255183 scopus 로고    scopus 로고
    • Distinguishing the learning approaches adopted by undergraduates in their use of online resources
    • Mar
    • J. Knight, "Distinguishing the learning approaches adopted by undergraduates in their use of online resources," Active Learn. High. Educ, vol. 11, no. 1, pp. 67-76, Mar. 2010.
    • (2010) Active Learn. High. Educ , vol.11 , Issue.1 , pp. 67-76
    • Knight, J.1
  • 53
    • 85027928892 scopus 로고    scopus 로고
    • Assessing the suitability of student interactions from Moodle data logs as predictors of cross-curricular competencies
    • S. Iglesias-Pradas, C. Ruiz-de-Azcárate, and Á. F. Agudo-Peregrina, "Assessing the suitability of student interactions from Moodle data logs as predictors of cross-curricular competencies," Comput. Human Behavior, vol. 47, pp. 81-89, 2015.
    • (2015) Comput. Human Behavior , vol.47 , pp. 81-89
    • Iglesias-Pradas, S.1    Ruiz-De-Azcárate, C.2    Agudo-Peregrina, A.F.3
  • 54
    • 80052532841 scopus 로고    scopus 로고
    • A study of the relationships among learning styles, participation types, and performance in programming language learning supported by online forums
    • Jan
    • R.-S. Shaw, "A study of the relationships among learning styles, participation types, and performance in programming language learning supported by online forums," Comput. Educ, vol. 58, no. 1, pp. 111-120, Jan. 2012.
    • (2012) Comput. Educ , vol.58 , Issue.1 , pp. 111-120
    • Shaw, R.-S.1
  • 55
    • 33947423406 scopus 로고    scopus 로고
    • The power of feedback
    • J. Hattie and H. Timperley, "The power of feedback," Rev. Educ. Res, vol. 77, no. 1, pp. 81-112, 2007.
    • (2007) Rev. Educ. Res , vol.77 , Issue.1 , pp. 81-112
    • Hattie, J.1    Timperley, H.2
  • 56
    • 84893396860 scopus 로고    scopus 로고
    • The effects of feedback interventions on performance: A historical review, a meta-Analysis, and a preliminary feedback intervention theory
    • A. N. Kluger and A. DeNisi, "The effects of feedback interventions on performance: A historical review, a meta-Analysis, and a preliminary feedback intervention theory," Psychol. Bull, vol. 119, no. 2, 1996, pp. 254-284.
    • (1996) Psychol. Bull , vol.119 , Issue.2 , pp. 254-284
    • Kluger, A.N.1    DeNisi, A.2
  • 59
    • 78751488348 scopus 로고    scopus 로고
    • Helping educators analyse interactions within networked learning communities: A framework and the AnalyticsTool system
    • O. Petropoulou, S. Retalis, K. Siassiakos, S. Karamouzis, and T. Kargidis, "Helping educators analyse interactions within networked learning communities: A framework and the AnalyticsTool system," in Proc. 6th Int. Conf. Netw. Learn., 2008, pp. 5-7.
    • (2008) Proc. 6th Int. Conf. Netw. Learn , pp. 5-7
    • Petropoulou, O.1    Retalis, S.2    Siassiakos, K.3    Karamouzis, S.4    Kargidis, T.5
  • 60
    • 84883750841 scopus 로고    scopus 로고
    • Informing pedagogical action: Aligning learning analytics with learning design
    • Mar
    • L. Lockyer, E. Heathcote, and S. Dawson, "Informing pedagogical action: Aligning learning analytics with learning design," Amer. Behavioral Sci., Mar. 2013, pp. 1439-1459.
    • (2013) Amer. Behavioral Sci , pp. 1439-1459
    • Lockyer, L.1    Heathcote, E.2    Dawson, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.