-
1
-
-
84969900554
-
Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease
-
Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, Hayes JD. 2015. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med 88:108-146. https://doi.org/10.1016/j.freeradbiomed.2015.06.021.
-
(2015)
Free Radic Biol Med
, vol.88
, pp. 108-146
-
-
Tebay, L.E.1
Robertson, H.2
Durant, S.T.3
Vitale, S.R.4
Penning, T.M.5
Dinkova-Kostova, A.T.6
Hayes, J.D.7
-
2
-
-
0029043995
-
Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins
-
Itoh K, Igarashi K, Hayashi N, Nishizawa M, Yamamoto M. 1995. Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins. Mol Cell Biol 15:4184-4193. https://doi.org/10.1128/MCB.15.8.4184.
-
(1995)
Mol Cell Biol
, vol.15
, pp. 4184-4193
-
-
Itoh, K.1
Igarashi, K.2
Hayashi, N.3
Nishizawa, M.4
Yamamoto, M.5
-
3
-
-
0032953192
-
Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain
-
Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M. 1999. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13:76-86. https://doi.org/10.1101/gad.13.1.76.
-
(1999)
Genes Dev
, vol.13
, pp. 76-86
-
-
Itoh, K.1
Wakabayashi, N.2
Katoh, Y.3
Ishii, T.4
Igarashi, K.5
Engel, J.D.6
Yamamoto, M.7
-
4
-
-
3543008924
-
Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2
-
Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M. 2004. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24:7130-7139. https://doi.org/10.1128/MCB.24.16.7130-7139.2004.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 7130-7139
-
-
Kobayashi, A.1
Kang, M.I.2
Okawa, H.3
Ohtsuji, M.4
Zenke, Y.5
Chiba, T.6
Igarashi, K.7
Yamamoto, M.8
-
5
-
-
10044228504
-
Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex
-
Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M. 2004. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24:10941-10953. https://doi.org/10.1128/MCB.24.24.10941-10953.2004.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 10941-10953
-
-
Zhang, D.D.1
Lo, S.C.2
Cross, J.V.3
Templeton, D.J.4
Hannink, M.5
-
6
-
-
0037015035
-
Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants
-
Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, Talalay P. 2002. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A 99:11908-11913. https://doi.org/10.1073/pnas.172398899.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 11908-11913
-
-
Dinkova-Kostova, A.T.1
Holtzclaw, W.D.2
Cole, R.N.3
Itoh, K.4
Wakabayashi, N.5
Katoh, Y.6
Yamamoto, M.7
Talalay, P.8
-
7
-
-
0242580049
-
Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress
-
Zhang DD, Hannink M. 2003. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 23:8137-8151. https://doi.org/10.1128/MCB.23.22.8137-8151.2003.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 8137-8151
-
-
Zhang, D.D.1
Hannink, M.2
-
8
-
-
84884338770
-
Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex
-
Baird L, Lleres D, Swift S, Dinkova-Kostova AT. 2013. Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex. Proc Natl Acad Sci U S A 110:15259-15264. https://doi.org/10.1073/pnas.1305687110.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 15259-15264
-
-
Baird, L.1
Lleres, D.2
Swift, S.3
Dinkova-Kostova, A.T.4
-
9
-
-
0031577292
-
An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements
-
Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313-322. https://doi.org/10.1006/bbrc.1997.6943.
-
(1997)
Biochem Biophys Res Commun
, vol.236
, pp. 313-322
-
-
Itoh, K.1
Chiba, T.2
Takahashi, S.3
Ishii, T.4
Igarashi, K.5
Katoh, Y.6
Oyake, T.7
Hayashi, N.8
Satoh, K.9
Hatayama, I.10
Yamamoto, M.11
Nabeshima, Y.12
-
10
-
-
84964238183
-
Small Maf proteins (MafF, MafG, MafK): history, structure and function
-
Katsuoka F, Yamamoto M. 2016. Small Maf proteins (MafF, MafG, MafK): history, structure and function. Gene 586:197-205. https://doi.org/10.1016/j.gene.2016.03.058.
-
(2016)
Gene
, vol.586
, pp. 197-205
-
-
Katsuoka, F.1
Yamamoto, M.2
-
11
-
-
84969983910
-
The emerging role of Nrf2 in mitochondrial function
-
Dinkova-Kostova AT, Abramov AY. 2015. The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med 88:179-188. https://doi.org/10.1016/j.freeradbiomed.2015.04.036.
-
(2015)
Free Radic Biol Med
, vol.88
, pp. 179-188
-
-
Dinkova-Kostova, A.T.1
Abramov, A.Y.2
-
12
-
-
84938694329
-
Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention
-
Harder B, Jiang T, Wu T, Tao S, Rojo de la Vega M, Tian W, Chapman E, Zhang DD. 2015. Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention. Biochem Soc Trans 43:680-686. https://doi.org/10.1042/BST20150020.
-
(2015)
Biochem Soc Trans
, vol.43
, pp. 680-686
-
-
Harder, B.1
Jiang, T.2
Wu, T.3
Tao, S.4
Rojo de la Vega, M.5
Tian, W.6
Chapman, E.7
Zhang, D.D.8
-
13
-
-
33644856080
-
The double-edged sword of Nrf2: subversion of redox homeostasis during the evolution of cancer
-
Hayes JD, McMahon M. 2006. The double-edged sword of Nrf2: subversion of redox homeostasis during the evolution of cancer. Mol Cell 21:732-734. https://doi.org/10.1016/j.molcel.2006.03.004.
-
(2006)
Mol Cell
, vol.21
, pp. 732-734
-
-
Hayes, J.D.1
McMahon, M.2
-
14
-
-
46949099638
-
Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2
-
Wang XJ, Sun Z, Villeneuve NF, Zhang S, Zhao F, Li Y, Chen W, Yi X, Zheng W, Wondrak GT, Wong PK, Zhang DD. 2008. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29:1235-1243. https://doi.org/10.1093/carcin/bgn095.
-
(2008)
Carcinogenesis
, vol.29
, pp. 1235-1243
-
-
Wang, X.J.1
Sun, Z.2
Villeneuve, N.F.3
Zhang, S.4
Zhao, F.5
Li, Y.6
Chen, W.7
Yi, X.8
Zheng, W.9
Wondrak, G.T.10
Wong, P.K.11
Zhang, D.D.12
-
15
-
-
56649083534
-
Dual roles of Nrf2 in cancer
-
Lau A, Villeneuve NF, Sun Z, Wong PK, Zhang DD. 2008. Dual roles of Nrf2 in cancer. Pharmacol Res 58:262-270. https://doi.org/10.1016/j.phrs.2008.09.003.
-
(2008)
Pharmacol Res
, vol.58
, pp. 262-270
-
-
Lau, A.1
Villeneuve, N.F.2
Sun, Z.3
Wong, P.K.4
Zhang, D.D.5
-
16
-
-
77955660663
-
Diverse somatic mutation patterns and pathway alterations in human cancers
-
Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM, Yue P, Haverty PM, Bourgon R, Zheng J, Moorhead M, Chaudhuri S, Tomsho LP, Peters BA, Pujara K, Cordes S, Davis DP, Carlton VE, Yuan W, Li L, Wang W, Eigenbrot C, Kaminker JS, Eberhard DA, Waring P, Schuster SC, Modrusan Z, Zhang Z, Stokoe D, de Sauvage FJ, Faham M, Seshagiri S. 2010 Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466:869-873. https://doi.org/10.1038/nature09208.
-
(2010)
Nature
, vol.466
, pp. 869-873
-
-
Kan, Z.1
Jaiswal, B.S.2
Stinson, J.3
Janakiraman, V.4
Bhatt, D.5
Stern, H.M.6
Yue, P.7
Haverty, P.M.8
Bourgon, R.9
Zheng, J.10
Moorhead, M.11
Chaudhuri, S.12
Tomsho, L.P.13
Peters, B.A.14
Pujara, K.15
Cordes, S.16
Davis, D.P.17
Carlton, V.E.18
Yuan, W.19
Li, L.20
Wang, W.21
Eigenbrot, C.22
Kaminker, J.S.23
Eberhard, D.A.24
Waring, P.25
Schuster, S.C.26
Modrusan, Z.27
Zhang, Z.28
Stokoe, D.29
de Sauvage, F.J.30
Faham, M.31
Seshagiri, S.32
more..
-
17
-
-
84970954340
-
p62 links autophagy and Nrf2 signaling
-
Jiang T, Harder B, Rojo de la Vega M, Wong PK, Chapman E, Zhang DD. 2015 p62 links autophagy and Nrf2 signaling. Free Radic Biol Med 88:199-204. https://doi.org/10.1016/j.freeradbiomed.2015.06.014.
-
(2015)
Free Radic Biol Med
, vol.88
, pp. 199-204
-
-
Jiang, T.1
Harder, B.2
Rojo de la Vega, M.3
Wong, P.K.4
Chapman, E.5
Zhang, D.D.6
-
18
-
-
77953366801
-
A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62
-
Lau A, Wang XJ, Zhao F, Villeneuve NF, Wu T, Jiang T, Sun Z, White E, Zhang DD. 2010. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol 30:3275-3285. https://doi.org/10.1128/MCB.00248-10.
-
(2010)
Mol Cell Biol
, vol.30
, pp. 3275-3285
-
-
Lau, A.1
Wang, X.J.2
Zhao, F.3
Villeneuve, N.F.4
Wu, T.5
Jiang, T.6
Sun, Z.7
White, E.8
Zhang, D.D.9
-
19
-
-
77649265091
-
The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
-
Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou YS, Ueno I, Sakamoto A, Tong KI, Kim M, Nishito Y, Iemura S, Natsume T, Ueno T, Kominami E, Motohashi H, Tanaka K, Yamamoto M. 2010 The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12:213-223. https://doi.org/10.1038/ncb2021.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 213-223
-
-
Komatsu, M.1
Kurokawa, H.2
Waguri, S.3
Taguchi, K.4
Kobayashi, A.5
Ichimura, Y.6
Sou, Y.S.7
Ueno, I.8
Sakamoto, A.9
Tong, K.I.10
Kim, M.11
Nishito, Y.12
Iemura, S.13
Natsume, T.14
Ueno, T.15
Kominami, E.16
Motohashi, H.17
Tanaka, K.18
Yamamoto, M.19
-
20
-
-
77954599053
-
p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription
-
Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A, McMahon M, Hayes JD, Johansen T. 2010. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285:22576-22591. https://doi.org/10.1074/jbc.M110.118976.
-
(2010)
J Biol Chem
, vol.285
, pp. 22576-22591
-
-
Jain, A.1
Lamark, T.2
Sjottem, E.3
Larsen, K.B.4
Awuh, J.A.5
Overvatn, A.6
McMahon, M.7
Hayes, J.D.8
Johansen, T.9
-
21
-
-
34548772935
-
Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2
-
Sun Z, Zhang S, Chan JY, Zhang DD. 2007. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2. Mol Cell Biol 27:6334-6349. https://doi.org/10.1128/MCB.00630-07.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 6334-6349
-
-
Sun, Z.1
Zhang, S.2
Chan, J.Y.3
Zhang, D.D.4
-
22
-
-
79955442831
-
KPNA6 (importin +7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response
-
Sun Z, Wu T, Zhao F, Lau A, Birch CM, Zhang DD. 2011. KPNA6 (importin +7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response. Mol Cell Biol 31:1800-1811. https://doi.org/10.1128/MCB.05036-11.
-
(2011)
Mol Cell Biol
, vol.31
, pp. 1800-1811
-
-
Sun, Z.1
Wu, T.2
Zhao, F.3
Lau, A.4
Birch, C.M.5
Zhang, D.D.6
-
23
-
-
79955492012
-
Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells
-
Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, Watanabe S, Ando J, Iwadate M, Yamamoto M, Lee MS, Tanaka K, Komatsu M. 2011. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 193:275-284. https://doi.org/10.1083/jcb.201102031.
-
(2011)
J Cell Biol
, vol.193
, pp. 275-284
-
-
Inami, Y.1
Waguri, S.2
Sakamoto, A.3
Kouno, T.4
Nakada, K.5
Hino, O.6
Watanabe, S.7
Ando, J.8
Iwadate, M.9
Yamamoto, M.10
Lee, M.S.11
Tanaka, K.12
Komatsu, M.13
-
24
-
-
84878963658
-
Arsenic inhibits autophagic flux, activating the Nrf2-Keap1 pathway in a p62-dependent manner
-
Lau A, Zheng Y, Tao S, Wang H, Whitman SA, White E, Zhang DD. 2013. Arsenic inhibits autophagic flux, activating the Nrf2-Keap1 pathway in a p62-dependent manner. Mol Cell Biol 33:2436-2446. https://doi.org/10.1128/MCB.01748-12.
-
(2013)
Mol Cell Biol
, vol.33
, pp. 2436-2446
-
-
Lau, A.1
Zheng, Y.2
Tao, S.3
Wang, H.4
Whitman, S.A.5
White, E.6
Zhang, D.D.7
-
25
-
-
84906315540
-
Nrf2 promotes the development of fibrosis and tumorigenesis in mice with defective hepatic autophagy
-
Ni HM, Woolbright BL, Williams J, Copple B, Cui W, Luyendyk JP, Jaeschke H, Ding WX. 2014. Nrf2 promotes the development of fibrosis and tumorigenesis in mice with defective hepatic autophagy. J Hepatol 61:617-625. https://doi.org/10.1016/j.jhep.2014.04.043.
-
(2014)
J Hepatol
, vol.61
, pp. 617-625
-
-
Ni, H.M.1
Woolbright, B.L.2
Williams, J.3
Copple, B.4
Cui, W.5
Luyendyk, J.P.6
Jaeschke, H.7
Ding, W.X.8
-
26
-
-
78049495046
-
Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: a potential role for protein aggregation in autophagic substrate selection
-
Riley BE, Kaiser SE, Shaler TA, Ng AC, Hara T, Hipp MS, Lage K, Xavier RJ, Ryu KY, Taguchi K, Yamamoto M, Tanaka K, Mizushima N, Komatsu M, Kopito RR. 2010. Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: a potential role for protein aggregation in autophagic substrate selection. J Cell Biol 191:537-552. https://doi.org/10.1083/jcb.201005012.
-
(2010)
J Cell Biol
, vol.191
, pp. 537-552
-
-
Riley, B.E.1
Kaiser, S.E.2
Shaler, T.A.3
Ng, A.C.4
Hara, T.5
Hipp, M.S.6
Lage, K.7
Xavier, R.J.8
Ryu, K.Y.9
Taguchi, K.10
Yamamoto, M.11
Tanaka, K.12
Mizushima, N.13
Komatsu, M.14
Kopito, R.R.15
-
27
-
-
84856474838
-
Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system
-
Meyer H, Bug M, Bremer S. 2012. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol 14:117-123. https://doi.org/10.1038/ncb2407.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 117-123
-
-
Meyer, H.1
Bug, M.2
Bremer, S.3
-
28
-
-
84963617847
-
Structure and function of the AAA+ ATPase p97/Cdc48p
-
Xia D, Tang WK, Ye Y. 2016. Structure and function of the AAA+ ATPase p97/Cdc48p. Gene 583:64-77. https://doi.org/10.1016/j.gene.2016.02.042.
-
(2016)
Gene
, vol.583
, pp. 64-77
-
-
Xia, D.1
Tang, W.K.2
Ye, Y.3
-
29
-
-
0035977095
-
Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone
-
Rape M, Hoppe T, Gorr I, Kalocay M, Richly H, Jentsch S. 2001. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107:667-677. https://doi.org/10.1016/S0092-8674(01)00595-5.
-
(2001)
Cell
, vol.107
, pp. 667-677
-
-
Rape, M.1
Hoppe, T.2
Gorr, I.3
Kalocay, M.4
Richly, H.5
Jentsch, S.6
-
30
-
-
77952533111
-
VCP/p97 is essential for maturation of ubiquitincontaining autophagosomes and this function is impaired by mutations that cause IBMPFD
-
Tresse E, Salomons FA, Vesa J, Bott LC, Kimonis V, Yao TP, Dantuma NP, Taylor JP. 2010. VCP/p97 is essential for maturation of ubiquitincontaining autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 6:217-227. https://doi.org/10.4161/auto.6.2.11014.
-
(2010)
Autophagy
, vol.6
, pp. 217-227
-
-
Tresse, E.1
Salomons, F.A.2
Vesa, J.3
Bott, L.C.4
Kimonis, V.5
Yao, T.P.6
Dantuma, N.P.7
Taylor, J.P.8
-
31
-
-
84896393480
-
Ubiquitin signals proteolysisindependent stripping of transcription factors
-
Ndoja A, Cohen RE, Yao T. 2014. Ubiquitin signals proteolysisindependent stripping of transcription factors. Mol Cell 53:893-903. https://doi.org/10.1016/j.molcel.2014.02.002.
-
(2014)
Mol Cell
, vol.53
, pp. 893-903
-
-
Ndoja, A.1
Cohen, R.E.2
Yao, T.3
-
32
-
-
84904990897
-
Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97
-
Sha Z, Goldberg AL. 2014. Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97. Curr Biol 24:1573-1583. https://doi.org/10.1016/j.cub.2014.06.004.
-
(2014)
Curr Biol
, vol.24
, pp. 1573-1583
-
-
Sha, Z.1
Goldberg, A.L.2
-
33
-
-
84939170347
-
The transitional endoplasmic reticulum ATPase p97 regulates the alternative nuclear factor NF-kappaB signaling via partial degradation of the NF-kappaB subunit p100
-
Zhang Z, Wang Y, Li C, Shi Z, Hao Q, Wang W, Song X, Zhao Y, Jiao S, Zhou Z. 2015. The transitional endoplasmic reticulum ATPase p97 regulates the alternative nuclear factor NF-kappaB signaling via partial degradation of the NF-kappaB subunit p100. J Biol Chem 290: 19558-19568. https://doi.org/10.1074/jbc.M114.630061.
-
(2015)
J Biol Chem
, vol.290
, pp. 19558-19568
-
-
Zhang, Z.1
Wang, Y.2
Li, C.3
Shi, Z.4
Hao, Q.5
Wang, W.6
Song, X.7
Zhao, Y.8
Jiao, S.9
Zhou, Z.10
-
34
-
-
84953268096
-
Discovery of a first-in-class, potent, selective, and orally bioavailable inhibitor of the p97 AAA ATPase (CB-5083)
-
Zhou HJ, Wang J, Yao B, Wong S, Djakovic S, Kumar B, Rice J, Valle E, Soriano F, Menon MK, Madriaga A, Kiss von Soly S, Kumar A, Parlati F, Yakes FM, Shawver L, Le Moigne R, Anderson DJ, Rolfe M, Wustrow D. 2015 Discovery of a first-in-class, potent, selective, and orally bioavailable inhibitor of the p97 AAA ATPase (CB-5083). J Med Chem 58: 9480-9497. https://doi.org/10.1021/acs.jmedchem.5b01346.
-
(2015)
J Med Chem
, vol.58
, pp. 9480-9497
-
-
Zhou, H.J.1
Wang, J.2
Yao, B.3
Wong, S.4
Djakovic, S.5
Kumar, B.6
Rice, J.7
Valle, E.8
Soriano, F.9
Menon, M.K.10
Madriaga, A.11
Kiss von Soly, S.12
Kumar, A.13
Parlati, F.14
Yakes, F.M.15
Shawver, L.16
Le Moigne, R.17
Anderson, D.J.18
Rolfe, M.19
Wustrow, D.20
more..
-
35
-
-
84946545972
-
Targeting the AAA ATPase p97 as an approach to treat cancer through disruption of protein homeostasis
-
Anderson DJ, Le Moigne R, Djakovic S, Kumar B, Rice J, Wong S, Wang J, Yao B, Valle E, Kiss von Soly S, Madriaga A, Soriano F, Menon MK, Wu ZY, Kampmann M, Chen Y, Weissman JS, Aftab BT, Yakes FM, Shawver L, Zhou HJ, Wustrow D, Rolfe M. 2015. Targeting the AAA ATPase p97 as an approach to treat cancer through disruption of protein homeostasis. Cancer Cell 28:653-665. https://doi.org/10.1016/j.ccell.2015.10.002.
-
(2015)
Cancer Cell
, vol.28
, pp. 653-665
-
-
Anderson, D.J.1
Le Moigne, R.2
Djakovic, S.3
Kumar, B.4
Rice, J.5
Wong, S.6
Wang, J.7
Yao, B.8
Valle, E.9
Kiss von Soly, S.10
Madriaga, A.11
Soriano, F.12
Menon, M.K.13
Wu, Z.Y.14
Kampmann, M.15
Chen, Y.16
Weissman, J.S.17
Aftab, B.T.18
Yakes, F.M.19
Shawver, L.20
Zhou, H.J.21
Wustrow, D.22
Rolfe, M.23
more..
-
36
-
-
11844263929
-
A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting
-
Richly H, Rape M, Braun S, Rumpf S, Hoege C, Jentsch S. 2005. A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120:73-84. https://doi.org/10.1016/j.cell.2004.11.013.
-
(2005)
Cell
, vol.120
, pp. 73-84
-
-
Richly, H.1
Rape, M.2
Braun, S.3
Rumpf, S.4
Hoege, C.5
Jentsch, S.6
-
37
-
-
84860120476
-
UBXN7 docks on neddylated cullin complexes using its UIM motif and causes HIF1alpha accumulation
-
Bandau S, Knebel A, Gage ZO, Wood NT, Alexandru G. 2012. UBXN7 docks on neddylated cullin complexes using its UIM motif and causes HIF1alpha accumulation. BMC Biol 10:36. https://doi.org/10.1186/1741-7007-10-36.
-
(2012)
BMC Biol
, vol.10
, pp. 36
-
-
Bandau, S.1
Knebel, A.2
Gage, Z.O.3
Wood, N.T.4
Alexandru, G.5
-
38
-
-
84860773994
-
NEDD8 links cullin-RING ubiquitin ligase function to the p97 pathway
-
den Besten W, Verma R, Kleiger G, Oania RS, Deshaies RJ. 2012. NEDD8 links cullin-RING ubiquitin ligase function to the p97 pathway. Nat Struct Mol Biol 19:511-516. https://doi.org/10.1038/nsmb.2269.
-
(2012)
Nat Struct Mol Biol
, vol.19
, pp. 511-516
-
-
den Besten, W.1
Verma, R.2
Kleiger, G.3
Oania, R.S.4
Deshaies, R.J.5
-
39
-
-
31544441350
-
Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals
-
Surh YJ, Kundu JK, Na HK, Lee JS. 2005. Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr 135:2993S-3001S.
-
(2005)
J Nutr
, vol.135
, pp. 2993S-3001S
-
-
Surh, Y.J.1
Kundu, J.K.2
Na, H.K.3
Lee, J.S.4
-
40
-
-
33847050801
-
Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway
-
Kensler TW, Wakabayashi N, Biswal S. 2007. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89-116. https://doi.org/10.1146/annurev.pharmtox.46.120604.141046.
-
(2007)
Annu Rev Pharmacol Toxicol
, vol.47
, pp. 89-116
-
-
Kensler, T.W.1
Wakabayashi, N.2
Biswal, S.3
-
41
-
-
84874459340
-
A perspective on dietary phytochemicals and cancer chemoprevention: oxidative stress, nrf2, and epigenomics
-
Su ZY, Shu L, Khor TO, Lee JH, Fuentes F, Kong AN. 2013. A perspective on dietary phytochemicals and cancer chemoprevention: oxidative stress, nrf2, and epigenomics. Top Curr Chem 329:133-162. https://doi.org/10.1007/128_2012_340.
-
(2013)
Top Curr Chem
, vol.329
, pp. 133-162
-
-
Su, Z.Y.1
Shu, L.2
Khor, T.O.3
Lee, J.H.4
Fuentes, F.5
Kong, A.N.6
-
42
-
-
84874489560
-
Keap1-nrf2 signaling: a target for cancer prevention by sulforaphane
-
Kensler TW, Egner PA, Agyeman AS, Visvanathan K, Groopman JD, Chen JG, Chen TY, Fahey JW, Talalay P. 2013. Keap1-nrf2 signaling: a target for cancer prevention by sulforaphane. Top Curr Chem 329:163-177. https://doi.org/10.1007/128_2012_339.
-
(2013)
Top Curr Chem
, vol.329
, pp. 163-177
-
-
Kensler, T.W.1
Egner, P.A.2
Agyeman, A.S.3
Visvanathan, K.4
Groopman, J.D.5
Chen, J.G.6
Chen, T.Y.7
Fahey, J.W.8
Talalay, P.9
-
43
-
-
84885944468
-
The emerging role of the Nrf2-Keap1 signaling pathway in cancer
-
Jaramillo MC, Zhang DD. 2013. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev 27:2179-2191. https://doi.org/10.1101/gad.225680.113.
-
(2013)
Genes Dev
, vol.27
, pp. 2179-2191
-
-
Jaramillo, M.C.1
Zhang, D.D.2
-
44
-
-
54249087596
-
RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy
-
Singh A, Boldin-Adamsky S, Thimmulappa RK, Rath SK, Ashush H, Coulter J, Blackford A, Goodman SN, Bunz F, Watson WH, Gabrielson E, Feinstein E, Biswal S. 2008. RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res 68:7975-7984. https://doi.org/10.1158/0008-5472.CAN-08-1401.
-
(2008)
Cancer Res
, vol.68
, pp. 7975-7984
-
-
Singh, A.1
Boldin-Adamsky, S.2
Thimmulappa, R.K.3
Rath, S.K.4
Ashush, H.5
Coulter, J.6
Blackford, A.7
Goodman, S.N.8
Bunz, F.9
Watson, W.H.10
Gabrielson, E.11
Feinstein, E.12
Biswal, S.13
-
45
-
-
79952122321
-
Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism
-
Ren D, Villeneuve NF, Jiang T, Wu T, Lau A, Toppin HA, Zhang DD. 2011. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc Natl Acad Sci U S A 108:1433-1438. https://doi.org/10.1073/pnas.1014275108.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 1433-1438
-
-
Ren, D.1
Villeneuve, N.F.2
Jiang, T.3
Wu, T.4
Lau, A.5
Toppin, H.A.6
Zhang, D.D.7
-
46
-
-
33749236210
-
Diverse functions with a common regulator: ubiquitin takes command of an AAA ATPase
-
Ye Y. 2006. Diverse functions with a common regulator: ubiquitin takes command of an AAA ATPase. J Struct Biol 156:29-40. https://doi.org/10.1016/j.jsb.2006.01.005.
-
(2006)
J Struct Biol
, vol.156
, pp. 29-40
-
-
Ye, Y.1
-
47
-
-
52649138958
-
UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover
-
Alexandru G, Graumann J, Smith GT, Kolawa NJ, Fang R, Deshaies RJ. 2008 UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover. Cell 134:804-816. https://doi.org/10.1016/j.cell.2008.06.048.
-
(2008)
Cell
, vol.134
, pp. 804-816
-
-
Alexandru, G.1
Graumann, J.2
Smith, G.T.3
Kolawa, N.J.4
Fang, R.5
Deshaies, R.J.6
-
48
-
-
79952256187
-
SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner
-
Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, Cuadrado A. 2011. SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol 31:1121-1133. https://doi.org/10.1128/MCB.01204-10.
-
(2011)
Mol Cell Biol
, vol.31
, pp. 1121-1133
-
-
Rada, P.1
Rojo, A.I.2
Chowdhry, S.3
McMahon, M.4
Hayes, J.D.5
Cuadrado, A.6
-
49
-
-
84881476323
-
Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity
-
Chowdhry S, Zhang Y, McMahon M, Sutherland C, Cuadrado A, Hayes JD. 2013 Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene 32:3765-3781. https://doi.org/10.1038/onc.2012.388.
-
(2013)
Oncogene
, vol.32
, pp. 3765-3781
-
-
Chowdhry, S.1
Zhang, Y.2
McMahon, M.3
Sutherland, C.4
Cuadrado, A.5
Hayes, J.D.6
-
50
-
-
84898874270
-
Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis
-
Wu T, Zhao F, Gao B, Tan C, Yagishita N, Nakajima T, Wong PK, Chapman E, Fang D, Zhang DD. 2014. Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis. Genes Dev 28:708-722. https://doi.org/10.1101/gad.238246.114.
-
(2014)
Genes Dev
, vol.28
, pp. 708-722
-
-
Wu, T.1
Zhao, F.2
Gao, B.3
Tan, C.4
Yagishita, N.5
Nakajima, T.6
Wong, P.K.7
Chapman, E.8
Fang, D.9
Zhang, D.D.10
-
51
-
-
1842483843
-
Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein
-
Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, Pestronk A, Whyte MP, Kimonis VE. 2004. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36:377-381. https://doi.org/10.1038/ng1332.
-
(2004)
Nat Genet
, vol.36
, pp. 377-381
-
-
Watts, G.D.1
Wymer, J.2
Kovach, M.J.3
Mehta, S.G.4
Mumm, S.5
Darvish, D.6
Pestronk, A.7
Whyte, M.P.8
Kimonis, V.E.9
-
52
-
-
79951625225
-
The complexities of p97 function in health and disease
-
Chapman E, Fry AN, Kang M. 2011. The complexities of p97 function in health and disease. Mol Biosyst 7:700-710. https://doi.org/10.1039/C0MB00176G.
-
(2011)
Mol Biosyst
, vol.7
, pp. 700-710
-
-
Chapman, E.1
Fry, A.N.2
Kang, M.3
-
53
-
-
84969944644
-
Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome activity and show complex proteomic changes, in particular in redox and energy metabolism
-
Soriano GP, Besse L, Li N, Kraus M, Besse A, Meeuwenoord N, Bader J, Everts B, den Dulk H, Overkleeft HS, Florea BI, Driessen C. 2016. Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome activity and show complex proteomic changes, in particular in redox and energy metabolism. Leukemia 30:2198-2207. https://doi.org/10.1038/leu.2016.102.
-
(2016)
Leukemia
, vol.30
, pp. 2198-2207
-
-
Soriano, G.P.1
Besse, L.2
Li, N.3
Kraus, M.4
Besse, A.5
Meeuwenoord, N.6
Bader, J.7
Everts, B.8
den Dulk, H.9
Overkleeft, H.S.10
Florea, B.I.11
Driessen, C.12
-
54
-
-
84927610137
-
Regulation of the expression of renal drug transporters in KEAP1-knockdown human tubular cells
-
Jeong HS, Ryoo IG, Kwak MK. 2015. Regulation of the expression of renal drug transporters in KEAP1-knockdown human tubular cells. Toxicol In Vitro 29:884-892. https://doi.org/10.1016/j.tiv.2015.03.013.
-
(2015)
Toxicol In Vitro
, vol.29
, pp. 884-892
-
-
Jeong, H.S.1
Ryoo, I.G.2
Kwak, M.K.3
-
55
-
-
84887010498
-
Genome engineering using the CRISPR-Cas9 system
-
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. 2013. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281-2308. https://doi.org/10.1038/nprot.2013.143.
-
(2013)
Nat Protoc
, vol.8
, pp. 2281-2308
-
-
Ran, F.A.1
Hsu, P.D.2
Wright, J.3
Agarwala, V.4
Scott, D.A.5
Zhang, F.6
-
56
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380-1389. https://doi.org/10.1016/j.cell.2013.08.021.
-
(2013)
Cell
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
Hsu, P.D.2
Lin, C.Y.3
Gootenberg, J.S.4
Konermann, S.5
Trevino, A.E.6
Scott, D.A.7
Inoue, A.8
Matoba, S.9
Zhang, Y.10
Zhang, F.11
|