메뉴 건너뛰기




Volumn 26, Issue 11, 2012, Pages 3345-3365

A Practical Guide to Discrete Wavelet Decomposition of Hydrologic Time Series

Author keywords

Discrete wavelet decomposition; Hydrologic series analysis; Noise; Reference energy function; Significance testing; Uncertainty

Indexed keywords

DISCRETE WAVELET DECOMPOSITION; NOISE; REFERENCE ENERGY; SERIES ANALYSIS; SIGNIFICANCE TESTING; UNCERTAINTY;

EID: 84865525837     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-012-0075-4     Document Type: Article
Times cited : (94)

References (56)
  • 1
    • 0001384773 scopus 로고    scopus 로고
    • Time-frequency analysis of electroencephalogram series-III, Wavelet packets and information cost function
    • Blanco S, Figliola A, Quiroga RQ, Rosso OA, Serrano E (1998) Time-frequency analysis of electroencephalogram series-III, Wavelet packets and information cost function. Phys Rev E57(1): 932-940.
    • (1998) Phys Rev , vol.E57 , Issue.1 , pp. 932-940
    • Blanco, S.1    Figliola, A.2    Quiroga, R.Q.3    Rosso, O.A.4    Serrano, E.5
  • 3
    • 32644447602 scopus 로고    scopus 로고
    • Wavelet-based signal de-noising via simple singularities approximation
    • Bruni V, Vitulano D (2006) Wavelet-based signal de-noising via simple singularities approximation. Signal Process 86: 859-876.
    • (2006) Signal Process , vol.86 , pp. 859-876
    • Bruni, V.1    Vitulano, D.2
  • 4
    • 0036592373 scopus 로고    scopus 로고
    • Determination of changes in streamflow variance by means of a wavelet-based test
    • Cahill AT (2002) Determination of changes in streamflow variance by means of a wavelet-based test. Water Resour Res 38(6): W01065.
    • (2002) Water Resour Res , vol.38 , Issue.6
    • Cahill, A.T.1
  • 5
    • 33244463765 scopus 로고    scopus 로고
    • Seasonal trends of climate change in the Yangtze Delta and its adjacent regions and their formation mechanisms
    • Chen LX, Li WL, Zhu WQ, Zhou XJ, Zhou ZJ, Liu HL (2006) Seasonal trends of climate change in the Yangtze Delta and its adjacent regions and their formation mechanisms. Meteorol Atmos Phys 92(1-2): 11-23.
    • (2006) Meteorol Atmos Phys , vol.92 , Issue.1-2 , pp. 11-23
    • Chen, L.X.1    Li, W.L.2    Zhu, W.Q.3    Zhou, X.J.4    Zhou, Z.J.5    Liu, H.L.6
  • 6
    • 0037411348 scopus 로고    scopus 로고
    • Contour-based handwritten numeral recognition using multiwavelets and neural networks
    • Chen GY, Bui TD, Krzyzak A (2003) Contour-based handwritten numeral recognition using multiwavelets and neural networks. Pattern Recognition 36(7): 1597-1604.
    • (2003) Pattern Recognition , vol.36 , Issue.7 , pp. 1597-1604
    • Chen, G.Y.1    Bui, T.D.2    Krzyzak, A.3
  • 7
    • 79955018148 scopus 로고    scopus 로고
    • A threshold based wavelet de-noising method for hydrological data modelling
    • Chou CM (2011) A threshold based wavelet de-noising method for hydrological data modelling. Water Resour Manage 25: 1809-1830.
    • (2011) Water Resour Manage , vol.25 , pp. 1809-1830
    • Chou, C.M.1
  • 9
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly P, Anctil F, Bobee B (2000) Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J Hydrol 230(3-4): 244-257.
    • (2000) J Hydrol , vol.230 , Issue.3-4 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 11
    • 0029307534 scopus 로고
    • De-noising by soft-thresholding
    • Donoho DH (1995) De-noising by soft-thresholding. IEEE T Inform Theory 41(3): 613-617.
    • (1995) IEEE T Inform Theory , vol.41 , Issue.3 , pp. 613-617
    • Donoho, D.H.1
  • 12
    • 0037196231 scopus 로고    scopus 로고
    • Noise reduction in chaotic hydrologic time series: facts, and doubts
    • Elshorbagy A, Simonovic SP, Panu US (2002) Noise reduction in chaotic hydrologic time series: facts, and doubts. J Hydrol 256(3-4): 147-165.
    • (2002) J Hydrol , vol.256 , Issue.3-4 , pp. 147-165
    • Elshorbagy, A.1    Simonovic, S.P.2    Panu, U.S.3
  • 14
    • 77949579448 scopus 로고    scopus 로고
    • Time series and stochastic analyses to study the hydrodynamic characteristics of karstic aquifers
    • Garfias-Soliz J, Llanos-Acebo H, Martel R (2010) Time series and stochastic analyses to study the hydrodynamic characteristics of karstic aquifers. Hydrol Process 24(3): 300-316.
    • (2010) Hydrol Process , vol.24 , Issue.3 , pp. 300-316
    • Garfias-Soliz, J.1    Llanos-Acebo, H.2    Martel, R.3
  • 15
    • 0035369051 scopus 로고    scopus 로고
    • Asymptotic behavior of the minimum mean squared error threshold for noisy wavelet coefficients of piecewise smooth signals
    • Jansen M, Bultheel A (2001) Asymptotic behavior of the minimum mean squared error threshold for noisy wavelet coefficients of piecewise smooth signals. IEEE Trans Signal Process 49(6): 1113-1118.
    • (2001) IEEE Trans Signal Process , vol.49 , Issue.6 , pp. 1113-1118
    • Jansen, M.1    Bultheel, A.2
  • 16
    • 0035868112 scopus 로고    scopus 로고
    • Estimation of speech components by AFC analysis in a noisy environment
    • Kazama M, Tohyama M (2001) Estimation of speech components by AFC analysis in a noisy environment. J Sound Vib 241: 41-52.
    • (2001) J Sound Vib , vol.241 , pp. 41-52
    • Kazama, M.1    Tohyama, M.2
  • 17
    • 0036991048 scopus 로고    scopus 로고
    • A wavelet transform with point-symmetric extension at tile boundaries
    • Kharitonenko I, Zhang X, Twelves S (2002) A wavelet transform with point-symmetric extension at tile boundaries. IEEE Trans Image Process 11(12): 1357-1364.
    • (2002) IEEE Trans Image Process , vol.11 , Issue.12 , pp. 1357-1364
    • Kharitonenko, I.1    Zhang, X.2    Twelves, S.3
  • 18
    • 67650333111 scopus 로고    scopus 로고
    • Neural network and wavelet conjunction model for modeling monthly level fluctuations of Van Lake in Turkey
    • Kisi O (2009) Neural network and wavelet conjunction model for modeling monthly level fluctuations of van Lake in Turkey. Hydrol Process 23(14): 2081-2092.
    • (2009) Hydrol Process , vol.23 , Issue.14 , pp. 2081-2092
    • Kisi, O.1
  • 19
    • 28444499418 scopus 로고    scopus 로고
    • Recent advances in wavelet analyses: Part 1. A review of concepts
    • Labat D (2005) Recent advances in wavelet analyses: Part 1. A review of concepts. J Hydrol 314: 275-288.
    • (2005) J Hydrol , vol.314 , pp. 275-288
    • Labat, D.1
  • 20
    • 0034610444 scopus 로고    scopus 로고
    • Rainfall-runoff relations for karstic springs. Part II: Continuous wavelet and discrete orthogonal multiresolution analyses
    • Labat D, Ababou R, Mangin A (2000) Rainfall-runoff relations for karstic springs. Part II: Continuous wavelet and discrete orthogonal multiresolution analyses. J Hydrol 238: 149-178.
    • (2000) J Hydrol , vol.238 , pp. 149-178
    • Labat, D.1    Ababou, R.2    Mangin, A.3
  • 21
    • 78651469027 scopus 로고    scopus 로고
    • Prediction of inrush water of mine with pore water yield based on BP artificial neural network
    • (in Chinese with English abstract)
    • Ling CP, Sun YJ, Yang LH, Jiang S, Shao FY (2007) Prediction of inrush water of mine with pore water yield based on BP artificial neural network. Hydrogeol Eng Geol 34(5): 55-58 (in Chinese with English abstract).
    • (2007) Hydrogeol Eng Geol , vol.34 , Issue.5 , pp. 55-58
    • Ling, C.P.1    Sun, Y.J.2    Yang, L.H.3    Jiang, S.4    Shao, F.Y.5
  • 23
    • 0026686049 scopus 로고
    • Singularity detection and processing with wavelets
    • Mallat S, Hwang WL (1992) Singularity detection and processing with wavelets. IEEE Trans Inform Theory 38(2): 617-643.
    • (1992) IEEE Trans Inform Theory , vol.38 , Issue.2 , pp. 617-643
    • Mallat, S.1    Hwang, W.L.2
  • 26
    • 34548158716 scopus 로고    scopus 로고
    • Singularity detection in machinery health monitoring using Lipschitz exponent function
    • Miao Q, Huang HZ, Fan XF (2007) Singularity detection in machinery health monitoring using Lipschitz exponent function. J Mech Sci Technol 21(5): 737-744.
    • (2007) J Mech Sci Technol , vol.21 , Issue.5 , pp. 737-744
    • Miao, Q.1    Huang, H.Z.2    Fan, X.F.3
  • 27
    • 47949119251 scopus 로고    scopus 로고
    • Uncertainty of the impact of climate change on the hydrology of a Nordic watershed
    • Minville M, Brissette F, Leconte R (2008) Uncertainty of the impact of climate change on the hydrology of a Nordic watershed. J Hydrol 358(1-2): 70-83.
    • (2008) J Hydrol , vol.358 , Issue.1-2 , pp. 70-83
    • Minville, M.1    Brissette, F.2    Leconte, R.3
  • 28
    • 77955355429 scopus 로고    scopus 로고
    • Causality across rainfall time scales revealed by continuous wavelet transforms
    • Molini A, Katul GG, Porporato A (2010) Causality across rainfall time scales revealed by continuous wavelet transforms. J Geophys Res 115: D14123.
    • (2010) J Geophys Res , vol.115
    • Molini, A.1    Katul, G.G.2    Porporato, A.3
  • 29
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • Nayak PC, Sudheer KP, Rangan DM, Ramasastri KS (2004) A neuro-fuzzy computing technique for modeling hydrological time series. J Hydrol 291(1-2): 52-66.
    • (2004) J Hydrol , vol.291 , Issue.1-2 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 31
    • 70350337875 scopus 로고    scopus 로고
    • A Multivariate ANN-wavelet approach for rainfall-runoff modeling
    • Nourani V, Komasi M, Mano A (2009a) A Multivariate ANN-wavelet approach for rainfall-runoff modeling. Water Resour Manage 23(14): 2877-2894.
    • (2009) Water Resour Manage , vol.23 , Issue.14 , pp. 2877-2894
    • Nourani, V.1    Komasi, M.2    Mano, A.3
  • 32
    • 61349106542 scopus 로고    scopus 로고
    • A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation
    • Nourani V, Alami MT, Aminfar MH (2009b) A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng Appli Artif Intell 22: 466-472.
    • (2009) Eng Appli Artif Intell , vol.22 , pp. 466-472
    • Nourani, V.1    Alami, M.T.2    Aminfar, M.H.3
  • 33
    • 79955025170 scopus 로고    scopus 로고
    • Two hybrid Artificial Intelligence approaches for modeling rainfall-runoff process
    • Nourani V, Kisi O, Komasi M (2011) Two hybrid Artificial Intelligence approaches for modeling rainfall-runoff process. J Hydrol 402: 41-59.
    • (2011) J Hydrol , vol.402 , pp. 41-59
    • Nourani, V.1    Kisi, O.2    Komasi, M.3
  • 34
    • 71649098140 scopus 로고    scopus 로고
    • Modelling evapotranspiration using discrete wavelet transform and neural networks
    • Partal T (2009) Modelling evapotranspiration using discrete wavelet transform and neural networks. Hydrol Process 23(25): 3545-3555.
    • (2009) Hydrol Process , vol.23 , Issue.25 , pp. 3545-3555
    • Partal, T.1
  • 36
    • 41649107441 scopus 로고    scopus 로고
    • A joint model for rainfall-runoff: The case of Rio Grande Basin
    • Ravines RR, Schmidt AM, Migon HS, Renno CD (2008) A joint model for rainfall-runoff: The case of Rio Grande Basin. J Hydrol 353: 189-200.
    • (2008) J Hydrol , vol.353 , pp. 189-200
    • Ravines, R.R.1    Schmidt, A.M.2    Migon, H.S.3    Renno, C.D.4
  • 37
    • 0026281797 scopus 로고
    • Nonlinear dynamics of soil-moisture at climate scales.1. Stochastic-Analysis
    • Rodriguez-Iturbe I, Entekhabi D, Bras RL (1991) Nonlinear dynamics of soil-moisture at climate scales. 1. Stochastic-Analysis. Water Resour Res 27(8): 1899-1906.
    • (1991) Water Resour Res , vol.27 , Issue.8 , pp. 1899-1906
    • Rodriguez-Iturbe, I.1    Entekhabi, D.2    Bras, R.L.3
  • 38
    • 43749092331 scopus 로고    scopus 로고
    • Wavelets selection method in hydrologic series wavelet analysis
    • (in Chinese)
    • Sang YF, Wang D (2008) Wavelets selection method in hydrologic series wavelet analysis. J Hydraul Eng 39(3): 295-300 (in Chinese).
    • (2008) J Hydraul Eng , vol.39 , Issue.3 , pp. 295-300
    • Sang, Y.F.1    Wang, D.2
  • 39
    • 62849120364 scopus 로고    scopus 로고
    • The relation between periods' identification and noises in hydrologic series data
    • Sang YF, Wang D, Wu JC, Zhu QP, Wang L (2009a) The relation between periods' identification and noises in hydrologic series data. J Hydrol 368(1-4): 165-177.
    • (2009) J Hydrol , vol.368 , Issue.1-4 , pp. 165-177
    • Sang, Y.F.1    Wang, D.2    Wu, J.C.3    Zhu, Q.P.4    Wang, L.5
  • 40
    • 77953483383 scopus 로고    scopus 로고
    • Entropy-based wavelet de-noising method for time series analysis
    • Sang YF, Wang D, Wu JC, Zhu QP, Wang L (2009b) Entropy-based wavelet de-noising method for time series analysis. Entropy 11(4): 1123-1147.
    • (2009) Entropy , vol.11 , Issue.4 , pp. 1123-1147
    • Sang, Y.F.1    Wang, D.2    Wu, J.C.3    Zhu, Q.P.4    Wang, L.5
  • 41
    • 77956397062 scopus 로고    scopus 로고
    • Entropy-based method of choosing the decomposition level in wavelet threshold de-noising
    • Sang YF, Wang D, Wu JC (2010a) Entropy-based method of choosing the decomposition level in wavelet threshold de-noising. Entropy 12(6): 1149-1513.
    • (2010) Entropy , vol.12 , Issue.6 , pp. 1149-1513
    • Sang, Y.F.1    Wang, D.2    Wu, J.C.3
  • 42
    • 78650051778 scopus 로고    scopus 로고
    • Uncertainty analysis of decomposition level choice in wavelet threshold de-noising
    • Sang YF, Wang D, Wu JC (2010b) Uncertainty analysis of decomposition level choice in wavelet threshold de-noising. Entropy 12(12): 386-2396.
    • (2010) Entropy , vol.12 , Issue.12 , pp. 386-2396
    • Sang, Y.F.1    Wang, D.2    Wu, J.C.3
  • 43
    • 84865088310 scopus 로고    scopus 로고
    • Wavelet-based analysis on the complexity of hydrologic series data under multi-temporal scales
    • Sang YF, Wang D, Wu JC, Zhu QP, Wang L (2011) Wavelet-based analysis on the complexity of hydrologic series data under multi-temporal scales. Entropy 13(1): 195-210.
    • (2011) Entropy , vol.13 , Issue.1 , pp. 195-210
    • Sang, Y.F.1    Wang, D.2    Wu, J.C.3    Zhu, Q.P.4    Wang, L.5
  • 44
    • 84862804163 scopus 로고    scopus 로고
    • Period identification in hydrologic time series using empirical mode decomposition and maximum entropy spectral analysis
    • Sang YF, Wang Z, Liu C (2012) Period identification in hydrologic time series using empirical mode decomposition and maximum entropy spectral analysis. J Hydrol 424: 154-164.
    • (2012) J Hydrol , vol.424 , pp. 154-164
    • Sang, Y.F.1    Wang, Z.2    Liu, C.3
  • 45
    • 34748833473 scopus 로고    scopus 로고
    • What drives high flow events in the Swiss Alps? Recent developments in wavelet spectral analysis and their application to hydrology
    • Schaefli B, Maraun D, Holschneider M (2007) What drives high flow events in the Swiss Alps? Recent developments in wavelet spectral analysis and their application to hydrology. Adv Water Resour 30: 2511-2525.
    • (2007) Adv Water Resour , vol.30 , pp. 2511-2525
    • Schaefli, B.1    Maraun, D.2    Holschneider, M.3
  • 47
    • 1542680533 scopus 로고    scopus 로고
    • A practical guide to wavelet analysis
    • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. B Am Meteorol Soc 79(1): 61-78.
    • (1998) B Am Meteorol Soc , vol.79 , Issue.1 , pp. 61-78
    • Torrence, C.1    Compo, G.P.2
  • 48
    • 33746616808 scopus 로고    scopus 로고
    • Revisiting multifractality of high-resolution temporal rainfall using a wavelet-based formalism
    • Venugopal V, Roux SG, Foufoula-Georgiou E, Arneodo A (2006) Revisiting multifractality of high-resolution temporal rainfall using a wavelet-based formalism. Water Resour Res 42: W06D14.
    • (2006) Water Resour Res , vol.42
    • Venugopal, V.1    Roux, S.G.2    Foufoula-Georgiou, E.3    Arneodo, A.4
  • 50
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the predication of hydrology
    • Wang WS, Ding J (2003) Wavelet network model and its application to the predication of hydrology. Nat Sci 1(1): 67-71.
    • (2003) Nat Sci , vol.1 , Issue.1 , pp. 67-71
    • Wang, W.S.1    Ding, J.2
  • 51
    • 78650305167 scopus 로고    scopus 로고
    • Wavelet transform method for synthetic generation of daily streamflow
    • Wang W, Hu S, Li Y (2011) Wavelet transform method for synthetic generation of daily streamflow. Water Resour Manage 25: 41-57.
    • (2011) Water Resour Manage , vol.25 , pp. 41-57
    • Wang, W.1    Hu, S.2    Li, Y.3
  • 52
    • 0036563021 scopus 로고    scopus 로고
    • Testing for homogeneity of variance in time series: Long memory, wavelets, and the Nile River
    • Whitcher B, Byers SD, Guttorp P, Percival DB (2002) Testing for homogeneity of variance in time series: Long memory, wavelets, and the Nile River. Water Resour Res 38(5): W1054.
    • (2002) Water Resour Res , vol.38 , Issue.5
    • Whitcher, B.1    Byers, S.D.2    Guttorp, P.3    Percival, D.B.4
  • 53
    • 78649673593 scopus 로고    scopus 로고
    • Impacts of urbanization on hydrology in the Yangtze River Delta, China
    • Xu Y, Xu J, Ding J, Chen Y, Yin Y, Zhang X (2010) Impacts of urbanization on hydrology in the Yangtze River Delta, China. Water Sci Technol 62(6): 1221-1229.
    • (2010) Water Sci Technol , vol.62 , Issue.6 , pp. 1221-1229
    • Xu, Y.1    Xu, J.2    Ding, J.3    Chen, Y.4    Yin, Y.5    Zhang, X.6
  • 55
    • 64349124449 scopus 로고    scopus 로고
    • Observed dryness and wetness variability in Shanghai during 1873-2005
    • Zhang ZX, Zhang Q, Zhang JC, Zou LJ, Jiang JM (2009) Observed dryness and wetness variability in Shanghai during 1873-2005. J Geograph Sci 19(2): 143-152.
    • (2009) J Geograph Sci , vol.19 , Issue.2 , pp. 143-152
    • Zhang, Z.X.1    Zhang, Q.2    Zhang, J.C.3    Zou, L.J.4    Jiang, J.M.5
  • 56
    • 67650332518 scopus 로고    scopus 로고
    • Periodic overlapping prediction model and its three improved models of hydrological time series
    • (in Chinese with English abstract)
    • Zuo QT, Gao F (2004) Periodic overlapping prediction model and its three improved models of hydrological time series. J Zhengzhou Univ (Engineering Science) 25(4): 67-73 (in Chinese with English abstract).
    • (2004) J Zhengzhou Univ (Engineering Science) , vol.25 , Issue.4 , pp. 67-73
    • Zuo, Q.T.1    Gao, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.