메뉴 건너뛰기




Volumn 524, Issue , 2015, Pages 255-269

Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling

Author keywords

Ardabil plain; Artificial Neural Network; Data pre processing; Entropy; Groundwater level modeling; Wavelet

Indexed keywords

AQUIFERS; COMPLEX NETWORKS; CONFORMAL MAPPING; DATA HANDLING; ENTROPY; GROUNDWATER; GROUNDWATER RESOURCES; HYDROGEOLOGY; NEURAL NETWORKS; SELF ORGANIZING MAPS; WATER SUPPLY;

EID: 84924401963     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2015.02.048     Document Type: Article
Times cited : (132)

References (42)
  • 1
    • 41949086697 scopus 로고    scopus 로고
    • Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis
    • Adamowski J. Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis. J. Hydrol. 2008, 353:247-266.
    • (2008) J. Hydrol. , vol.353 , pp. 247-266
    • Adamowski, J.1
  • 2
    • 80052027629 scopus 로고    scopus 로고
    • A wavelet neural network conjunction model for groundwater level forecasting
    • Adamowski J., Chan H.F. A wavelet neural network conjunction model for groundwater level forecasting. J. Hydrol. 2011, 407:28-40.
    • (2011) J. Hydrol. , vol.407 , pp. 28-40
    • Adamowski, J.1    Chan, H.F.2
  • 3
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology 2: hydrologic applications
    • ASCE task committee on application of Artificial Neural Networks in hydrology Artificial neural networks in hydrology 2: hydrologic applications. J. Hydrol. Eng. 2000, 5(2):124-137.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 124-137
  • 4
    • 0002378584 scopus 로고    scopus 로고
    • Wavelet-based feature extraction and decomposition strategies for financial forecasting
    • Aussem A., Campbell J., Murtagh F. Wavelet-based feature extraction and decomposition strategies for financial forecasting. J. Comput. Intell. Finance 1998, 6(2):5-12.
    • (1998) J. Comput. Intell. Finance , vol.6 , Issue.2 , pp. 5-12
    • Aussem, A.1    Campbell, J.2    Murtagh, F.3
  • 5
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1 - Background and methodology
    • Bowden G.J., Dandy G.C., Maier H.R. Input determination for neural network models in water resources applications. Part 1 - Background and methodology. J. Hydrol. 2005, 301:75-92.
    • (2005) J. Hydrol. , vol.301 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 6
    • 77955601282 scopus 로고    scopus 로고
    • Groundwater level prediction using SOM-RBFN multisite model
    • Chen L.H., Chen C.T., Pan Y.G. Groundwater level prediction using SOM-RBFN multisite model. J. Hydrol. Eng. 2010, 15:624-631.
    • (2010) J. Hydrol. Eng. , vol.15 , pp. 624-631
    • Chen, L.H.1    Chen, C.T.2    Pan, Y.G.3
  • 7
    • 79960142768 scopus 로고    scopus 로고
    • Application of integrated back-propagation network and self-organizing map for groundwater level forecasting
    • Chen L.H., Chen C.T., Li D.W. Application of integrated back-propagation network and self-organizing map for groundwater level forecasting. J. Water Res. Plan. Manage. 2011, 137(4):352-365.
    • (2011) J. Water Res. Plan. Manage. , vol.137 , Issue.4 , pp. 352-365
    • Chen, L.H.1    Chen, C.T.2    Li, D.W.3
  • 9
    • 0034993945 scopus 로고    scopus 로고
    • Artificial neural network modeling of water table depth fluctuations
    • Coulibaly P., Anctil F., Aravena R., Bobée B. Artificial neural network modeling of water table depth fluctuations. Water Resour. Res. 2001, 37(4):885-896.
    • (2001) Water Resour. Res. , vol.37 , Issue.4 , pp. 885-896
    • Coulibaly, P.1    Anctil, F.2    Aravena, R.3    Bobée, B.4
  • 10
    • 20344369583 scopus 로고    scopus 로고
    • Groundwater level forecasting using artificial neural networks
    • Daliakopoulos I.N., Coulibaly P., Tsanis I.K. Groundwater level forecasting using artificial neural networks. J. Hydrol. 2005, 309:229-240.
    • (2005) J. Hydrol. , vol.309 , pp. 229-240
    • Daliakopoulos, I.N.1    Coulibaly, P.2    Tsanis, I.K.3
  • 11
    • 78149414476 scopus 로고    scopus 로고
    • Prediction of water table depth in western region, Orissa using BPNN and RBFN neural networks
    • Ghose D.K., Panda S.S., Swain P.C. Prediction of water table depth in western region, Orissa using BPNN and RBFN neural networks. J. Hydrol. 2010, 394:296-304.
    • (2010) J. Hydrol. , vol.394 , pp. 296-304
    • Ghose, D.K.1    Panda, S.S.2    Swain, P.C.3
  • 12
    • 0000562670 scopus 로고
    • Decomposition of Hardy function into square integrable wavelets of constant shape
    • Grossmann A., Morlet J. Decomposition of Hardy function into square integrable wavelets of constant shape. J. Math. Anal. Appl. 1984, 5:723-736.
    • (1984) J. Math. Anal. Appl. , vol.5 , pp. 723-736
    • Grossmann, A.1    Morlet, J.2
  • 13
    • 0024880831 scopus 로고
    • Multilayer feed-forward networks are universal approximators
    • Hornik K., Stinchcombe M., White H. Multilayer feed-forward networks are universal approximators. Neural Netw. 1989, 2(5):359-366.
    • (1989) Neural Netw. , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 14
    • 74149092556 scopus 로고    scopus 로고
    • Clustering spatial-temporal precipitation data using wavelet transform and self-organizing map neural network
    • Hsu K., Li S. Clustering spatial-temporal precipitation data using wavelet transform and self-organizing map neural network. Adv. Water Resour. 2010, 33:190-200.
    • (2010) Adv. Water Resour. , vol.33 , pp. 190-200
    • Hsu, K.1    Li, S.2
  • 15
    • 0036998831 scopus 로고    scopus 로고
    • Self-organizing linear output map (SOLO): an artificial neural network suitable for hydrologic modeling and analysis
    • Hsu K., Gupta H.V., Gao X., Sorooshian S., Imam B. Self-organizing linear output map (SOLO): an artificial neural network suitable for hydrologic modeling and analysis. Water Resour. Res. 2002, 38(12):1-38.
    • (2002) Water Resour. Res. , vol.38 , Issue.12 , pp. 1-38
    • Hsu, K.1    Gupta, H.V.2    Gao, X.3    Sorooshian, S.4    Imam, B.5
  • 16
    • 40749144865 scopus 로고    scopus 로고
    • Review of self-organizing map (SOM) in water resources: analysis, modeling, and application
    • Kalteh A.M., Hjorth P., Berndtsson R. Review of self-organizing map (SOM) in water resources: analysis, modeling, and application. Environ. Model. Softw. 2008, 23:835-845.
    • (2008) Environ. Model. Softw. , vol.23 , pp. 835-845
    • Kalteh, A.M.1    Hjorth, P.2    Berndtsson, R.3
  • 17
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • Kim T., Valdes J.B. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. J. Hydrol. Eng. 2003, 6:319-328.
    • (2003) J. Hydrol. Eng. , vol.6 , pp. 319-328
    • Kim, T.1    Valdes, J.B.2
  • 18
    • 0003410791 scopus 로고    scopus 로고
    • Springer-Verlag, Berlin, Heidelberg
    • Kohonen T. Self-Organizing Maps 1997, Springer-Verlag, Berlin, Heidelberg.
    • (1997) Self-Organizing Maps
    • Kohonen, T.1
  • 19
    • 84897665685 scopus 로고    scopus 로고
    • Investigation of hydrogeological characteristics of Ardabil Plain aquifer, Northwest of Iran
    • Kord M., Asghari Moghaddam A., Nakhaeei M. Investigation of hydrogeological characteristics of Ardabil Plain aquifer, Northwest of Iran. ISESCO J. Sci. Tech. 2013, 9(15):63-69.
    • (2013) ISESCO J. Sci. Tech. , vol.9 , Issue.15 , pp. 63-69
    • Kord, M.1    Asghari Moghaddam, A.2    Nakhaeei, M.3
  • 20
    • 84867101151 scopus 로고    scopus 로고
    • Validation studies of precipitation estimates from different satellite sensors over Hungary - analysis of new satellite-derived rain rate products for hydrological purposes
    • Labo E. Validation studies of precipitation estimates from different satellite sensors over Hungary - analysis of new satellite-derived rain rate products for hydrological purposes. J. Hydrol. 2012, 468-469:173-187.
    • (2012) J. Hydrol. , pp. 173-187
    • Labo, E.1
  • 21
    • 19744366167 scopus 로고    scopus 로고
    • On the use of neural networks to evaluate groundwater levels in fractured media
    • Lallahem S., Mania J., Hani A., Najjar Y. On the use of neural networks to evaluate groundwater levels in fractured media. J. Hydrol. 2005, 307:92-111.
    • (2005) J. Hydrol. , vol.307 , pp. 92-111
    • Lallahem, S.1    Mania, J.2    Hani, A.3    Najjar, Y.4
  • 22
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation
    • Legates D.R., McCabe G.J. Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35(1):233-241.
    • (1999) Water Resour. Res. , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 23
    • 21344450695 scopus 로고    scopus 로고
    • Time series forecasting by combining the radial basis function network and the self-organizing map
    • Lin G.F., Chen L.H. Time series forecasting by combining the radial basis function network and the self-organizing map. Hydrol. Process. 2005, 19(10):1925-1937.
    • (2005) Hydrol. Process. , vol.19 , Issue.10 , pp. 1925-1937
    • Lin, G.F.1    Chen, L.H.2
  • 24
    • 28744432693 scopus 로고    scopus 로고
    • An improved neural network approach to the determination of aquifer parameters
    • Lin G.F., Chen G.R. An improved neural network approach to the determination of aquifer parameters. J. Hydrol. 2006, 316(1-4):281-289.
    • (2006) J. Hydrol. , vol.316 , Issue.1-4 , pp. 281-289
    • Lin, G.F.1    Chen, G.R.2
  • 26
    • 32044458602 scopus 로고    scopus 로고
    • Groundwater level forecasting in a shallow aquifer using artificial neural network approach
    • Nayak P., Satyajirao Y.R., Sudheer K.P. Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resour. Manage. 2006, 20:77-90.
    • (2006) Water Resour. Manage. , vol.20 , pp. 77-90
    • Nayak, P.1    Satyajirao, Y.R.2    Sudheer, K.P.3
  • 27
    • 84924410041 scopus 로고    scopus 로고
    • Daily and monthly suspended sediment load predictions using wavelet based artificial intelligence approaches
    • Nourani V., Andalib G. Daily and monthly suspended sediment load predictions using wavelet based artificial intelligence approaches. J. Mt. Sci. 2015, 12(1). 10.1007/s11629-014-3121-2.
    • (2015) J. Mt. Sci. , vol.12 , Issue.1
    • Nourani, V.1    Andalib, G.2
  • 28
    • 77952374286 scopus 로고    scopus 로고
    • Integrated artificial neural network for spatiotemporal modeling of rainfall-runoff-sediment processes
    • Nourani V., Kalantari O. Integrated artificial neural network for spatiotemporal modeling of rainfall-runoff-sediment processes. Environ. Eng. Sci. 2010, 27(5):411-422.
    • (2010) Environ. Eng. Sci. , vol.27 , Issue.5 , pp. 411-422
    • Nourani, V.1    Kalantari, O.2
  • 29
    • 67649122251 scopus 로고    scopus 로고
    • An ANN-based model for spatiotemporal groundwater level forecasting
    • Nourani V., Asghari Mogaddam A., Nadiri A. An ANN-based model for spatiotemporal groundwater level forecasting. Hydrol. Process. 2008, 22:5054-5066.
    • (2008) Hydrol. Process. , vol.22 , pp. 5054-5066
    • Nourani, V.1    Asghari Mogaddam, A.2    Nadiri, A.3
  • 30
    • 79952309190 scopus 로고    scopus 로고
    • Spatiotemporal groundwater level forecasting in coastal aquifers by hybrid artificial neural network-geostatistics model: a case study
    • Nourani V., Ejlali R.G., Alami M.T. Spatiotemporal groundwater level forecasting in coastal aquifers by hybrid artificial neural network-geostatistics model: a case study. Environ. Eng. Sci. 2011, 28(3):217-228.
    • (2011) Environ. Eng. Sci. , vol.28 , Issue.3 , pp. 217-228
    • Nourani, V.1    Ejlali, R.G.2    Alami, M.T.3
  • 31
    • 84871025948 scopus 로고    scopus 로고
    • Using self-organizing maps and wavelet transforms for space-time pre-processing of satellite precipitation and runoff data in neural network based rainfall-runoff modeling
    • Nourani V., Hosseini Baghanam A., Adamowski J., Gebremichael M. Using self-organizing maps and wavelet transforms for space-time pre-processing of satellite precipitation and runoff data in neural network based rainfall-runoff modeling. J. Hydrol. 2013, 476:228-243.
    • (2013) J. Hydrol. , vol.476 , pp. 228-243
    • Nourani, V.1    Hosseini Baghanam, A.2    Adamowski, J.3    Gebremichael, M.4
  • 32
    • 84900481738 scopus 로고    scopus 로고
    • Applications of hybrid wavelet-artificial intelligence models in hydrology: a review
    • Nourani V., Hosseini Baghanam A., Adamowski J., Kisi O. Applications of hybrid wavelet-artificial intelligence models in hydrology: a review. J. Hydrol. 2014, 514:358-377.
    • (2014) J. Hydrol. , vol.514 , pp. 358-377
    • Nourani, V.1    Hosseini Baghanam, A.2    Adamowski, J.3    Kisi, O.4
  • 33
    • 84924417873 scopus 로고    scopus 로고
    • Implication of feature extraction methods to improve performance of hybrid Wavelet-ANN rainfall-runoff model
    • Taylor and Francis Group, New York, B. Issac, N. Israr (Eds.)
    • Nourani V., Rezapour Khanghah T., Hosseini Baghanam A. Implication of feature extraction methods to improve performance of hybrid Wavelet-ANN rainfall-runoff model. Case Studies in Intelligent Computing 2014, 457-498. Taylor and Francis Group, New York. B. Issac, N. Israr (Eds.).
    • (2014) Case Studies in Intelligent Computing , pp. 457-498
    • Nourani, V.1    Rezapour Khanghah, T.2    Hosseini Baghanam, A.3
  • 34
    • 48649085521 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data using wavelet-neural networks
    • Partal T., Cigizoglu H.K. Estimation and forecasting of daily suspended sediment data using wavelet-neural networks. J. Hydrol. 2008, 358(3-4):317-331.
    • (2008) J. Hydrol. , vol.358 , Issue.3-4 , pp. 317-331
    • Partal, T.1    Cigizoglu, H.K.2
  • 36
    • 84940644968 scopus 로고
    • The mathematical theory of communications, I and II
    • Shannon C.E. The mathematical theory of communications, I and II. Bell Syst. Tech. J. 1948, 27:379-423.
    • (1948) Bell Syst. Tech. J. , vol.27 , pp. 379-423
    • Shannon, C.E.1
  • 37
    • 84868367414 scopus 로고    scopus 로고
    • Artificial Neural Network simulation of hourly groundwater levels in a coastal aquifer system of the 4 Venice lagoon
    • Taormina R., Chau K.W., Sethi R. Artificial Neural Network simulation of hourly groundwater levels in a coastal aquifer system of the 4 Venice lagoon. Eng. Appl. Artif. Intel. 2012, 25(8):1670-1676.
    • (2012) Eng. Appl. Artif. Intel. , vol.25 , Issue.8 , pp. 1670-1676
    • Taormina, R.1    Chau, K.W.2    Sethi, R.3
  • 38
    • 72049104241 scopus 로고    scopus 로고
    • Classification of hydro-meteorological conditions and multiple artificial neural networks for stream flow forecasting
    • Toth E. Classification of hydro-meteorological conditions and multiple artificial neural networks for stream flow forecasting. Hydrol. Earth Syst. Sc. 2009, 13:1555-1566.
    • (2009) Hydrol. Earth Syst. Sc. , vol.13 , pp. 1555-1566
    • Toth, E.1
  • 39
    • 34249753618 scopus 로고
    • Support vector networks
    • Vapnik V., Cortes C. Support vector networks. Mach. Learn. 1995, 20:1-25.
    • (1995) Mach. Learn. , vol.20 , pp. 1-25
    • Vapnik, V.1    Cortes, C.2
  • 40
    • 0002915083 scopus 로고    scopus 로고
    • Relevance of time-frequency features for phonetic and speaker-channel classification
    • Yang H.H., Vuuren S.V., Sharma S., Hermansky H. Relevance of time-frequency features for phonetic and speaker-channel classification. Speech Commun. 2000, 31:35-50.
    • (2000) Speech Commun. , vol.31 , pp. 35-50
    • Yang, H.H.1    Vuuren, S.V.2    Sharma, S.3    Hermansky, H.4
  • 41
    • 60949086949 scopus 로고    scopus 로고
    • Application and comparison of two prediction models for groundwater levels: a case study in Western Jilin Province, China
    • Yang Z.P., Lu W.X., Long Y., Li P. Application and comparison of two prediction models for groundwater levels: a case study in Western Jilin Province, China. J. Arid Environ. 2009, 73:487-492.
    • (2009) J. Arid Environ. , vol.73 , pp. 487-492
    • Yang, Z.P.1    Lu, W.X.2    Long, Y.3    Li, P.4
  • 42
    • 78650179085 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
    • Yoon H., Jun S.C., Hyun Y., Bae G.O., Lee K.K. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J. Hydrol. 2011, 396:128-138.
    • (2011) J. Hydrol. , vol.396 , pp. 128-138
    • Yoon, H.1    Jun, S.C.2    Hyun, Y.3    Bae, G.O.4    Lee, K.K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.