메뉴 건너뛰기




Volumn 7, Issue 4, 2013, Pages 253-260

Prediction and simulation of monthly groundwater levels by genetic programming

Author keywords

Adaptive neural fuzzy inference system; Genetic programming; Groundwater level; Prediction; Simulation

Indexed keywords

ADAPTIVE NEURAL FUZZY INFERENCE SYSTEM (ANFIS); ARTIFICIAL INTELLIGENCE TOOLS; GROUND-WATER HYDROLOGY; GROUNDWATER MODELING; PREDICTION AND SIMULATIONS; ROOT MEAN SQUARED ERRORS; SIMULATION; TRAINING AND TESTING;

EID: 84888128953     PISSN: 15706443     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jher.2013.03.005     Document Type: Article
Times cited : (150)

References (32)
  • 1
    • 78651343715 scopus 로고    scopus 로고
    • Optimizing multi-reservoir operation rules: an improved HBMO approach
    • Afshar A., Shafii M., Bozorg Haddad O. Optimizing multi-reservoir operation rules: an improved HBMO approach. Journal of Hydroinformatics 2011, 13(1):121-139.
    • (2011) Journal of Hydroinformatics , vol.13 , Issue.1 , pp. 121-139
    • Afshar, A.1    Shafii, M.2    Bozorg Haddad, O.3
  • 3
    • 74549151827 scopus 로고    scopus 로고
    • Optimization of non-convex water resource problems by honey-bee mating optimization (HBMO) algorithm
    • Bozorg Haddad O., Afshar A., Mariño M.A. Optimization of non-convex water resource problems by honey-bee mating optimization (HBMO) algorithm. Engineering Computations (Swansea, Wales) 2009, 26(3):267-280.
    • (2009) Engineering Computations (Swansea, Wales) , vol.26 , Issue.3 , pp. 267-280
    • Bozorg Haddad, O.1    Afshar, A.2    Mariño, M.A.3
  • 5
    • 77956717086 scopus 로고    scopus 로고
    • Finding the shortest path with honey-bee mating optimization algorithm in project management problems with constrained/unconstrained resources
    • Bozorg Haddad O., Mirmomeni M., Zarezadeh Mehrizi M., Mariño M.A. Finding the shortest path with honey-bee mating optimization algorithm in project management problems with constrained/unconstrained resources. Computational Optimization and Applications 2010, 47(1):97-128.
    • (2010) Computational Optimization and Applications , vol.47 , Issue.1 , pp. 97-128
    • Bozorg Haddad, O.1    Mirmomeni, M.2    Zarezadeh Mehrizi, M.3    Mariño, M.A.4
  • 10
    • 28444489651 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
    • Chang F.-J., Chang Y.-T. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advances in Water Resources 2006, 29(1):1-10.
    • (2006) Advances in Water Resources , vol.29 , Issue.1 , pp. 1-10
    • Chang, F.-J.1    Chang, Y.-T.2
  • 11
    • 33646075449 scopus 로고    scopus 로고
    • The strategy of building a flood forecast model by neuro-fuzzy network
    • Chen S.-H., Lin Y.-H., Chang L.-C., Chang F.-J. The strategy of building a flood forecast model by neuro-fuzzy network. Hydrological Process 2006, 20(7):1525-1540.
    • (2006) Hydrological Process , vol.20 , Issue.7 , pp. 1525-1540
    • Chen, S.-H.1    Lin, Y.-H.2    Chang, L.-C.3    Chang, F.-J.4
  • 12
    • 79960107256 scopus 로고    scopus 로고
    • Effect of utility function curvature of Young's bargaining method on the design of WDNs
    • Fallah-Mehdipour E., Bozorg Haddad O., Beygi S., Mariño M.A. Effect of utility function curvature of Young's bargaining method on the design of WDNs. Water Resources Management 2011, 25(9):2197-2218.
    • (2011) Water Resources Management , vol.25 , Issue.9 , pp. 2197-2218
    • Fallah-Mehdipour, E.1    Bozorg Haddad, O.2    Beygi, S.3    Mariño, M.A.4
  • 17
    • 77958543041 scopus 로고    scopus 로고
    • Prediction of hourly actual evapotranspiration using neural network, genetic programming, and statistical models
    • Izadifar Z., Elshorbagy A. Prediction of hourly actual evapotranspiration using neural network, genetic programming, and statistical models. Hydrological Processes 2010, 24(23):3413-3425.
    • (2010) Hydrological Processes , vol.24 , Issue.23 , pp. 3413-3425
    • Izadifar, Z.1    Elshorbagy, A.2
  • 18
    • 80055009032 scopus 로고    scopus 로고
    • Monthly groundwater level prediction using ANN and neuro-fuzzy models: a case study on Kerman plain, Iran
    • Jalalkamali A., Sedghi H., Manshouri M. Monthly groundwater level prediction using ANN and neuro-fuzzy models: a case study on Kerman plain, Iran. Journal of Hydroinformatics 2010, 13(4):867-876.
    • (2010) Journal of Hydroinformatics , vol.13 , Issue.4 , pp. 867-876
    • Jalalkamali, A.1    Sedghi, H.2    Manshouri, M.3
  • 19
    • 0027601884 scopus 로고
    • ANFIS: adaptive network based fuzzy inference system
    • May 1993
    • Jang J.-S.R. ANFIS: adaptive network based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 1993, 23(3):665-684. May 1993.
    • (1993) IEEE Transactions on Systems, Man, and Cybernetics , vol.23 , Issue.3 , pp. 665-684
    • Jang, J.-S.R.1
  • 21
    • 78049264460 scopus 로고    scopus 로고
    • Comparison of groundwater level estimation using neuro-fuzzy and ordinary kriging
    • Kholghi M., Hosseini S.M. Comparison of groundwater level estimation using neuro-fuzzy and ordinary kriging. Environmental Modeling and Assessment 2008, 14(6):729-737.
    • (2008) Environmental Modeling and Assessment , vol.14 , Issue.6 , pp. 729-737
    • Kholghi, M.1    Hosseini, S.M.2
  • 22
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I- a discussion of principles
    • Nash J.E., Sutcliff J.V. River flow forecasting through conceptual models part I- a discussion of principles. Journal of Hydrology 1970, 10(3):282-290.
    • (1970) Journal of Hydrology , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliff, J.V.2
  • 24
    • 33847065032 scopus 로고    scopus 로고
    • Determination of the unit hydrograph of a typical urban basin genetic programming and artificial neural networks
    • Rabunal J.R., Puertas J., Suarez J., Rivero D. Determination of the unit hydrograph of a typical urban basin genetic programming and artificial neural networks. Hydrological Processes 2007, 21(4):476-485.
    • (2007) Hydrological Processes , vol.21 , Issue.4 , pp. 476-485
    • Rabunal, J.R.1    Puertas, J.2    Suarez, J.3    Rivero, D.4
  • 27
    • 0032804627 scopus 로고    scopus 로고
    • A genetic programming approach to rainfall-runoff modeling
    • Savic D.A., Walters G.A., Davidson J.W. A genetic programming approach to rainfall-runoff modeling. Water Resources Management 1999, 13(3):219-231.
    • (1999) Water Resources Management , vol.13 , Issue.3 , pp. 219-231
    • Savic, D.A.1    Walters, G.A.2    Davidson, J.W.3
  • 28
    • 40049084636 scopus 로고    scopus 로고
    • Genetic programming approach for flood routing in natural channels
    • Sivapragasam C., Maheswaran R., Venkatesh V. Genetic programming approach for flood routing in natural channels. Hydrological Processes 2008, 22(5):623-628.
    • (2008) Hydrological Processes , vol.22 , Issue.5 , pp. 623-628
    • Sivapragasam, C.1    Maheswaran, R.2    Venkatesh, V.3
  • 29
    • 79151483095 scopus 로고    scopus 로고
    • Developing operating rules for reservoirs considering the water quality issues: application of ANFIS-based surrogate models
    • Soltani F., Kerachian R., Shirangi E. Developing operating rules for reservoirs considering the water quality issues: application of ANFIS-based surrogate models. Expert Systems with Applications 2010, 37(9):6639-6645.
    • (2010) Expert Systems with Applications , vol.37 , Issue.9 , pp. 6639-6645
    • Soltani, F.1    Kerachian, R.2    Shirangi, E.3
  • 30
    • 79151483095 scopus 로고    scopus 로고
    • Developing operating rules for reservoirs considering the water quality issues: application of ANFIS-based surrogate models
    • Soltani F., Kerachian R., Shirangi E. Developing operating rules for reservoirs considering the water quality issues: application of ANFIS-based surrogate models. Expert Systems with Applications 2010, 37(9):6639-6645.
    • (2010) Expert Systems with Applications , vol.37 , Issue.9 , pp. 6639-6645
    • Soltani, F.1    Kerachian, R.2    Shirangi, E.3
  • 32
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang W.-C., Chau K.-W., Cheng C.-T., Qiu L. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology 2009, 374(3-4):294-306.
    • (2009) Journal of Hydrology , vol.374 , Issue.3-4 , pp. 294-306
    • Wang, W.-C.1    Chau, K.-W.2    Cheng, C.-T.3    Qiu, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.