메뉴 건너뛰기




Volumn 10, Issue 1, 2017, Pages

Electrode-assisted acetoin production in a metabolically engineered Escherichia coli strain

Author keywords

Acetoin; Bulk chemicals; Electrode assisted fermentation; Escherichia coli; Metabolic engineering

Indexed keywords

AROMATIC COMPOUNDS; BIOTECHNOLOGY; CARBON; ELECTRODES; ELECTRONS; ESCHERICHIA COLI; FERMENTATION; GENES; GLUCOSE; METABOLISM; NITRATES; PHYSIOLOGY; STRAIN;

EID: 85015637540     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-017-0745-9     Document Type: Article
Times cited : (62)

References (55)
  • 1
    • 79952147700 scopus 로고    scopus 로고
    • Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria
    • Flynn JM, Ross DE, Hunt KA, Bond DR, Gralnick JA. Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. mBio. 2010;1:190-210.
    • (2010) MBio , vol.1 , pp. 190-210
    • Flynn, J.M.1    Ross, D.E.2    Hunt, K.A.3    Bond, D.R.4    Gralnick, J.A.5
  • 2
    • 84925379369 scopus 로고    scopus 로고
    • Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells
    • 1:CAS:528:DC%2BC2MXktVChsr8%3D
    • Sturm-Richter K, Golitsch F, Sturm G, Kipf E, Dittrich A, Beblawy S, et al. Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells. Bioresour Technol. 2015;186:89-96.
    • (2015) Bioresour Technol , vol.186 , pp. 89-96
    • Sturm-Richter, K.1    Golitsch, F.2    Sturm, G.3    Kipf, E.4    Dittrich, A.5    Beblawy, S.6
  • 3
    • 84857082945 scopus 로고    scopus 로고
    • Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration
    • 1:CAS:528:DC%2BC38XitVKrt7c%3D
    • Richter K, Schicklberger M, Gescher J. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appl Environ Microbiol. 2012;78:913-21.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 913-921
    • Richter, K.1    Schicklberger, M.2    Gescher, J.3
  • 4
    • 84923885794 scopus 로고    scopus 로고
    • The Mtr pathway of Shewanella oneidensis MR-1 couples substrate utilization to current production in Escherichia coli
    • 1:CAS:528:DC%2BC2cXhvVylsbrE
    • TerAvest MA, Zajdel TJ, Ajo-Franklin CM. The Mtr pathway of Shewanella oneidensis MR-1 couples substrate utilization to current production in Escherichia coli. ChemElectroChem. 2014;1:1874-9.
    • (2014) ChemElectroChem , vol.1 , pp. 1874-1879
    • TerAvest, M.A.1    Zajdel, T.J.2    Ajo-Franklin, C.M.3
  • 5
    • 84978698063 scopus 로고    scopus 로고
    • CymA and exogenous flavins improve extracellular electron transfer and couple it to cell growth in Mtr-expressing Escherichia coli
    • 1:CAS:528:DC%2BC28XksFCjsbY%3D
    • Jensen HM, TerAvest MA, Kokish MG, Ajo-Franklin CM. CymA and exogenous flavins improve extracellular electron transfer and couple it to cell growth in Mtr-expressing Escherichia coli. ACS Synth Biol. 2016;5:679-88.
    • (2016) ACS Synth Biol , vol.5 , pp. 679-688
    • Jensen, H.M.1    TerAvest, M.A.2    Kokish, M.G.3    Ajo-Franklin, C.M.4
  • 6
    • 84876313599 scopus 로고    scopus 로고
    • Proof of principle for an engineered microbial biosensor based on Shewanella oneidensis outer membrane protein complexes
    • 1:CAS:528:DC%2BC3sXot1Citrs%3D
    • Golitsch F, Bücking C, Gescher J. Proof of principle for an engineered microbial biosensor based on Shewanella oneidensis outer membrane protein complexes. Biosens Bioelectron. 2013;47:285-91.
    • (2013) Biosens Bioelectron , vol.47 , pp. 285-291
    • Golitsch, F.1    Bücking, C.2    Gescher, J.3
  • 7
    • 84875189517 scopus 로고    scopus 로고
    • Tuning promoter strengths for improved synthesis and function of electron conduits in Escherichia coli
    • 1:CAS:528:DC%2BC3sXotlyrtw%3D%3D
    • Goldbeck CP, Jensen HM, TerAvest MA, Beedle N, Appling Y, Hepler M, et al. Tuning promoter strengths for improved synthesis and function of electron conduits in Escherichia coli. ACS Synth Biol. 2013;2:150-9.
    • (2013) ACS Synth Biol , vol.2 , pp. 150-159
    • Goldbeck, C.P.1    Jensen, H.M.2    TerAvest, M.A.3    Beedle, N.4    Appling, Y.5    Hepler, M.6
  • 8
    • 84959568240 scopus 로고    scopus 로고
    • Transforming exoelectrogens for biotechnology using synthetic biology
    • 1:CAS:528:DC%2BC2MXhsVGis7zN
    • TerAvest MA, Ajo-Franklin CM. Transforming exoelectrogens for biotechnology using synthetic biology. Biotechnol Bioeng. 2016;113:687-97.
    • (2016) Biotechnol Bioeng , vol.113 , pp. 687-697
    • TerAvest, M.A.1    Ajo-Franklin, C.M.2
  • 9
    • 84895454815 scopus 로고    scopus 로고
    • Strategies for enhancing fermentative production of acetoin: A review
    • 1:CAS:528:DC%2BC2cXhtlKmsr8%3D
    • Xiao Z, Lu JR. Strategies for enhancing fermentative production of acetoin: a review. Biotechnol Adv. 2014;32:492-503.
    • (2014) Biotechnol Adv , vol.32 , pp. 492-503
    • Xiao, Z.1    Lu, J.R.2
  • 11
    • 55949101810 scopus 로고    scopus 로고
    • The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase
    • 1:CAS:528:DC%2BD1cXhsVaru7zP
    • Nicholson WL. The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Appl Environ Microbiol. 2008;74:6832-8.
    • (2008) Appl Environ Microbiol , vol.74 , pp. 6832-6838
    • Nicholson, W.L.1
  • 12
    • 0000343873 scopus 로고    scopus 로고
    • Fermentative metabolism of Bacillus subtilis: Physiology and regulation of gene expression
    • 1:CAS:528:DC%2BD3cXjsVyltrc%3D
    • Ramos HC, Hoffmann T, Marino M, Nedjari H, Presecan-Siedel E, Dreesen O, et al. Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression. J Bacteriol. 2000;182:3072-80.
    • (2000) J Bacteriol , vol.182 , pp. 3072-3080
    • Ramos, H.C.1    Hoffmann, T.2    Marino, M.3    Nedjari, H.4    Presecan-Siedel, E.5    Dreesen, O.6
  • 13
    • 0027167447 scopus 로고
    • Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin
    • 1:CAS:528:DyaK3sXlsFeitrY%3D
    • Renna MC, Najimudin N, Winik LR, Zahler SA. Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol. 1993;175:3863-75.
    • (1993) J Bacteriol , vol.175 , pp. 3863-3875
    • Renna, M.C.1    Najimudin, N.2    Winik, L.R.3    Zahler, S.A.4
  • 14
    • 70349759561 scopus 로고    scopus 로고
    • Biotechnological production of 2,3-butanediol - Current state and prospects
    • Celińska E, Grajek W. Biotechnological production of 2,3-butanediol - current state and prospects. Biotechnol Adv. 2009;27:715-25.
    • (2009) Biotechnol Adv , vol.27 , pp. 715-725
    • Celińska, E.1    Grajek, W.2
  • 15
    • 0023984663 scopus 로고
    • Production of optically active 2,3-butanediol by Bacillus polymyxa
    • De Mas C, Jansen NB, Tsao GT. Production of optically active 2,3-butanediol by Bacillus polymyxa. Biotechnol Bioeng. 1988;31:366-77.
    • (1988) Biotechnol Bioeng , vol.31 , pp. 366-377
    • De Mas, C.1    Jansen, N.B.2    Tsao, G.T.3
  • 16
    • 77949448789 scopus 로고    scopus 로고
    • Metabolic engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. coli
    • 1:CAS:528:DC%2BC3cXjtFKmurY%3D
    • Nielsen DR, Yoon S-H, Yuan CJ, Prather KLJ. Metabolic engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. coli. Biotechnol J. 2010;5:274-84.
    • (2010) Biotechnol J , vol.5 , pp. 274-284
    • Nielsen, D.R.1    Yoon, S.-H.2    Yuan, C.J.3    Prather, K.L.J.4
  • 17
    • 84912528330 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for efficient production of (3R)-acetoin
    • 1:CAS:528:DC%2BC2cXhtVynt74%3D
    • Xu Q, Xie L, Li Y, Lin H, Sun S, Guan X, et al. Metabolic engineering of Escherichia coli for efficient production of (3R)-acetoin. J Chem Technol Biotechnol. 2015;90:93-100.
    • (2015) J Chem Technol Biotechnol , vol.90 , pp. 93-100
    • Xu, Q.1    Xie, L.2    Li, Y.3    Lin, H.4    Sun, S.5    Guan, X.6
  • 18
    • 84896847314 scopus 로고    scopus 로고
    • Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol
    • 1:CAS:528:DC%2BC2cXntFGhtr4%3D
    • Xu Y, Chu H, Gao C, Tao F, Zhou Z, Li K, et al. Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metab Eng. 2014;23:22-33.
    • (2014) Metab Eng , vol.23 , pp. 22-33
    • Xu, Y.1    Chu, H.2    Gao, C.3    Tao, F.4    Zhou, Z.5    Li, K.6
  • 19
    • 84940005446 scopus 로고    scopus 로고
    • Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production
    • 1:CAS:528:DC%2BC2MXisFektrY%3D
    • Bai F, Dai L, Fan J, Truong N, Rao B, Zhang L, et al. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production. J Ind Microbiol Biotechnol. 2015;42:779-86.
    • (2015) J Ind Microbiol Biotechnol , vol.42 , pp. 779-786
    • Bai, F.1    Dai, L.2    Fan, J.3    Truong, N.4    Rao, B.5    Zhang, L.6
  • 20
    • 84917739915 scopus 로고    scopus 로고
    • Compartmentalizing metabolic pathway in Candida glabrata for acetoin production
    • Li S, Liu L, Chen J. Compartmentalizing metabolic pathway in Candida glabrata for acetoin production. Metab Eng. 2015;28:1-7.
    • (2015) Metab Eng , vol.28 , pp. 1-7
    • Li, S.1    Liu, L.2    Chen, J.3
  • 21
    • 84914149151 scopus 로고    scopus 로고
    • Simultaneous production of butanol and acetoin by metabolically engineered Clostridium acetobutylicum
    • 1:CAS:528:DC%2BC2cXhvFOgs7bK
    • Liu D, Chen Y, Ding F, Guo T, Xie J, Zhuang W, et al. Simultaneous production of butanol and acetoin by metabolically engineered Clostridium acetobutylicum. Metab Eng. 2015;27:107-14.
    • (2015) Metab Eng , vol.27 , pp. 107-114
    • Liu, D.1    Chen, Y.2    Ding, F.3    Guo, T.4    Xie, J.5    Zhuang, W.6
  • 22
    • 84982706255 scopus 로고    scopus 로고
    • Production of acetoin through simultaneous utilization of glucose, xylose, and arabinose by engineered Bacillus subtilis
    • Zhang B, Li X, Fu J, Li N, Wang Z, Tang Y, et al. Production of acetoin through simultaneous utilization of glucose, xylose, and arabinose by engineered Bacillus subtilis. PLoS ONE. 2016;11:e0159298.
    • (2016) PLoS ONE , vol.11
    • Zhang, B.1    Li, X.2    Fu, J.3    Li, N.4    Wang, Z.5    Tang, Y.6
  • 23
    • 84899893925 scopus 로고    scopus 로고
    • Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase
    • Köpke M, Gerth ML, Maddock DJ, Mueller AP, Liew F, Simpson SD, et al. Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase. Appl Environ Microbiol. 2014;80:3394-403.
    • (2014) Appl Environ Microbiol , vol.80 , pp. 3394-3403
    • Köpke, M.1    Gerth, M.L.2    Maddock, D.J.3    Mueller, A.P.4    Liew, F.5    Simpson, S.D.6
  • 24
    • 79952705331 scopus 로고    scopus 로고
    • Microbial production of bulk chemicals: Development of anaerobic processes
    • 1:CAS:528:DC%2BC3MXjsFCrs7c%3D
    • Weusthuis RA, Lamot I, van der Oost J, Sanders JPM. Microbial production of bulk chemicals: development of anaerobic processes. Trends Biotechnol. 2011;29:153-8.
    • (2011) Trends Biotechnol , vol.29 , pp. 153-158
    • Weusthuis, R.A.1    Lamot, I.2    Van Der Oost, J.3    Sanders, J.P.M.4
  • 25
    • 84990837139 scopus 로고    scopus 로고
    • Pyruvate production using engineered Escherichia coli
    • Akita H, Nakashima N, Hoshino T. Pyruvate production using engineered Escherichia coli. AMB Express. 2016;6:94.
    • (2016) AMB Express , vol.6 , pp. 94
    • Akita, H.1    Nakashima, N.2    Hoshino, T.3
  • 26
    • 55049095515 scopus 로고    scopus 로고
    • High glycolytic flux improves pyruvate production by a metabolically engineered Escherichia coli strain
    • 1:CAS:528:DC%2BD1cXhtlKms7rN
    • Zhu Y, Eiteman MA, Altman R, Altman E. High glycolytic flux improves pyruvate production by a metabolically engineered Escherichia coli strain. Appl Environ Microbiol. 2008;74:6649-55.
    • (2008) Appl Environ Microbiol , vol.74 , pp. 6649-6655
    • Zhu, Y.1    Eiteman, M.A.2    Altman, R.3    Altman, E.4
  • 27
    • 41549151089 scopus 로고    scopus 로고
    • Biotechnological routes to pyruvate production
    • 1:CAS:528:DC%2BD1cXmsVOrs74%3D
    • Xu P, Qiu J, Gao C, Ma C. Biotechnological routes to pyruvate production. J Biosci Bioeng. 2008;105:169-75.
    • (2008) J Biosci Bioeng , vol.105 , pp. 169-175
    • Xu, P.1    Qiu, J.2    Gao, C.3    Ma, C.4
  • 28
    • 1442306213 scopus 로고    scopus 로고
    • Engineering Escherichia coli for efficient conversion of glucose to pyruvate
    • 1:CAS:528:DC%2BD2cXhvVOisr0%3D
    • Causey TB, Shanmugam KT, Yomano LP, Ingram LO. Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proc Natl Acad Sci USA. 2004;101:2235-40.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 2235-2240
    • Causey, T.B.1    Shanmugam, K.T.2    Yomano, L.P.3    Ingram, L.O.4
  • 29
    • 85013229324 scopus 로고    scopus 로고
    • Acetoin production via unbalanced fermentation in Shewanella oneidensis
    • Bursac T, Gralnick JA, Gescher J. Acetoin production via unbalanced fermentation in Shewanella oneidensis. Biotechnol Bioeng. 2017;. doi: 10.1002/bit.26243.
    • (2017) Biotechnol Bioeng
    • Bursac, T.1    Gralnick, J.A.2    Gescher, J.3
  • 31
    • 73249114332 scopus 로고    scopus 로고
    • Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1
    • 1:CAS:528:DC%2BD1MXhs1Wgsr%2FE
    • Schuetz B, Schicklberger M, Kuermann J, Spormann AM, Gescher J. Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1. Appl Environ Microbiol. 2009;75:7789-96.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 7789-7796
    • Schuetz, B.1    Schicklberger, M.2    Kuermann, J.3    Spormann, A.M.4    Gescher, J.5
  • 32
    • 0036228521 scopus 로고    scopus 로고
    • Engineering a reduced Escherichia coli genome
    • 1:CAS:528:DC%2BD38XivVemtL4%3D
    • Kolisnychenko V. Engineering a reduced Escherichia coli genome. Genome Res. 2002;12:640-7.
    • (2002) Genome Res , vol.12 , pp. 640-647
    • Kolisnychenko, V.1
  • 33
    • 0034612342 scopus 로고    scopus 로고
    • One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
    • 1:CAS:528:DC%2BD3cXktFais7c%3D
    • Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci. 2000;97:6640-5.
    • (2000) Proc Natl Acad Sci , vol.97 , pp. 6640-6645
    • Datsenko, K.A.1    Wanner, B.L.2
  • 34
    • 0036778151 scopus 로고    scopus 로고
    • Adaptation of sucrose metabolism in the Escherichia coli wild-type strain EC3132
    • 1:CAS:528:DC%2BD38Xnt1ehsb4%3D
    • Jahreis K, Bentler L, Bockmann J, Hans S, Meyer A, Siepelmeyer J, et al. Adaptation of sucrose metabolism in the Escherichia coli wild-type strain EC3132. J Bacteriol. 2002;184:5307-16.
    • (2002) J Bacteriol , vol.184 , pp. 5307-5316
    • Jahreis, K.1    Bentler, L.2    Bockmann, J.3    Hans, S.4    Meyer, A.5    Siepelmeyer, J.6
  • 35
    • 0037633360 scopus 로고    scopus 로고
    • Gene replacement without selection: Regulated suppression of amber mutations in Escherichia coli
    • 1:CAS:528:DC%2BD3sXltFGjsbs%3D
    • Herring CD, Glasner JD, Blattner FR. Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene. 2003;311:153-63.
    • (2003) Gene , vol.311 , pp. 153-163
    • Herring, C.D.1    Glasner, J.D.2    Blattner, F.R.3
  • 37
    • 0035682064 scopus 로고    scopus 로고
    • Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria
    • 1:CAS:528:DC%2BD3MXnsl2gsr0%3D
    • Haldimann A, Wanner BL. Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J Bacteriol. 2001;183:6384-93.
    • (2001) J Bacteriol , vol.183 , pp. 6384-6393
    • Haldimann, A.1    Wanner, B.L.2
  • 39
    • 84882778651 scopus 로고    scopus 로고
    • Systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1
    • 1:CAS:528:DC%2BC3sXhsVeju73L
    • Kipf E, Koch J, Geiger B, Erben J, Richter K, Gescher J, et al. Systematic screening of carbon-based anode materials for microbial fuel cells with Shewanella oneidensis MR-1. Bioresour Technol. 2013;146:386-92.
    • (2013) Bioresour Technol , vol.146 , pp. 386-392
    • Kipf, E.1    Koch, J.2    Geiger, B.3    Erben, J.4    Richter, K.5    Gescher, J.6
  • 40
    • 84923860609 scopus 로고    scopus 로고
    • Metabolic Engineering of Escherichia coli for production of mixed-acid fermentation end products
    • Förster AH, Gescher J. Metabolic Engineering of Escherichia coli for production of mixed-acid fermentation end products. Front Bioeng Biotechnol. 2014;. doi: 10.3389/fbioe.2014.00016.
    • (2014) Front Bioeng Biotechnol
    • Förster, A.H.1    Gescher, J.2
  • 41
    • 0030861452 scopus 로고    scopus 로고
    • Independent and Tight regulation of transcriptional units in Escherichia Coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements
    • 1:CAS:528:DyaK2sXitF2js7c%3D
    • Lutz R, Bujard H. Independent and Tight regulation of transcriptional units in Escherichia Coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 1997;25:1203-10.
    • (1997) Nucleic Acids Res , vol.25 , pp. 1203-1210
    • Lutz, R.1    Bujard, H.2
  • 42
    • 15244361841 scopus 로고    scopus 로고
    • Effect of a single-gene knockout on the metabolic regulation in Escherichia coli for D-lactate production under microaerobic condition
    • 1:CAS:528:DC%2BD2MXisVCmu7Y%3D
    • Zhu J, Shimizu K. Effect of a single-gene knockout on the metabolic regulation in Escherichia coli for D-lactate production under microaerobic condition. Metab Eng. 2005;7:104-15.
    • (2005) Metab Eng , vol.7 , pp. 104-115
    • Zhu, J.1    Shimizu, K.2
  • 44
    • 0037560068 scopus 로고    scopus 로고
    • The effect of acetate pathway mutations on the production of pyruvate in Escherichia coli
    • 1:CAS:528:DC%2BD3sXltVWgsr8%3D
    • Tomar A, Eiteman MA, Altman E. The effect of acetate pathway mutations on the production of pyruvate in Escherichia coli. Appl Microbiol Biotechnol. 2003;62:76-82.
    • (2003) Appl Microbiol Biotechnol , vol.62 , pp. 76-82
    • Tomar, A.1    Eiteman, M.A.2    Altman, E.3
  • 45
    • 0035108591 scopus 로고    scopus 로고
    • Introduction to advantages and problems of shaken cultures
    • Büchs J. Introduction to advantages and problems of shaken cultures. Biochem Eng J. 2001;7:91-8.
    • (2001) Biochem Eng J , vol.7 , pp. 91-98
    • Büchs, J.1
  • 46
    • 4043119663 scopus 로고    scopus 로고
    • Effect of oxygen limitation and medium composition on Escherichia coli fermentation in shake-flask cultures
    • 1:CAS:528:DC%2BD2cXjvFSgt78%3D
    • Losen M, Frölich B, Pohl M, Büchs J. Effect of oxygen limitation and medium composition on Escherichia coli fermentation in shake-flask cultures. Biotechnol Prog. 2004;20:1062-8.
    • (2004) Biotechnol Prog , vol.20 , pp. 1062-1068
    • Losen, M.1    Frölich, B.2    Pohl, M.3    Büchs, J.4
  • 49
    • 0024231821 scopus 로고
    • Differential roles for menaquinone and demethylmenaquinone in anaerobic electron transport of E. coli and their fnr-independent expression
    • 1:CAS:528:DyaL1cXmtVyjt7o%3D
    • Unden G. Differential roles for menaquinone and demethylmenaquinone in anaerobic electron transport of E. coli and their fnr-independent expression. Arch Microbiol. 1988;150:499-503.
    • (1988) Arch Microbiol , vol.150 , pp. 499-503
    • Unden, G.1
  • 50
    • 0030738589 scopus 로고    scopus 로고
    • Alternative respiratory pathways of Escherichia coli: Energetics and transcriptional regulation in response to electron acceptors
    • 1:CAS:528:DyaK2sXjvVygt7k%3D
    • Unden G, Bongaerts J. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta BBA Bioenerg. 1997;1320:217-34.
    • (1997) Biochim Biophys Acta BBA Bioenerg , vol.1320 , pp. 217-234
    • Unden, G.1    Bongaerts, J.2
  • 51
    • 0031867366 scopus 로고    scopus 로고
    • The production of D-acetoin by a transgenic Escherichia coli
    • 1:CAS:528:DyaK1cXjs12rsLc%3D
    • Ui Mimura, Okuma Kudo. The production of D-acetoin by a transgenic Escherichia coli. Lett Appl Microbiol. 1998;26:275-8.
    • (1998) Lett Appl Microbiol , vol.26 , pp. 275-278
    • Ui, M.1    Okuma, K.2
  • 52
    • 84888851185 scopus 로고    scopus 로고
    • Engineering Bacillus subtilis for acetoin production from glucose and xylose mixtures
    • 1:CAS:528:DC%2BC3sXhsl2jsbzK
    • Chen T, Liu W, Fu J, Zhang B, Tang Y. Engineering Bacillus subtilis for acetoin production from glucose and xylose mixtures. J Biotechnol. 2013;168:499-505.
    • (2013) J Biotechnol , vol.168 , pp. 499-505
    • Chen, T.1    Liu, W.2    Fu, J.3    Zhang, B.4    Tang, Y.5
  • 53
    • 84884704488 scopus 로고    scopus 로고
    • Production of S-acetoin from diacetyl by Escherichia coli transformant cells that express the diacetyl reductase gene of Paenibacillus polymyxa ZJ-9
    • 1:CAS:528:DC%2BC3sXhsFGgurzJ
    • Gao J, Xu YY, Li FW, Ding G. Production of S-acetoin from diacetyl by Escherichia coli transformant cells that express the diacetyl reductase gene of Paenibacillus polymyxa ZJ-9. Lett Appl Microbiol. 2013;57:274-81.
    • (2013) Lett Appl Microbiol , vol.57 , pp. 274-281
    • Gao, J.1    Xu, Y.Y.2    Li, F.W.3    Ding, G.4
  • 54
    • 77955559433 scopus 로고    scopus 로고
    • Microbial production of meso-2,3-butanediol by metabolically engineered Escherichia coli under low oxygen condition
    • 1:CAS:528:DC%2BC3cXptlWqtbY%3D
    • Li Z-J, Jian J, Wei X-X, Shen X-W, Chen G-Q. Microbial production of meso-2,3-butanediol by metabolically engineered Escherichia coli under low oxygen condition. Appl Microbiol Biotechnol. 2010;87:2001-9.
    • (2010) Appl Microbiol Biotechnol , vol.87 , pp. 2001-2009
    • Li, Z.-J.1    Jian, J.2    Wei, X.-X.3    Shen, X.-W.4    Chen, G.-Q.5
  • 55
    • 84897445215 scopus 로고    scopus 로고
    • Two-stage pH control strategy based on the pH preference of acetoin reductase regulates acetoin and 2,3-butanediol distribution in Bacillus subtilis
    • Zhang X, Bao T, Rao Z, Yang T, Xu Z, Yang S, et al. Two-stage pH control strategy based on the pH preference of acetoin reductase regulates acetoin and 2,3-butanediol distribution in Bacillus subtilis. PLoS ONE. 2014;9:e91187.
    • (2014) PLoS ONE , vol.9
    • Zhang, X.1    Bao, T.2    Rao, Z.3    Yang, T.4    Xu, Z.5    Yang, S.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.