메뉴 건너뛰기




Volumn 11, Issue 7, 2016, Pages

Production of acetoin through simultaneous utilization of glucose, xylose, and arabinose by engineered Bacillus subtilis

Author keywords

[No Author keywords available]

Indexed keywords

ACETOIN; ARABINOSE; ARAE PROTEIN; CARRIER PROTEIN; GLUCOSE; UNCLASSIFIED DRUG; XYLOSE;

EID: 84982706255     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0159298     Document Type: Article
Times cited : (39)

References (37)
  • 1
    • 84895454815 scopus 로고    scopus 로고
    • Strategies for enhancing fermentative production of acetoin. A review
    • PMID: 24412764
    • Xiao Z, Lu JR. Strategies for enhancing fermentative production of acetoin. A review. Biotechnol Adv. 2014, 32(2): 492-503. doi: 10.1016/j.biotechadv.2014.01.002 PMID: 24412764
    • (2014) Biotechnol Adv , vol.32 , Issue.2 , pp. 492-503
    • Xiao, Z.1    Lu, J.R.2
  • 3
    • 84884355722 scopus 로고    scopus 로고
    • Moderate expression of the transcriptional regulator ALsR enhances acetoin production by Bacillus subtilis
    • PMID: 23836140
    • Zhang X, Zhang R, Bao T, Yang T, Xu M, Li H, et al. Moderate expression of the transcriptional regulator ALsR enhances acetoin production by Bacillus subtilis. J Ind Microbiol Biotechnol. 2013, 40(9): 1067-1076. doi: 10.1007/s10295-013-1303-5 PMID: 23836140
    • (2013) J Ind Microbiol Biotechnol , vol.40 , Issue.9 , pp. 1067-1076
    • Zhang, X.1    Zhang, R.2    Bao, T.3    Yang, T.4    Xu, M.5    Li, H.6
  • 4
    • 84862318026 scopus 로고    scopus 로고
    • Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase
    • Sun JA, Zhang LY, Rao B, Shen YL, Wei DZ. Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase. Bioresour Technol. 2012, 119(7): 94-98. doi: 10.1016/j.biortech.2012.05.108
    • (2012) Bioresour Technol , vol.119 , Issue.7 , pp. 94-98
    • Sun, J.A.1    Zhang, L.Y.2    Rao, B.3    Shen, Y.L.4    Wei, D.Z.5
  • 5
    • 84896881649 scopus 로고    scopus 로고
    • The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new waterforming NADH oxidase in Bacillus subtilis
    • Zhang X, Zhang R, Bao T, Rao Z, Yang T, Xu M, et al. The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new waterforming NADH oxidase in Bacillus subtilis. Metab Eng. 2014, 23(2): 34-41. doi: 10.1016/j.ymben.2014.02.002
    • (2014) Metab Eng , vol.23 , Issue.2 , pp. 34-41
    • Zhang, X.1    Zhang, R.2    Bao, T.3    Rao, Z.4    Yang, T.5    Xu, M.6
  • 6
    • 84872130583 scopus 로고    scopus 로고
    • Acetoin production enhanced by manipulating carbon flux in a newly isolated Bacillus amyloliquefaciens
    • Zhang Y, Li S, Liu L, Wu J. Acetoin production enhanced by manipulating carbon flux in a newly isolated Bacillus amyloliquefaciens. Bioresour Technol. 2013, 130(1): 256-260. doi: 10.1016/j.biortech.2012.10.036
    • (2013) Bioresour Technol , vol.130 , Issue.1 , pp. 256-260
    • Zhang, Y.1    Li, S.2    Liu, L.3    Wu, J.4
  • 7
    • 8744260557 scopus 로고    scopus 로고
    • Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene
    • Geckil H, Barak Z, Chipman DM, Erenler SO, Webster DA, Stark BC. Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene. Bioproc Biosyst Eng. 2004, 26(5): 325-330. doi: 10.1007/s00449-004-0373-1
    • (2004) Bioproc Biosyst Eng , vol.26 , Issue.5 , pp. 325-330
    • Geckil, H.1    Barak, Z.2    Chipman, D.M.3    Erenler, S.O.4    Webster, D.A.5    Stark, B.C.6
  • 8
    • 84864667724 scopus 로고    scopus 로고
    • Enhanced acetoin production by Serratia marcescens H32 using statistical optimization and a two-stage agitation speed control strategy
    • Sun J, Zhang L, Rao B, Han Y, Chu J, Zhu J, et al. Enhanced acetoin production by Serratia marcescens H32 using statistical optimization and a two-stage agitation speed control strategy. Biotechnol Bioproc Eng. 2012, 17(3):598-605. doi: 10.1007/s00449-004-0373-1
    • (2012) Biotechnol Bioproc Eng , vol.17 , Issue.3 , pp. 598-605
    • Sun, J.1    Zhang, L.2    Rao, B.3    Han, Y.4    Chu, J.5    Zhu, J.6
  • 9
    • 84871963978 scopus 로고    scopus 로고
    • New insights into Lactococcus lactis diacetyl- and acetoin-producing strains isolated from diverse origins
    • PMID: 23290242
    • Passerini D, Laroute V, Coddeville M, LeBourgeois P, Loubiere P, Ritzenthaler P, et al. New insights into Lactococcus lactis diacetyl- and acetoin-producing strains isolated from diverse origins. Int J Food Microbiol. 2013, 160(3): 329-336. doi: 10.1016/j.ijfoodmicro.2012.10.023 PMID: 23290242
    • (2013) Int J Food Microbiol , vol.160 , Issue.3 , pp. 329-336
    • Passerini, D.1    Laroute, V.2    Coddeville, M.3    LeBourgeois, P.4    Loubiere, P.5    Ritzenthaler, P.6
  • 10
    • 84881317268 scopus 로고    scopus 로고
    • Selective production of 2,3-butanediol and acetoin by a newly isolated bacterium Klebsiella oxytoca M1
    • Cho S, Kim KD, Ahn JH, Lee J, Kim SW, Um Y. Selective production of 2,3-butanediol and acetoin by a newly isolated bacterium Klebsiella oxytoca M1. Appl Biochem Biotech. 2013, 170(8): 1922-1933. doi: 10.1007/s12010-013-0291-2
    • (2013) Appl Biochem Biotech , vol.170 , Issue.8 , pp. 1922-1933
    • Cho, S.1    Kim, K.D.2    Ahn, J.H.3    Lee, J.4    Kim, S.W.5    Um, Y.6
  • 11
    • 0027459458 scopus 로고
    • Acetoin production in Saccharomyces cerevisiae wine yeasts
    • PMID: 8472921
    • Romano P, Suzzi G. Acetoin production in Saccharomyces cerevisiae wine yeasts. FEMS Microbiol Lett. 1993, 108(1): 23-26. doi: 10.1016/0378-1097(93)90481-G PMID: 8472921
    • (1993) FEMS Microbiol Lett , vol.108 , Issue.1 , pp. 23-26
    • Romano, P.1    Suzzi, G.2
  • 12
    • 78650252702 scopus 로고    scopus 로고
    • Efficient production of acetoin by the newly isolated Bacillus licheniformis strain MEL09
    • Liu Y, Zhang S, Yong Y-C, Ji Z, Ma X, Xu Z, et al. Efficient production of acetoin by the newly isolated Bacillus licheniformis strain MEL09. Process Biochem. 2011, 46(1): 390-394. doi: 10.1016/j.procbio.2010.07.024
    • (2011) Process Biochem , vol.46 , Issue.1 , pp. 390-394
    • Liu, Y.1    Zhang, S.2    Yong, Y.-C.3    Ji, Z.4    Ma, X.5    Xu, Z.6
  • 13
    • 84904259537 scopus 로고    scopus 로고
    • Enhanced acetoin production by Bacillus amyloliquefaciens through improved acetoin tolerance
    • Luo Q, Wu J, Wu M. Enhanced acetoin production by Bacillus amyloliquefaciens through improved acetoin tolerance. Process Biochem. 2014, 49(8). 1223-1230. doi: 10.1016/j.procbio.2014.05.005
    • (2014) Process Biochem , vol.49 , Issue.8 , pp. 1223-1230
    • Luo, Q.1    Wu, J.2    Wu, M.3
  • 14
    • 84867640048 scopus 로고    scopus 로고
    • Efficient acetoin production by optimization of medium components and oxygen supply control using a newly isolated Paenibacillus polymyxa CS107
    • Zhang L, Chen S, Xie H, Tian Y, Hu K. Efficient acetoin production by optimization of medium components and oxygen supply control using a newly isolated Paenibacillus polymyxa CS107. Journal of Chemical Technology & Biotechnology. 2012, 87(11): 1551-1557. doi: 10.1002/jctb.3791
    • (2012) Journal of Chemical Technology & Biotechnology , vol.87 , Issue.11 , pp. 1551-1557
    • Zhang, L.1    Chen, S.2    Xie, H.3    Tian, Y.4    Hu, K.5
  • 16
    • 84905117794 scopus 로고    scopus 로고
    • Characterization of acetoin production in a budC gene disrupted mutant of Serratia marcescens G12
    • PMID: 24879481
    • Gao S, Guo W, Shi L, Yu Y, Zhang C, Yang H. Characterization of acetoin production in a budC gene disrupted mutant of Serratia marcescens G12. J Ind Microbiol Biotechnol. 2014, 41(8): 1267-1274. doi: 10.1007/s10295-014-1464-x PMID: 24879481
    • (2014) J Ind Microbiol Biotechnol , vol.41 , Issue.8 , pp. 1267-1274
    • Gao, S.1    Guo, W.2    Shi, L.3    Yu, Y.4    Zhang, C.5    Yang, H.6
  • 17
    • 84912528330 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for efficient production of (3R)-acetoin
    • Xu Q, Xie L, Li Y, Lin H, Sun S, Guan X, et al. Metabolic engineering of Escherichia coli for efficient production of (3R)-acetoin. J Chem Technol Biotechnol. 2015, 90(1): 93-100. doi: 10.1002/jctb.4293
    • (2015) J Chem Technol Biotechnol , vol.90 , Issue.1 , pp. 93-100
    • Xu, Q.1    Xie, L.2    Li, Y.3    Lin, H.4    Sun, S.5    Guan, X.6
  • 18
    • 85027929146 scopus 로고    scopus 로고
    • Metabolic engineering of Bacillus subtilis for enhanced production of acetoin
    • Wang M, Fu J, Zhang X, Chen T. Metabolic engineering of Bacillus subtilis for enhanced production of acetoin. Biotechnol Lett. 2013, 34(10): 1877-1885. doi: 10.1007/s10529-015-1950-x
    • (2013) Biotechnol Lett , vol.34 , Issue.10 , pp. 1877-1885
    • Wang, M.1    Fu, J.2    Zhang, X.3    Chen, T.4
  • 19
    • 77955658467 scopus 로고    scopus 로고
    • Biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products
    • PMID: 20667714
    • FitzPatrick M, Champagne P, Cunningham MF, Whitney RA. Biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol. 2010, 101(23): 8915-8922. doi: 10.1016/j.biortech.2010.06.125 PMID: 20667714
    • (2010) Bioresour Technol , vol.101 , Issue.23 , pp. 8915-8922
    • FitzPatrick, M.1    Champagne, P.2    Cunningham, M.F.3    Whitney, R.A.4
  • 20
    • 0034071629 scopus 로고    scopus 로고
    • Metabolic engineering applications to renewable resource utilization
    • PMID: 10753763
    • Aristidou A, Penttila M. Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol. 2000, 11(2): 187-198. doi: 10.1016/S0958-1669(00)00085-9 PMID: 10753763
    • (2000) Curr Opin Biotechnol , vol.11 , Issue.2 , pp. 187-198
    • Aristidou, A.1    Penttila, M.2
  • 21
    • 74149091662 scopus 로고    scopus 로고
    • Sugar transporters in efficient utilization of mixed sugar substrates: Current knowledge and outlook
    • PMID: 19838697
    • Jojima T, Omumasaba CA, Inui M, Yukawa H. Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Appl Microbiol Biotechnol. 2010, 85(3): 471-480. doi: 10.1007/s00253-009-2292-1 PMID: 19838697
    • (2010) Appl Microbiol Biotechnol , vol.85 , Issue.3 , pp. 471-480
    • Jojima, T.1    Omumasaba, C.A.2    Inui, M.3    Yukawa, H.4
  • 22
    • 59949093124 scopus 로고    scopus 로고
    • Novel Evolutionary Engineering Approach for Accelerated Utilization of Glucose, Xylose, and Arabinose Mixtures by Engineered Saccharomyces cerevisiae Strains
    • PMID: 19074603
    • Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, van Maris AJA. Novel Evolutionary Engineering Approach for Accelerated Utilization of Glucose, Xylose, and Arabinose Mixtures by Engineered Saccharomyces cerevisiae Strains. Appl Environ Microbiol. 2009, 75(4): 907-914. doi: 10.1128/AEM.02268-08 PMID: 19074603
    • (2009) Appl Environ Microbiol , vol.75 , Issue.4 , pp. 907-914
    • Wisselink, H.W.1    Toirkens, M.J.2    Wu, Q.3    Pronk, J.T.4    Van Maris, A.J.A.5
  • 23
    • 77955555768 scopus 로고    scopus 로고
    • Establishment of l-Arabinose fermentation in Glucose/Xylose co-fermenting recombinant Saccharomyces cerevisiae 424A (LNH-ST) by genetic engineering
    • PMID: 20449743
    • Bera A, Sedlak M, Khan A, Ho NY. Establishment of l-Arabinose fermentation in Glucose/Xylose co-fermenting recombinant Saccharomyces cerevisiae 424A (LNH-ST) by genetic engineering. Appl Microbiol Biotechnol. 2010, 87(5): 1803-1811. doi: 10.1007/s00253-010-2609-0 PMID: 20449743
    • (2010) Appl Microbiol Biotechnol , vol.87 , Issue.5 , pp. 1803-1811
    • Bera, A.1    Sedlak, M.2    Khan, A.3    Ho, N.Y.4
  • 24
    • 83055184898 scopus 로고    scopus 로고
    • Confirmation and Elimination of Xylose Metabolism Bottlenecks in Glucose Phosphoenolpyruvate-Dependent Phosphotransferase System-Deficient Clostridium acetobutylicum for Simultaneous Utilization of Glucose, Xylose, and Arabinose
    • PMID: 21926197
    • Xiao H, Gu Y, Ning Y, Yang Y, Mitchell WJ, Jiang W, et al. Confirmation and Elimination of Xylose Metabolism Bottlenecks in Glucose Phosphoenolpyruvate-Dependent Phosphotransferase System-Deficient Clostridium acetobutylicum for Simultaneous Utilization of Glucose, Xylose, and Arabinose. Appl Environ Microbiol. 2011, 77(22): 7886-7895. doi: 10.1128/AEM.00644-11 PMID: 21926197
    • (2011) Appl Environ Microbiol , vol.77 , Issue.22 , pp. 7886-7895
    • Xiao, H.1    Gu, Y.2    Ning, Y.3    Yang, Y.4    Mitchell, W.J.5    Jiang, W.6
  • 25
    • 84861969435 scopus 로고    scopus 로고
    • Simultaneous utilization of Glucose, Xylose and Arabinose in the presence of acetate by a consortium of Escherichia coli strains
    • Xia T, Eiteman MA, Altman E. Simultaneous utilization of Glucose, Xylose and Arabinose in the presence of acetate by a consortium of Escherichia coli strains. Microb Cell Fact. 2012, 11(1):1-9. doi: 10.1186/1475-2859-11-77
    • (2012) Microb Cell Fact , vol.11 , Issue.1 , pp. 1-9
    • Xia, T.1    Eiteman, M.A.2    Altman, E.3
  • 26
    • 0024325613 scopus 로고
    • Cloning and characterization of araA, araB, and araD, the structural genes for L-Arabinose utilization in Bacillus subtilis
    • PMID: 2500424
    • Sa-Nogueira I, de Lencastre H. Cloning and characterization of araA, araB, and araD, the structural genes for L-Arabinose utilization in Bacillus subtilis. J Bacteriol. 1989, 171(7): 4088-4091. PMID: 2500424.
    • (1989) J Bacteriol , vol.171 , Issue.7 , pp. 4088-4091
    • Sa-Nogueira, I.1    De Lencastre, H.2
  • 27
    • 0030030841 scopus 로고    scopus 로고
    • A Bacillus subtilis 168 mutant with increased Xylose uptake can utilize Xylose as sole carbon source
    • Schmiedel D, Hillen W. A Bacillus subtilis 168 mutant with increased Xylose uptake can utilize Xylose as sole carbon source. FEMS Microbiol Lett. 1996, 135(2-3): 175-178. doi: 10.1016/0378-1097(95)00445-9
    • (1996) FEMS Microbiol Lett , vol.135 , Issue.2-3 , pp. 175-178
    • Schmiedel, D.1    Hillen, W.2
  • 28
    • 0141480274 scopus 로고    scopus 로고
    • Distinct molecular mechanisms involved in carbon catabolize repression of the Arabinose regulon in Bacillus subtilis
    • Inácio JM, Costa C, de Sá-Nogueira I. Distinct molecular mechanisms involved in carbon catabolize repression of the Arabinose regulon in Bacillus subtilis. Microbiology. 2003, 149(9): 2345-2355. doi: 10.1099/mic.0.26326-0
    • (2003) Microbiology , vol.149 , Issue.9 , pp. 2345-2355
    • Inácio, J.M.1    Costa, C.2    De Sá-Nogueira, I.3
  • 29
    • 0028264818 scopus 로고
    • Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and Glucose exerts additional xylR-dependent repression
    • PMID: 8132469
    • Kraus A, Hueck C, Gartner D, Hillen W. Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and Glucose exerts additional xylR-dependent repression. J Bacteriol. 1994, 176(6): 1738-1745. PMID: 8132469.
    • (1994) J Bacteriol , vol.176 , Issue.6 , pp. 1738-1745
    • Kraus, A.1    Hueck, C.2    Gartner, D.3    Hillen, W.4
  • 30
    • 84925518157 scopus 로고    scopus 로고
    • Inverse metabolic engineering of Bacillus subtilis for Xylose utilization based on adaptive evolution and whole-genome sequencing
    • PMID: 25620468
    • Zhang B, Li N, Wang Z, Tang YJ, Chen T, Zhao X. Inverse metabolic engineering of Bacillus subtilis for Xylose utilization based on adaptive evolution and whole-genome sequencing. Appl Microbiol Biotechnol. 2014, 99(2):885-896. doi: 10.1007/s00253-014-6131-7 PMID: 25620468
    • (2014) Appl Microbiol Biotechnol , vol.99 , Issue.2 , pp. 885-896
    • Zhang, B.1    Li, N.2    Wang, Z.3    Tang, Y.J.4    Chen, T.5    Zhao, X.6
  • 31
    • 84888851185 scopus 로고    scopus 로고
    • Engineering Bacillus subtilis for acetoin production from Glucose and Xylose mixtures
    • PMID: 24120578
    • Chen T, Liu WX, Fu J, Zhang B, Tang YJ. Engineering Bacillus subtilis for acetoin production from Glucose and Xylose mixtures. J Biotechnol. 2013, (4:): 499-505. doi: 10.1016/j.jbiotec.2013.09.020 PMID: 24120578
    • (2013) J Biotechnol , Issue.4 , pp. 499-505
    • Chen, T.1    Liu, W.X.2    Fu, J.3    Zhang, B.4    Tang, Y.J.5
  • 32
    • 0001134202 scopus 로고
    • Requirements for Transformation in Bacillus Subtilis
    • PMID: 16561900
    • Anagnostopoulos C, Spizizen J. Requirements for Transformation in Bacillus Subtilis. J Bacteriol. 1961, 81(5):741-746. PMID: 16561900.
    • (1961) J Bacteriol , vol.81 , Issue.5 , pp. 741-746
    • Anagnostopoulos, C.1    Spizizen, J.2
  • 34
    • 75949110177 scopus 로고    scopus 로고
    • Enzymatic conversion of lignocellulose into fermentable sugars: Challenges and opportunities
    • Jorgensen H, Kristensen JB, Felby C. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuel Bioprod Bior. 2007, 1(2): 119-134. doi: 10.1002/bbb.4
    • (2007) Biofuel Bioprod Bior , vol.1 , Issue.2 , pp. 119-134
    • Jorgensen, H.1    Kristensen, J.B.2    Felby, C.3
  • 35
    • 84884813430 scopus 로고    scopus 로고
    • Mutation breeding of acetoin high producing Bacillus subtilis blocked in 2, 3-butanediol dehydrogenase
    • PMID: 23549901
    • Zhang X, Zhang R, Yang T. Mutation breeding of acetoin high producing Bacillus subtilis blocked in 2, 3-butanediol dehydrogenase. World J Microbiol Biotechnol. 2013, 29(10): 1783-1789. doi: 10.1007/s11274-013-1339-8 PMID: 23549901
    • (2013) World J Microbiol Biotechnol , vol.29 , Issue.10 , pp. 1783-1789
    • Zhang, X.1    Zhang, R.2    Yang, T.3
  • 36
    • 84897445215 scopus 로고    scopus 로고
    • Two-Stage pH Control Strategy Based on the pH Preference of Acetoin Reductase Regulates Acetoin and 2,3-Butanediol Distribution in Bacillus subtilis
    • PMID: 24608678
    • Zhang X, Bao T, Rao ZM. Two-Stage pH Control Strategy Based on the pH Preference of Acetoin Reductase Regulates Acetoin and 2,3-Butanediol Distribution in Bacillus subtilis. Plos One. 2014, 9(3): e91187. doi: 10.1371/journal.pone.0091187 PMID: 24608678
    • (2014) Plos One , vol.9 , Issue.3
    • Zhang, X.1    Bao, T.2    Rao, Z.M.3
  • 37
    • 84966421127 scopus 로고    scopus 로고
    • Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production
    • Fu J, Huo GX, Feng LL, Mao YF, Wang ZW, Ma HW, et al. Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production. Biotechnology for Biofuels. 2016, 9(1):1-14. doi: 10.1186/s13068-016-0502-5
    • (2016) Biotechnology for Biofuels , vol.9 , Issue.1 , pp. 1-14
    • Fu, J.1    Huo, G.X.2    Feng, L.L.3    Mao, Y.F.4    Wang, Z.W.5    Ma, H.W.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.