메뉴 건너뛰기




Volumn 113, Issue 4, 2016, Pages 687-697

Transforming exoelectrogens for biotechnology using synthetic biology

Author keywords

Abiotic biotic interface; Anode respiring bacteria; Extracellular electron transfer; Microbial electrochemistry; Microbial electrosynthesis

Indexed keywords

BACTERIA; BIOTECHNOLOGY; ELECTROCHEMISTRY; ELECTRON TRANSITIONS; ELECTRONS; REDOX REACTIONS;

EID: 84959568240     PISSN: 00063592     EISSN: 10970290     Source Type: Journal    
DOI: 10.1002/bit.25723     Document Type: Article
Times cited : (124)

References (83)
  • 2
    • 84896905548 scopus 로고    scopus 로고
    • Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii
    • Banerjee A, Leang C, Ueki T, Nevin KP, Lovley DR. 2014. Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii. Appl Environ Microbiol 80(8):2410-2416.
    • (2014) Appl Environ Microbiol , vol.80 , Issue.8 , pp. 2410-2416
    • Banerjee, A.1    Leang, C.2    Ueki, T.3    Nevin, K.P.4    Lovley, D.R.5
  • 4
    • 37349104620 scopus 로고    scopus 로고
    • Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells
    • Biffinger JC, Byrd JN, Dudley BL, Ringeisen BR. 2008. Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells. Biosens Bioelectron 23(6):820-826.
    • (2008) Biosens Bioelectron , vol.23 , Issue.6 , pp. 820-826
    • Biffinger, J.C.1    Byrd, J.N.2    Dudley, B.L.3    Ringeisen, B.R.4
  • 5
    • 84894282258 scopus 로고    scopus 로고
    • A defined co-culture of Geobacter sulfurreducens and Escherichia coli in a membrane-less microbial fuel cell
    • Bourdakos N, Marsili E, Mahadevan R. 2013. A defined co-culture of Geobacter sulfurreducens and Escherichia coli in a membrane-less microbial fuel cell. Biotechnol Bioeng 111(4):709-718.
    • (2013) Biotechnol Bioeng , vol.111 , Issue.4 , pp. 709-718
    • Bourdakos, N.1    Marsili, E.2    Mahadevan, R.3
  • 6
    • 84964314061 scopus 로고    scopus 로고
    • Multi-haem cytochromes in Shewanella oneidensis MR-1: Structures, functions and opportunities
    • Breuer M, Rosso KM, Blumberger J, Butt JN. 2015. Multi-haem cytochromes in Shewanella oneidensis MR-1: Structures, functions and opportunities. J R Soc Interface. 12:20141117.
    • (2015) J R Soc Interface , vol.12 , pp. 20141117
    • Breuer, M.1    Rosso, K.M.2    Blumberger, J.3    Butt, J.N.4
  • 7
    • 84901001601 scopus 로고    scopus 로고
    • Engineering redox balance through cofactor systems
    • Chen X, Li S, Liu L. 2014. Engineering redox balance through cofactor systems. Trends Biotechnol 32(6):337-343.
    • (2014) Trends Biotechnol , vol.32 , Issue.6 , pp. 337-343
    • Chen, X.1    Li, S.2    Liu, L.3
  • 8
    • 84879681227 scopus 로고    scopus 로고
    • Characterization of 582 natural and synthetic terminators and quantification of their design constraints
    • Chen Y-J, Liu P, Nielsen AAK, Brophy JAN, Clancy K, Peterson T, Voigt CA. 2013. Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat Methods 10(7):659-664.
    • (2013) Nat Methods , vol.10 , Issue.7 , pp. 659-664
    • Chen, Y.-J.1    Liu, P.2    Nielsen, A.A.K.3    Brophy, J.A.N.4    Clancy, K.5    Peterson, T.6    Voigt, C.A.7
  • 9
    • 84891358973 scopus 로고    scopus 로고
    • Metabolically engineered glucose-utilizing Shewanella strains under anaerobic conditions
    • Choi D, Lee SB, Kim S, Min B, Choi I-G, Chang IS. 2014. Metabolically engineered glucose-utilizing Shewanella strains under anaerobic conditions. Bioresour Technol 154(0):59-66.
    • (2014) Bioresour Technol , vol.154 , pp. 59-66
    • Choi, D.1    Lee, S.B.2    Kim, S.3    Min, B.4    Choi, I.-G.5    Chang, I.S.6
  • 11
    • 73649141295 scopus 로고    scopus 로고
    • The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis
    • Coursolle D, Baron DB, Bond DR, Gralnick JA. 2010. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriol 192(2):467-474.
    • (2010) J Bacteriol , vol.192 , Issue.2 , pp. 467-474
    • Coursolle, D.1    Baron, D.B.2    Bond, D.R.3    Gralnick, J.A.4
  • 12
    • 34548009438 scopus 로고    scopus 로고
    • Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer
    • Crittenden SR, Sund CJ, Sumner JJ. 2006. Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer. Langmuir 22(23):9473-9476.
    • (2006) Langmuir , vol.22 , Issue.23 , pp. 9473-9476
    • Crittenden, S.R.1    Sund, C.J.2    Sumner, J.J.3
  • 14
    • 84927517075 scopus 로고    scopus 로고
    • Microbial electroreduction: Screening for new cathodic biocatalysts
    • deCamposRodrigues T, Rosenbaum MA. 2014. Microbial electroreduction: Screening for new cathodic biocatalysts. Chem Electro Chem 1(11):1916-1922.
    • (2014) Chem Electro Chem , vol.1 , Issue.11 , pp. 1916-1922
    • deCamposRodrigues, T.1    Rosenbaum, M.A.2
  • 15
    • 84893391645 scopus 로고    scopus 로고
    • Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr(VI) immobilization
    • Ding Y, Peng N, Du Y, Ji L, Cao B. 2014. Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr(VI) immobilization. Appl Environ Microbiol 80(4):1498-1506.
    • (2014) Appl Environ Microbiol , vol.80 , Issue.4 , pp. 1498-1506
    • Ding, Y.1    Peng, N.2    Du, Y.3    Ji, L.4    Cao, B.5
  • 17
    • 79952147700 scopus 로고    scopus 로고
    • Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria
    • Flynn JM, Ross DE, Hunt KA, Bond DR, Gralnick JA. 2010. Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. MBio 1(5).
    • (2010) MBio , vol.1 , Issue.5
    • Flynn, J.M.1    Ross, D.E.2    Hunt, K.A.3    Bond, D.R.4    Gralnick, J.A.5
  • 18
    • 41749120309 scopus 로고    scopus 로고
    • Dissimilatory iron reduction in Escherichia coli: Identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases
    • Gescher JS, Cordova CD, Spormann AM. 2008. Dissimilatory iron reduction in Escherichia coli: Identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases. Mol Microbiol 68(3):706-719.
    • (2008) Mol Microbiol , vol.68 , Issue.3 , pp. 706-719
    • Gescher, J.S.1    Cordova, C.D.2    Spormann, A.M.3
  • 20
    • 84897957295 scopus 로고    scopus 로고
    • Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton-motive force
    • Glasser NR, Kern SE, Newman DK. 2014. Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton-motive force. Mol Microbiol 92(2):399-412.
    • (2014) Mol Microbiol , vol.92 , Issue.2 , pp. 399-412
    • Glasser, N.R.1    Kern, S.E.2    Newman, D.K.3
  • 22
    • 84876313599 scopus 로고    scopus 로고
    • Proof of principle for an engineered microbial biosensor based on Shewanella oneidensis outer membrane protein complexes
    • Golitsch F, Bücking C, Gescher J. 2013. Proof of principle for an engineered microbial biosensor based on Shewanella oneidensis outer membrane protein complexes. Biosens Bioelectron 47(0):285-291.
    • (2013) Biosens Bioelectron , vol.47 , pp. 285-291
    • Golitsch, F.1    Bücking, C.2    Gescher, J.3
  • 23
  • 24
    • 2642520659 scopus 로고    scopus 로고
    • Graphite electrodes as electron donors for anaerobic respiration
    • Gregory KB, Bond DR, Lovley DR. 2004. Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6(6):596-604.
    • (2004) Environ Microbiol , vol.6 , Issue.6 , pp. 596-604
    • Gregory, K.B.1    Bond, D.R.2    Lovley, D.R.3
  • 25
    • 84855480233 scopus 로고    scopus 로고
    • High frequency of glucose-utilizing mutants in Shewanella oneidensis MR-1
    • Howard EC, Hamdan LJ, Lizewski SE, Ringeisen BR. 2012. High frequency of glucose-utilizing mutants in Shewanella oneidensis MR-1. FEMS Microbiol Lett 327(1):9-14.
    • (2012) FEMS Microbiol Lett , vol.327 , Issue.1 , pp. 9-14
    • Howard, E.C.1    Hamdan, L.J.2    Lizewski, S.E.3    Ringeisen, B.R.4
  • 26
    • 84924021206 scopus 로고    scopus 로고
    • Programming the quorum sensing-based AND gate in Shewanella oneidensis for logic gated-microbial fuel cells
    • Hu Y, Yang Y, Katz E, Song H. 2015. Programming the quorum sensing-based AND gate in Shewanella oneidensis for logic gated-microbial fuel cells. Chem Commun 51(20):4184-4187.
    • (2015) Chem Commun , vol.51 , Issue.20 , pp. 4184-4187
    • Hu, Y.1    Yang, Y.2    Katz, E.3    Song, H.4
  • 27
    • 77954357832 scopus 로고    scopus 로고
    • Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1
    • Hunt KA, Flynn JM, Naranjo B, Shikhare ID, Gralnick JA. 2010. Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. J Bacteriol 192(13):3345-3351.
    • (2010) J Bacteriol , vol.192 , Issue.13 , pp. 3345-3351
    • Hunt, K.A.1    Flynn, J.M.2    Naranjo, B.3    Shikhare, I.D.4    Gralnick, J.A.5
  • 31
    • 84874608929 scopus 로고    scopus 로고
    • RNA-guided editing of bacterial genomes using CRISPR-Cas systems
    • Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31(3):233-239.
    • (2013) Nat Biotechnol , vol.31 , Issue.3 , pp. 233-239
    • Jiang, W.1    Bikard, D.2    Cox, D.3    Zhang, F.4    Marraffini, L.A.5
  • 32
    • 77954273729 scopus 로고    scopus 로고
    • Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping
    • Johnson ET, Baron DB, Naranjo B, Bond DR, Schmidt-Dannert C, Gralnick JA. 2010. Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping. Appl Environ Microbiol 76(13):4123-4129.
    • (2010) Appl Environ Microbiol , vol.76 , Issue.13 , pp. 4123-4129
    • Johnson, E.T.1    Baron, D.B.2    Naranjo, B.3    Bond, D.R.4    Schmidt-Dannert, C.5    Gralnick, J.A.6
  • 33
    • 84874062525 scopus 로고    scopus 로고
    • Electrochemical analysis of Shewanella oneidensis engineered to bind gold electrodes
    • Kane AL, Bond DR, Gralnick JA. 2012. Electrochemical analysis of Shewanella oneidensis engineered to bind gold electrodes. ACS Synth Biol 2(2):93-101.
    • (2012) ACS Synth Biol , vol.2 , Issue.2 , pp. 93-101
    • Kane, A.L.1    Bond, D.R.2    Gralnick, J.A.3
  • 34
    • 84899696363 scopus 로고    scopus 로고
    • Large-scale de novo DNA synthesis: Technologies and applications
    • Kosuri S, Church GM. 2014. Large-scale de novo DNA synthesis: Technologies and applications. Nat Methods 11(5):499-507.
    • (2014) Nat Methods , vol.11 , Issue.5 , pp. 499-507
    • Kosuri, S.1    Church, G.M.2
  • 35
    • 84874582197 scopus 로고    scopus 로고
    • Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis
    • Kotloski NJ, Gralnick JA. 2013. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. MBio 4(1).
    • (2013) MBio , vol.4 , Issue.1
    • Kotloski, N.J.1    Gralnick, J.A.2
  • 36
    • 84904272442 scopus 로고    scopus 로고
    • Electrochemical selection and characterization of a high current-generating Shewanella oneidensis mutant with altered cell-surface morphology and biofilm-related gene expression
    • Kouzuma A, Oba H, Tajima N, Hashimoto K, Watanabe K. 2014. Electrochemical selection and characterization of a high current-generating Shewanella oneidensis mutant with altered cell-surface morphology and biofilm-related gene expression. BMC Microbiol 14(1):190.
    • (2014) BMC Microbiol , vol.14 , Issue.1 , pp. 190
    • Kouzuma, A.1    Oba, H.2    Tajima, N.3    Hashimoto, K.4    Watanabe, K.5
  • 37
    • 84936993627 scopus 로고    scopus 로고
    • Microbial electron transport and energy conservation-the foundation for optimizing bioelectrochemical systems
    • Kracke F, Vassilev I, Krömer JO. 2015. Microbial electron transport and energy conservation-the foundation for optimizing bioelectrochemical systems. Front Microbiol 6.
    • (2015) Front Microbiol , pp. 6
    • Kracke, F.1    Vassilev, I.2    Krömer, J.O.3
  • 38
    • 84878846838 scopus 로고    scopus 로고
    • Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production
    • Leang C, Malvankar NS, Franks AE, Nevin KP, Lovley DR. 2013a. Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production. Energy & Environmental Science 6(6):1901-1908.
    • (2013) Energy & Environmental Science , vol.6 , Issue.6 , pp. 1901-1908
    • Leang, C.1    Malvankar, N.S.2    Franks, A.E.3    Nevin, K.P.4    Lovley, D.R.5
  • 39
    • 84874738185 scopus 로고    scopus 로고
    • A genetic system for Clostridium ljungdahlii: A chassis for autotrophic production of biocommodities and a model homoacetogen
    • Leang C, Ueki T, Nevin KP, Lovley DR. 2013b. A genetic system for Clostridium ljungdahlii: A chassis for autotrophic production of biocommodities and a model homoacetogen. Appl Environ Microbiol 79(4):1102-1109.
    • (2013) Appl Environ Microbiol , vol.79 , Issue.4 , pp. 1102-1109
    • Leang, C.1    Ueki, T.2    Nevin, K.P.3    Lovley, D.R.4
  • 40
    • 84920903442 scopus 로고    scopus 로고
    • An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors
    • Levar CE, Chan CH, Mehta-Kolte MG, Bond DR. 2014. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors. MBio 5(6).
    • (2014) MBio , vol.5 , Issue.6
    • Levar, C.E.1    Chan, C.H.2    Mehta-Kolte, M.G.3    Bond, D.R.4
  • 44
    • 76849084828 scopus 로고    scopus 로고
    • Scaling up microbial fuel cells and other bioelectrochemical systems
    • Logan B. 2010. Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol and Biotechnol 85(6):1665-1671.
    • (2010) Appl Microbiol and Biotechnol , vol.85 , Issue.6 , pp. 1665-1671
    • Logan, B.1
  • 45
    • 64749084426 scopus 로고    scopus 로고
    • Exoelectrogenic bacteria that power microbial fuel cells
    • Logan BE. 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nat Revi Microbiol 7(5):375-381.
    • (2009) Nat Revi Microbiol , vol.7 , Issue.5 , pp. 375-381
    • Logan, B.E.1
  • 46
    • 84864831407 scopus 로고    scopus 로고
    • Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies
    • Logan BE, Rabaey K. 2012. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337(6095):686-690.
    • (2012) Science , vol.337 , Issue.6095 , pp. 686-690
    • Logan, B.E.1    Rabaey, K.2
  • 48
    • 84884195957 scopus 로고    scopus 로고
    • Analysis of enhanced current-generating mechanism of Geobacter sulfurreducens strain via model-driven metabolism simulation
    • Meng J, Xu Z, Guo J, Yue Y, Sun X. 2013. Analysis of enhanced current-generating mechanism of Geobacter sulfurreducens strain via model-driven metabolism simulation. PLoS ONE 8(9):e73907.
    • (2013) PLoS ONE , vol.8 , Issue.9 , pp. e73907
    • Meng, J.1    Xu, Z.2    Guo, J.3    Yue, Y.4    Sun, X.5
  • 51
    • 78650173757 scopus 로고    scopus 로고
    • Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
    • Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. 2010. Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1(2).
    • (2010) MBio , vol.1 , Issue.2
    • Nevin, K.P.1    Woodard, T.L.2    Franks, A.E.3    Summers, Z.M.4    Lovley, D.R.5
  • 52
    • 84877334667 scopus 로고    scopus 로고
    • Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones
    • Okamoto A, Hashimoto K, Nealson KH, Nakamura R. 2013. Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. Proc Natl Acad Sci 110(19):7856-7861.
    • (2013) Proc Natl Acad Sci , vol.110 , Issue.19 , pp. 7856-7861
    • Okamoto, A.1    Hashimoto, K.2    Nealson, K.H.3    Nakamura, R.4
  • 53
    • 53049086510 scopus 로고    scopus 로고
    • Engineering solventogenic clostridia
    • Papoutsakis ET. 2008. Engineering solventogenic clostridia. Curr Opin Biotechnol 19(5):420-429.
    • (2008) Curr Opin Biotechnol , vol.19 , Issue.5 , pp. 420-429
    • Papoutsakis, E.T.1
  • 55
    • 41749102419 scopus 로고    scopus 로고
    • Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells
    • Qiao Y, Li CM, Bao S-J, Lu Z, Hong Y. 2008. Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells. Chem Commun (11):1290-1292.
    • (2008) Chem Commun , Issue.11 , pp. 1290-1292
    • Qiao, Y.1    Li, C.M.2    Bao, S.-J.3    Lu, Z.4    Hong, Y.5
  • 56
    • 77957147094 scopus 로고    scopus 로고
    • Microbial electrosynthesis-revisiting the electrical route for microbial production
    • Rabaey K, Rozendal RA. 2010. Microbial electrosynthesis-revisiting the electrical route for microbial production. Nat Rev Microbiol 8(10):706-716.
    • (2010) Nat Rev Microbiol , vol.8 , Issue.10 , pp. 706-716
    • Rabaey, K.1    Rozendal, R.A.2
  • 57
    • 84880084177 scopus 로고    scopus 로고
    • Synthetic biology and metabolic engineering approaches to produce biofuels
    • Rabinovitch-Deere CA, Oliver JWK, Rodriguez GM, Atsumi S. 2013. Synthetic biology and metabolic engineering approaches to produce biofuels. Chem Rev 113(7):4611-4632.
    • (2013) Chem Rev , vol.113 , Issue.7 , pp. 4611-4632
    • Rabinovitch-Deere, C.A.1    Oliver, J.W.K.2    Rodriguez, G.M.3    Atsumi, S.4
  • 59
  • 60
    • 84857082945 scopus 로고    scopus 로고
    • Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration
    • Richter K, Schicklberger M, Gescher J. 2012. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appl Environ Microbiol 78(4):913-921.
    • (2012) Appl Environ Microbiol , vol.78 , Issue.4 , pp. 913-921
    • Richter, K.1    Schicklberger, M.2    Gescher, J.3
  • 61
    • 84895072628 scopus 로고    scopus 로고
    • Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives
    • Rosenbaum M, Franks A. 2014. Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives. Appl Microbiol Biotechnol 98(2):509-518.
    • (2014) Appl Microbiol Biotechnol , vol.98 , Issue.2 , pp. 509-518
    • Rosenbaum, M.1    Franks, A.2
  • 63
    • 78650827567 scopus 로고    scopus 로고
    • Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor
    • Rosenbaum MA, Bar HY, Beg QK, Segrè D, Booth J, Cotta MA, Angenent LT. 2011. Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor. Bioresour Technol 102(3):2623-2628.
    • (2011) Bioresour Technol , vol.102 , Issue.3 , pp. 2623-2628
    • Rosenbaum, M.A.1    Bar, H.Y.2    Beg, Q.K.3    Segrè, D.4    Booth, J.5    Cotta, M.A.6    Angenent, L.T.7
  • 64
    • 84897491978 scopus 로고    scopus 로고
    • Engineering microbial electrocatalysis for chemical and fuel production
    • Rosenbaum MA, Henrich AW. 2014. Engineering microbial electrocatalysis for chemical and fuel production. Curr Opin Biotechnol 29(0):93-98.
    • (2014) Curr Opin Biotechnol , vol.29 , pp. 93-98
    • Rosenbaum, M.A.1    Henrich, A.W.2
  • 65
    • 79551652545 scopus 로고    scopus 로고
    • Towards electrosynthesis in Shewanella: Energetics of reversing the Mtr pathway for reductive metabolism
    • Ross DE, Flynn JM, Baron DB, Gralnick JA, Bond DR. 2011. Towards electrosynthesis in Shewanella: Energetics of reversing the Mtr pathway for reductive metabolism. PLoS ONE 6(2):e 16649.
    • (2011) PLoS ONE , vol.6 , Issue.2 , pp. e 16649
    • Ross, D.E.1    Flynn, J.M.2    Baron, D.B.3    Gralnick, J.A.4    Bond, D.R.5
  • 66
    • 84927557042 scopus 로고    scopus 로고
    • Marine sediments microbes capable of electrode oxidation as a surrogate for lithotrophic insoluble substrate metabolism
    • Rowe AR, Chellamuthu P, Lam B, Okamoto A, Nealson K. 2015. Marine sediments microbes capable of electrode oxidation as a surrogate for lithotrophic insoluble substrate metabolism. Front Microbiol 5.
    • (2015) Front Microbiol , pp. 5
    • Rowe, A.R.1    Chellamuthu, P.2    Lam, B.3    Okamoto, A.4    Nealson, K.5
  • 67
    • 84863630261 scopus 로고    scopus 로고
    • Pathway engineering and synthetic biology using acetogens
    • Schiel-Bengelsdorf B, Dürre P. 2012. Pathway engineering and synthetic biology using acetogens. FEBS Lett 586(15):2191-2198.
    • (2012) FEBS Lett , vol.586 , Issue.15 , pp. 2191-2198
    • Schiel-Bengelsdorf, B.1    Dürre, P.2
  • 68
    • 84930934882 scopus 로고    scopus 로고
    • Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440
    • Schmitz S, Nies S, Wierckx N, Blank LM, Rosenbaum MA. 2015. Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440. Front Microbiol 6.
    • (2015) Front Microbiol , pp. 6
    • Schmitz, S.1    Nies, S.2    Wierckx, N.3    Blank, L.M.4    Rosenbaum, M.A.5
  • 69
    • 73249114332 scopus 로고    scopus 로고
    • Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1
    • Schuetz B, Schicklberger M, Kuermann J, Spormann AM, Gescher J. 2009. Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1. Appl Environ Microbiol 75(24):7789-7796.
    • (2009) Appl Environ Microbiol , vol.75 , Issue.24 , pp. 7789-7796
    • Schuetz, B.1    Schicklberger, M.2    Kuermann, J.3    Spormann, A.M.4    Gescher, J.5
  • 70
    • 33745447768 scopus 로고    scopus 로고
    • Genomic analysis of carbon source metabolism of Shewanella oneidensis MR-1: Predictions versus experiments
    • Serres MH, Riley M. 2006. Genomic analysis of carbon source metabolism of Shewanella oneidensis MR-1: Predictions versus experiments. J Bacteriol 188(13):4601-4609.
    • (2006) J Bacteriol , vol.188 , Issue.13 , pp. 4601-4609
    • Serres, M.H.1    Riley, M.2
  • 71
    • 84987815000 scopus 로고    scopus 로고
    • Genomic analyses of bacterial porin-cytochrome gene clusters
    • Shi L, Fredrickson JK, Zachara JM. 2014. Genomic analyses of bacterial porin-cytochrome gene clusters. Front Microbiol 5:657.
    • (2014) Front Microbiol , vol.5 , pp. 657
    • Shi, L.1    Fredrickson, J.K.2    Zachara, J.M.3
  • 72
    • 71849085372 scopus 로고    scopus 로고
    • Building outside of the box: IGEM and the BioBricks Foundation
    • Smolke CD. 2009. Building outside of the box: IGEM and the BioBricks Foundation. Nat Biotechnol 27(12):1099-1102.
    • (2009) Nat Biotechnol , vol.27 , Issue.12 , pp. 1099-1102
    • Smolke, C.D.1
  • 73
    • 84925379369 scopus 로고    scopus 로고
    • Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells
    • Sturm-Richter K, Golitsch F, Sturm G, Kipf E, Dittrich A, Beblawy S, Kerzenmacher S, Gescher J. 2015. Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells. Bioresour Technol 186:89-96.
    • (2015) Bioresour Technol , vol.186 , pp. 89-96
    • Sturm-Richter, K.1    Golitsch, F.2    Sturm, G.3    Kipf, E.4    Dittrich, A.5    Beblawy, S.6    Kerzenmacher, S.7    Gescher, J.8
  • 74
    • 78651397316 scopus 로고    scopus 로고
    • Robust multicellular computing using genetically encoded NOR gates and chemical 'wires'
    • Tamsir A, Tabor JJ, Voigt CA. 2011. Robust multicellular computing using genetically encoded NOR gates and chemical 'wires'. Nature 469(7329):212-215.
    • (2011) Nature , vol.469 , Issue.7329 , pp. 212-215
    • Tamsir, A.1    Tabor, J.J.2    Voigt, C.A.3
  • 76
    • 82555176829 scopus 로고    scopus 로고
    • Bacteria-based biocomputing with Cellular Computing Circuits to sense, decide, signal, and act
    • TerAvest MA, Li Z, Angenent LT. 2011. Bacteria-based biocomputing with Cellular Computing Circuits to sense, decide, signal, and act. Energy & Environmental Science 4(12):4907-4916.
    • (2011) Energy & Environmental Science , vol.4 , Issue.12 , pp. 4907-4916
    • TerAvest, M.A.1    Li, Z.2    Angenent, L.T.3
  • 77
    • 84923885794 scopus 로고    scopus 로고
    • The Mtr pathway of Shewanella oneidensis MR-1 couples substrate utilization to current production in Escherichia coli
    • TerAvest MA, Zajdel TJ, Ajo-Franklin CM. 2014. The Mtr pathway of Shewanella oneidensis MR-1 couples substrate utilization to current production in Escherichia coli. ChemElectroChem 1(11):2000-2006.
    • (2014) ChemElectroChem , vol.1 , Issue.11 , pp. 2000-2006
    • TerAvest, M.A.1    Zajdel, T.J.2    Ajo-Franklin, C.M.3
  • 79
    • 73849089506 scopus 로고    scopus 로고
    • Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer
    • Wang Y, Kern SE, Newman DK. 2010. Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. J Bacteriol 192(1):365-369.
    • (2010) J Bacteriol , vol.192 , Issue.1 , pp. 365-369
    • Wang, Y.1    Kern, S.E.2    Newman, D.K.3
  • 81
    • 84930962189 scopus 로고    scopus 로고
    • Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway
    • Yang Y, Ding Y, Hu Y, Cao B, Rice SA, Kjelleberg S, Song H. 2015. Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synth Biol 4(7):815-823.
    • (2015) ACS Synth Biol , vol.4 , Issue.7 , pp. 815-823
    • Yang, Y.1    Ding, Y.2    Hu, Y.3    Cao, B.4    Rice, S.A.5    Kjelleberg, S.6    Song, H.7
  • 82
    • 80755190069 scopus 로고    scopus 로고
    • Bioelectricity enhancement via overexpression of quorum sensing system in Pseudomonas aeruginosa-inoculated microbial fuel cells
    • Yong Y-C, Yu Y-Y, Li C-M, Zhong J-J, Song H. 2011. Bioelectricity enhancement via overexpression of quorum sensing system in Pseudomonas aeruginosa-inoculated microbial fuel cells. Biosens Bioelectron 30(1):87-92.
    • (2011) Biosens Bioelectron , vol.30 , Issue.1 , pp. 87-92
    • Yong, Y.-C.1    Yu, Y.-Y.2    Li, C.-M.3    Zhong, J.-J.4    Song, H.5
  • 83
    • 84871721482 scopus 로고    scopus 로고
    • Enhancement of extracellular electron transfer and bioelectricity output by synthetic porin
    • Yong Y-C, Yu Y-Y, Yang Y, Liu J, Wang J-Y, Song H. 2013. Enhancement of extracellular electron transfer and bioelectricity output by synthetic porin. Biotechnol Bioeng 110(2):408-416.
    • (2013) Biotechnol Bioeng , vol.110 , Issue.2 , pp. 408-416
    • Yong, Y.-C.1    Yu, Y.-Y.2    Yang, Y.3    Liu, J.4    Wang, J.-Y.5    Song, H.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.