-
2
-
-
77649145914
-
Color graphs for automated cancer diagnosis and grading
-
D. Altunbay, C. Cigir, C. Sokmensuer, and C. Gunduz-Demir. Color graphs for automated cancer diagnosis and grading. Biomedical Engineering, IEEE Transactions on, 57(3):665-674, 2010.
-
(2010)
Biomedical Engineering, IEEE Transactions on
, vol.57
, Issue.3
, pp. 665-674
-
-
Altunbay, D.1
Cigir, C.2
Sokmensuer, C.3
Gunduz-Demir, C.4
-
3
-
-
84973888826
-
High-for-low and lowfor-high: Efficient boundary detection from deep object fea-tures and its applications to high-level vision
-
G. Bertasius, J. Shi, and L. Torresani. High-for-low and lowfor-high: Efficient boundary detection from deep object fea-tures and its applications to high-level vision. In ICCV, pages 504-512, 2015.
-
(2015)
ICCV
, pp. 504-512
-
-
Bertasius, G.1
Shi, J.2
Torresani, L.3
-
4
-
-
84947424557
-
Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks
-
Springer
-
H. Chen, Q. Dou, D. Ni, J.-Z. Cheng, J. Qin, S. Li, and P.-A. Heng. Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks. In MICCAI, pages 507-514. Springer, 2015.
-
(2015)
MICCAI
, pp. 507-514
-
-
Chen, H.1
Dou, Q.2
Ni, D.3
Cheng, J.-Z.4
Qin, J.5
Li, S.6
Heng, P.-A.7
-
6
-
-
84947419089
-
Automatic localization and identification of vertebrae in spine CT via a joint learning model with deep neural networks
-
Springer
-
H. Chen, C. Shen, J. Qin, D. Ni, L. Shi, J. C. Cheng, and P.-A. Heng. Automatic localization and identification of vertebrae in spine CT via a joint learning model with deep neural networks. In MICCAI, pages 515-522. Springer, 2015.
-
(2015)
MICCAI
, pp. 515-522
-
-
Chen, H.1
Shen, C.2
Qin, J.3
Ni, D.4
Shi, L.5
Cheng, J.C.6
Heng, P.-A.7
-
7
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected CRFs
-
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected CRFs. In ICLR, 2015.
-
(2015)
ICLR
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
8
-
-
84877789057
-
Deep neural networks segment neuronal membranes in electron microscopy images
-
D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber. Deep neural networks segment neuronal membranes in electron microscopy images. In NIPS, pages 2843-2851, 2012.
-
(2012)
NIPS
, pp. 2843-2851
-
-
Ciresan, D.1
Giusti, A.2
Gambardella, L.M.3
Schmidhuber, J.4
-
9
-
-
84973890848
-
Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation
-
J. Dai, K. He, and J. Sun. Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In ICCV, pages 1635-1643, 2015.
-
(2015)
ICCV
, pp. 1635-1643
-
-
Dai, J.1
He, K.2
Sun, J.3
-
10
-
-
84947599684
-
Deep learning and structured prediction for the segmentation of mass in mammograms
-
Springer
-
N. Dhungel, G. Carneiro, and A. P. Bradley. Deep learning and structured prediction for the segmentation of mass in mammograms. In MICCAI, pages 605-612. Springer, 2015.
-
(2015)
MICCAI
, pp. 605-612
-
-
Dhungel, N.1
Carneiro, G.2
Bradley, A.P.3
-
11
-
-
4444356703
-
The use of morphological characteristics and texture analysis in the identification of tissue composition in prostatic neoplasia
-
J. Diamond, N. H. Anderson, P. H. Bartels, R. Montironi, and P. W. Hamilton. The use of morphological characteristics and texture analysis in the identification of tissue composition in prostatic neoplasia. Human Pathology, 35(9):1121-1131, 2004.
-
(2004)
Human Pathology
, vol.35
, Issue.9
, pp. 1121-1131
-
-
Diamond, J.1
Anderson, N.H.2
Bartels, P.H.3
Montironi, R.4
Hamilton, P.W.5
-
12
-
-
84968542337
-
Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
-
Q. Dou, H. Chen, Y. Lequan, L. Zhao, J. Qin, W. Defeng, M. Vincent, L. Shi, and P. A. Heng. Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. Medical Imaging, IEEE Transactions on, 2016.
-
(2016)
Medical Imaging, IEEE Transactions on
-
-
Dou, Q.1
Chen, H.2
Lequan, Y.3
Zhao, L.4
Qin, J.5
Defeng, W.6
Vincent, M.7
Shi, L.8
Heng, P.A.9
-
13
-
-
71749111270
-
A boosting cascade for automated detection of prostate cancer from digitized histology
-
Springer
-
S. Doyle, A. Madabhushi, M. Feldman, and J. Tomaszeweski. A boosting cascade for automated detection of prostate cancer from digitized histology. In MICCAI, pages 504-511. Springer, 2006.
-
(2006)
MICCAI
, pp. 504-511
-
-
Doyle, S.1
Madabhushi, A.2
Feldman, M.3
Tomaszeweski, J.4
-
14
-
-
0026072872
-
Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: Experience from a large study with long-term followup
-
C.W. Elston, I. O. Ellis, et al. Pathological prognostic factors in breast cancer. i. the value of histological grade in breast cancer: experience from a large study with long-term followup. Histopathology, 19(5):403-410, 1991.
-
(1991)
Histopathology
, vol.19
, Issue.5
, pp. 403-410
-
-
Elston, C.W.1
Ellis, I.O.2
-
15
-
-
77951298115
-
The pascal visual object classes (voc) challenge
-
M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. IJCV, 88(2):303-338, 2010.
-
(2010)
IJCV
, vol.88
, Issue.2
, pp. 303-338
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.3
Winn, J.4
Zisserman, A.5
-
16
-
-
84874385450
-
Analyzing tubular tissue in histopathological thin sections
-
IEEE
-
A. Fakhrzadeh, E. Sporndly-Nees, L. Holm, and C. L. L. Hendriks. Analyzing tubular tissue in histopathological thin sections. In Digital Image Computing Techniques and Applications (DICTA), 2012 International Conference on, pages 1-6. IEEE, 2012.
-
(2012)
Digital Image Computing Techniques and Applications (DICTA), 2012 International Conference on
, pp. 1-6
-
-
Fakhrzadeh, A.1
Sporndly-Nees, E.2
Holm, L.3
Hendriks, C.L.L.4
-
17
-
-
84995752906
-
Colorectal carcinoma: Pathologic aspects
-
M. Fleming, S. Ravula, S. F. Tatishchev, and H. L. Wang. Colorectal carcinoma: pathologic aspects. Journal of gastrointestinal oncology, 3(3):153-173, 2012.
-
(2012)
Journal of Gastrointestinal Oncology
, vol.3
, Issue.3
, pp. 153-173
-
-
Fleming, M.1
Ravula, S.2
Tatishchev, S.F.3
Wang, H.L.4
-
18
-
-
84896288043
-
A novel polar space random field model for the detection of glandular structures
-
H. Fu, G. Qiu, J. Shu, and M. Ilyas. A novel polar space random field model for the detection of glandular structures. Medical Imaging, IEEE Transactions on, 33(3):764-776, 2014.
-
(2014)
Medical Imaging, IEEE Transactions on
, vol.33
, Issue.3
, pp. 764-776
-
-
Fu, H.1
Qiu, G.2
Shu, J.3
Ilyas, M.4
-
19
-
-
0026589997
-
Histologic grading of prostate cancer: A perspective
-
D. F. Gleason. Histologic grading of prostate cancer: a perspective. Human pathology, 23(3):273-279, 1992.
-
(1992)
Human Pathology
, vol.23
, Issue.3
, pp. 273-279
-
-
Gleason, D.F.1
-
20
-
-
70450285290
-
Automatic segmentation of colon glands using object-graphs
-
C. Gunduz-Demir, M. Kandemir, A. B. Tosun, and C. Sokmensuer. Automatic segmentation of colon glands using object-graphs. Medical image analysis, 14(1):1-12, 2010.
-
(2010)
Medical Image Analysis
, vol.14
, Issue.1
, pp. 1-12
-
-
Gunduz-Demir, C.1
Kandemir, M.2
Tosun, A.B.3
Sokmensuer, C.4
-
21
-
-
85013813121
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385, 2015.
-
(2015)
ArXiv Preprint ArXiv
, vol.1512
, pp. 03385
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
22
-
-
84890466217
-
Improving neural networks by preventing co-adaptation of feature detectors
-
G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv: 1207.0580, 2012.
-
(2012)
ArXiv Preprint ArXiv
, vol.1207
, pp. 0580
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
23
-
-
84921753566
-
Gleason grading of prostate tumours with max-margin conditional random fields
-
Springer
-
J. G. Jacobs, E. Panagiotaki, and D. C. Alexander. Gleason grading of prostate tumours with max-margin conditional random fields. In Machine Learning in Medical Imaging, pages 85-92. Springer, 2014.
-
(2014)
Machine Learning in Medical Imaging
, pp. 85-92
-
-
Jacobs, J.G.1
Panagiotaki, E.2
Alexander, D.C.3
-
24
-
-
85009867858
-
-
arXiv preprint arXiv 1408 5093
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv: 1408.5093, 2014.
-
(2014)
Caffe: Convolutional architecture for fast feature embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
25
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012.
-
(2012)
NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
26
-
-
85009928594
-
Deeplysupervised nets
-
C. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeplysupervised nets. In AISTATS, 2015.
-
(2015)
AISTATS
-
-
Lee, C.1
Xie, S.2
Gallagher, P.3
Zhang, Z.4
Tu, Z.5
-
27
-
-
84945230598
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, pages 3431-3440, 2015.
-
(2015)
CVPR
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
28
-
-
84872534252
-
Structure and context in prostatic gland segmentation and classification
-
Springer
-
K. Nguyen, A. Sarkar, and A. K. Jain. Structure and context in prostatic gland segmentation and classification. In MICCAI, pages 115-123. Springer, 2012.
-
(2012)
MICCAI
, pp. 115-123
-
-
Nguyen, K.1
Sarkar, A.2
Jain, A.K.3
-
29
-
-
84973867110
-
Semantic segmentation with object clique potential
-
X. Qi, J. Shi, S. Liu, R. Liao, and J. Jia. Semantic segmentation with object clique potential. In ICCV, pages 2587-2595, 2015.
-
(2015)
ICCV
, pp. 2587-2595
-
-
Qi, X.1
Shi, J.2
Liu, S.3
Liao, R.4
Jia, J.5
-
30
-
-
84951834022
-
U-net: Convolutional networks for biomedical image segmentation
-
Springer
-
O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In MICCAI, pages 234-241. Springer, 2015.
-
(2015)
MICCAI
, pp. 234-241
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
-
31
-
-
84947475390
-
Deeporgan: Multi-level deep convolutional networks for automated pancreas segmentation
-
Springer
-
H. R. Roth, L. Lu, A. Farag, H.-C. Shin, J. Liu, E. B. Turkbey, and R. M. Summers. Deeporgan: Multi-level deep convolutional networks for automated pancreas segmentation. In MICCAI, pages 556-564. Springer, 2015.
-
(2015)
MICCAI
, pp. 556-564
-
-
Roth, H.R.1
Lu, L.2
Farag, A.3
Shin, H.-C.4
Liu, J.5
Turkbey, E.B.6
Summers, R.M.7
-
32
-
-
78149394261
-
Automated analysis of pin-4 stained prostate needle biopsies
-
Springer
-
B. Sabata, B. Babenko, R. Monroe, and C. Srinivas. Automated analysis of pin-4 stained prostate needle biopsies. In Prostate Cancer Imaging, pages 89-100. Springer, 2010.
-
(2010)
Prostate Cancer Imaging
, pp. 89-100
-
-
Sabata, B.1
Babenko, B.2
Monroe, R.3
Srinivas, C.4
-
33
-
-
84969962996
-
Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
-
H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R. M. Summers. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. Medical Imaging, IEEE Transactions on, 2016.
-
(2016)
Medical Imaging, IEEE Transactions on
-
-
Shin, H.-C.1
Roth, H.R.2
Gao, M.3
Lu, L.4
Xu, Z.5
Nogues, I.6
Yao, J.7
Mollura, D.8
Summers, R.M.9
-
34
-
-
84984995314
-
-
arXiv preprint arXiv 1603 00275
-
K. Sirinukunwattana, J. P. Pluim, H. Chen, X. Qi, P.-A. Heng, Y. B. Guo, L. Y. Wang, B. J. Matuszewski, E. Bruni, U. Sanchez, et al. Gland segmentation in colon histology images: The GlaS Challenge Contest. arXiv preprint arXiv: 1603.00275, 2016.
-
(2016)
Gland segmentation in colon histology images: The GlaS Challenge Contest
-
-
Sirinukunwattana, K.1
Pluim, J.P.2
Chen, H.3
Qi, X.4
Heng, P.-A.5
Guo, Y.B.6
Wang, L.Y.7
Matuszewski, B.J.8
Bruni, E.9
Sanchez, U.10
-
35
-
-
84955289509
-
A stochastic polygons model for glandular structures in colon histology images
-
K. Sirinukunwattana, D. Snead, and N. Rajpoot. A stochastic polygons model for glandular structures in colon histology images. Medical Imaging, IEEE Transactions on, 34(11):2366-2378, 2015.
-
(2015)
Medical Imaging, IEEE Transactions on
, vol.34
, Issue.11
, pp. 2366-2378
-
-
Sirinukunwattana, K.1
Snead, D.2
Rajpoot, N.3
-
37
-
-
34948819236
-
Multifeature prostate cancer diagnosis and gleason grading of histological images
-
A. Tabesh, M. Teverovskiy, H.-Y. Pang, V. P. Kumar, D. Verbel, A. Kotsianti, and O. Saidi. Multifeature prostate cancer diagnosis and gleason grading of histological images. Medical Imaging, IEEE Transactions on, 26(10):1366-1378, 2007.
-
(2007)
Medical Imaging, IEEE Transactions on
, vol.26
, Issue.10
, pp. 1366-1378
-
-
Tabesh, A.1
Teverovskiy, M.2
Pang, H.-Y.3
Kumar, V.P.4
Verbel, D.5
Kotsianti, A.6
Saidi, O.7
-
38
-
-
29744433299
-
Segmentation of intestinal gland images with iterative region growing
-
H.-S. WU, R. Xu, N. Harpaz, D. Burstein, and J. Gil. Segmentation of intestinal gland images with iterative region growing. Journal of Microscopy, 220(3):190-204, 2005.
-
(2005)
Journal of Microscopy
, vol.220
, Issue.3
, pp. 190-204
-
-
Wu, H.-S.1
Xu, R.2
Harpaz, N.3
Burstein, D.4
Gil, J.5
-
39
-
-
84973859794
-
Holistically-nested edge detection
-
S. Xie and Z. Tu. Holistically-nested edge detection. In ICCV, pages 1395-1403, 2015.
-
(2015)
ICCV
, pp. 1395-1403
-
-
Xie, S.1
Tu, Z.2
-
40
-
-
84937508363
-
How transferable are features in deep neural networks?
-
J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural networks? In NIPS, pages 3320-3328, 2014.
-
(2014)
NIPS
, pp. 3320-3328
-
-
Yosinski, J.1
Clune, J.2
Bengio, Y.3
Lipson, H.4
-
41
-
-
84906348918
-
Facial landmark detection by deep multi-task learning
-
Springer
-
Z. Zhang, P. Luo, C. C. Loy, and X. Tang. Facial landmark detection by deep multi-task learning. In ECCV, pages 94-108. Springer, 2014.
-
(2014)
ECCV
, pp. 94-108
-
-
Zhang, Z.1
Luo, P.2
Loy, C.C.3
Tang, X.4
|