-
1
-
-
84901057834
-
Translational control of immune responses: From transcripts to translatomes
-
Piccirillo CA, Bjur E, Topisirovic I, Sonenberg N, Larsson O. 2014. Translational control of immune responses: from transcripts to translatomes. Nat Immunol 15:503-511. https://doi.org/10.1038/ni.2891
-
(2014)
Nat Immunol
, vol.15
, pp. 503-511
-
-
Piccirillo, C.A.1
Bjur, E.2
Topisirovic, I.3
Sonenberg, N.4
Larsson, O.5
-
2
-
-
84870757284
-
Tinkering with translation: Protein synthesis in virus-infected cells
-
Walsh D, Mathews MB, Mohr I. 2013. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol 5:a012351. https://doi.org/10.1101/cshperspect.a012351
-
(2013)
Cold Spring Harb Perspect Biol
, vol.5
-
-
Walsh, D.1
Mathews, M.B.2
Mohr, I.3
-
3
-
-
17144424622
-
Translational control in stress and apoptosis
-
Holcik M, Sonenberg N. 2005. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6:318-327. https://doi.org/10.1038/nrm1618
-
(2005)
Nat Rev Mol Cell Biol
, vol.6
, pp. 318-327
-
-
Holcik, M.1
Sonenberg, N.2
-
4
-
-
34347225099
-
The dsRNA protein kinase PKR: Virus and cell control
-
García MA, Meurs EF, Esteban M. 2007. The dsRNA protein kinase PKR: virus and cell control. Biochimie 89:799-811. https://doi.org/10.1016/j.biochi.2007.03.001
-
(2007)
Biochimie
, vol.89
, pp. 799-811
-
-
García, M.A.1
Meurs, E.F.2
Esteban, M.3
-
5
-
-
39949085583
-
Stress granules: The Tao of RNA triage
-
Anderson P, Kedersha N. 2008. Stress granules: the Tao of RNA triage. Trends Biochem Sci 33:141-150. https://doi.org/10.1016/j.tibs.2007.12.003
-
(2008)
Trends Biochem Sci
, vol.33
, pp. 141-150
-
-
Anderson, P.1
Kedersha, N.2
-
6
-
-
0036154218
-
Evidence that ternary complex (EIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules
-
Kedersha N, Chen S, Gilks N, Li W, Miller IJ, Stahl J, Anderson P. 2002. Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol Biol Cell 13:195-210. https://doi.org/10.1091/mbc.01-05-0221
-
(2002)
Mol Biol Cell
, vol.13
, pp. 195-210
-
-
Kedersha, N.1
Chen, S.2
Gilks, N.3
Li, W.4
Miller, I.J.5
Stahl, J.6
Erson, P.7
-
7
-
-
0033611157
-
RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules
-
Kedersha NL, Gupta M, Li W, Miller I, Anderson P. 1999. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 147:1431-1442. https://doi.org/10.1083/jcb.147.7.1431
-
(1999)
J Cell Biol
, vol.147
, pp. 1431-1442
-
-
Kedersha, N.L.1
Gupta, M.2
Li, W.3
Miller, I.4
Erson, P.5
-
8
-
-
84872675863
-
Diversion of stress granules and P-bodies during viral infection
-
Reineke LC, Lloyd RE. 2013. Diversion of stress granules and P-bodies during viral infection. Virology 436:255-267. https://doi.org/10.1016/j.virol.2012.11.017
-
(2013)
Virology
, vol.436
, pp. 255-267
-
-
Reineke, L.C.1
Lloyd, R.E.2
-
9
-
-
84977117349
-
Who regulates whom? An overview of RNA granules and viral infections
-
Poblete-Duran N, Prades-Perez Y, Vera-Otarola J, Soto-Rifo R, ValienteEcheverria F. 2016. Who regulates whom? An overview of RNA granules and viral infections. Viruses 8:E180. https://doi.org/10.3390/v8070180
-
(2016)
Viruses
, vol.8
-
-
Poblete-Duran, N.1
Prades-Perez, Y.2
Vera-Otarola, J.3
Soto-Rifo, R.4
Valienteecheverria, F.5
-
10
-
-
81255160914
-
Viral subversion of the host protein synthesis machinery
-
Walsh D, Mohr I. 2011. Viral subversion of the host protein synthesis machinery. Nat Rev Microbiol 9:860-875. https://doi.org/10.1038/nrmicro2655
-
(2011)
Nat Rev Microbiol
, vol.9
, pp. 860-875
-
-
Walsh, D.1
Mohr, I.2
-
11
-
-
0029166687
-
The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins
-
Mader S, Lee H, Pause A, Sonenberg N. 1995. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol 15:4990-4997. https://doi.org/10.1128/MCB.15.9.4990
-
(1995)
Mol Cell Biol
, vol.15
, pp. 4990-4997
-
-
Mader, S.1
Lee, H.2
Pause, A.3
Sonenberg, N.4
-
12
-
-
0035527326
-
Translational regulation in cell stress and apoptosis. Roles of the eIF4E binding proteins
-
Clemens MJ. 2001. Translational regulation in cell stress and apoptosis. Roles of the eIF4E binding proteins. J Cell Mol Med 5:221-239. https://doi.org/10.1111/j.1582-4934.2001.tb00157.x
-
(2001)
J Cell Mol Med
, vol.5
, pp. 221-239
-
-
Clemens, M.J.1
-
13
-
-
0035498939
-
Hierarchical phosphorylation of the translation inhibitor 4E-BP1
-
Gingras AC, Raught B, Gygi SP, Niedzwiecka A, Miron M, Burley SK, Polakiewicz RD, Wyslouch-Cieszynska A, Aebersold R, Sonenberg N. 2001. Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev 15:2852-2864. https://doi.org/10.1101/gad.912401
-
(2001)
Genes Dev
, vol.15
, pp. 2852-2864
-
-
Gingras, A.C.1
Raught, B.2
Gygi, S.P.3
Niedzwiecka, A.4
Miron, M.5
Burley, S.K.6
Polakiewicz, R.D.7
Wyslouch-Cieszynska, A.8
Aebersold, R.9
Sonenberg, N.10
-
14
-
-
77956275419
-
EIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression
-
Furic L, Rong L, Larsson O, Koumakpayi IH, Yoshida K, Brueschke A, Petroulakis E, Robichaud N, Pollak M, Gaboury LA, Pandolfi PP, Saad F, Sonenberg N. 2010. eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc Natl Acad Sci U S A 107:14134-14139. https://doi.org/10.1073/pnas.1005320107
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 14134-14139
-
-
Furic, L.1
Rong, L.2
Larsson, O.3
Koumakpayi, I.H.4
Yoshida, K.5
Brueschke, A.6
Petroulakis, E.7
Robichaud, N.8
Pollak, M.9
Gaboury, L.A.10
Pandolfi, P.P.11
Saad, F.12
Sonenberg, N.13
-
15
-
-
84861229551
-
Translational control of the activation of transcription factor NF-kappaB and production of type I interferon by phosphorylation of the translation factor eIF4E
-
Herdy B, Jaramillo M, Svitkin YV, Rosenfeld AB, Kobayashi M, Walsh D, Alain T, Sean P, Robichaud N, Topisirovic I, Furic L, Dowling RJ, Sylvestre A, Rong L, Colina R, Costa-Mattioli M, Fritz JH, Olivier M, Brown E, Mohr I, Sonenberg N. 2012. Translational control of the activation of transcription factor NF-kappaB and production of type I interferon by phosphorylation of the translation factor eIF4E. Nat Immunol 13:543-550. https://doi.org/10.1038/ni.2291
-
(2012)
Nat Immunol
, vol.13
, pp. 543-550
-
-
Herdy, B.1
Jaramillo, M.2
Svitkin, Y.V.3
Rosenfeld, A.B.4
Kobayashi, M.5
Walsh, D.6
Alain, T.7
Sean, P.8
Robichaud, N.9
Topisirovic, I.10
Furic, L.11
Dowling, R.J.12
Sylvestre, A.13
Rong, L.14
Colina, R.15
Costa-Mattioli, M.16
Fritz, J.H.17
Olivier, M.18
Brown, E.19
Mohr, I.20
Sonenberg, N.21
more..
-
16
-
-
3242719457
-
Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development
-
Ueda T, Watanabe-Fukunaga R, Fukuyama H, Nagata S, Fukunaga R. 2004. Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol Cell Biol 24:6539-6549. https://doi.org/10.1128/MCB.24.15.6539-6549.2004
-
(2004)
Mol Cell Biol
, vol.24
, pp. 6539-6549
-
-
Ueda, T.1
Watanabe-Fukunaga, R.2
Fukuyama, H.3
Nagata, S.4
Fukunaga, R.5
-
17
-
-
0030977269
-
Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2
-
Waskiewicz AJ, Flynn A, Proud CG, Cooper JA. 1997. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J 16:1909-1920. https://doi.org/10.1093/emboj/16.8.1909
-
(1997)
EMBO J
, vol.16
, pp. 1909-1920
-
-
Waskiewicz, A.J.1
Flynn, A.2
Proud, C.G.3
Cooper, J.A.4
-
18
-
-
0036662182
-
The global emergence/resurgence of arboviral diseases as public health problems
-
Gubler DJ. 2002. The global emergence/resurgence of arboviral diseases as public health problems. Arch Med Res 33:330-342. https://doi.org/10.1016/S0188-4409(02)00378-8
-
(2002)
Arch Med Res
, vol.33
, pp. 330-342
-
-
Gubler, D.J.1
-
19
-
-
84876804736
-
The global distribution and burden of dengue
-
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI. 2013. The global distribution and burden of dengue. Nature 496:504-507. https://doi.org/10.1038/nature12060
-
(2013)
Nature
, vol.496
, pp. 504-507
-
-
Bhatt, S.1
Gething, P.W.2
Brady, O.J.3
Messina, J.P.4
Farlow, A.W.5
Moyes, C.L.6
Drake, J.M.7
Brownstein, J.S.8
Hoen, A.G.9
Sankoh, O.10
Myers, M.F.11
George, D.B.12
Jaenisch, T.13
Wint, G.R.14
Simmons, C.P.15
Scott, T.W.16
Farrar, J.J.17
Hay, S.I.18
-
20
-
-
84255168505
-
Dynamics of dengue disease severity determined by the interplay between viral genetics and serotype-specific immunity
-
114ra128
-
OhAinle M, Balmaseda A, Macalalad AR, Tellez Y, Zody MC, Saborío S, Nuñez A, Lennon NJ, Birren BW, Gordon A, Henn MR, Harris E. 2011. Dynamics of dengue disease severity determined by the interplay between viral genetics and serotype-specific immunity. Sci Transl Med 3:114ra128. https://doi.org/10.1126/scitranslmed.3003084
-
(2011)
Sci Transl Med
, vol.3
-
-
Ohainle, M.1
Balmaseda, A.2
Macalalad, A.R.3
Tellez, Y.4
Zody, M.C.5
Saborío, S.6
Nuñez, A.7
Lennon, N.J.8
Birren, B.W.9
Gordon, A.10
Henn, M.R.11
Harris, E.12
-
21
-
-
84878018415
-
Barriers to preclinical investigations of anti-dengue immunity and dengue pathogenesis
-
St John AL, Abraham SN, Gubler DJ. 2013. Barriers to preclinical investigations of anti-dengue immunity and dengue pathogenesis. Nat Rev Microbiol 11:420-426. https://doi.org/10.1038/nrmicro3030
-
(2013)
Nat Rev Microbiol
, vol.11
, pp. 420-426
-
-
St John, A.L.1
Abraham, S.N.2
Gubler, D.J.3
-
22
-
-
84938390836
-
Molecular insight into dengue virus pathogenesis and its implications for disease control
-
Diamond MS, Pierson TC. 2015. Molecular insight into dengue virus pathogenesis and its implications for disease control. Cell 162:488-492. https://doi.org/10.1016/j.cell.2015.07.005
-
(2015)
Cell
, vol.162
, pp. 488-492
-
-
Diamond, M.S.1
Pierson, T.C.2
-
24
-
-
84962055381
-
Zika virus: New clinical syndromes and its emergence in the Western Hemisphere
-
Lazear HM, Diamond MS. 2016. Zika virus: new clinical syndromes and its emergence in the Western Hemisphere. J Virol 90:4864-4875. https://doi.org/10.1128/JVI.00252-16
-
(2016)
J Virol
, vol.90
, pp. 4864-4875
-
-
Lazear, H.M.1
Diamond, M.S.2
-
26
-
-
0018770470
-
Methylation status of intracellular dengue type 2 40S RNA
-
Cleaves GR, Dubin DT. 1979. Methylation status of intracellular dengue type 2 40S RNA. Virology 96:159-165. https://doi.org/10.1016/0042-6822(79)90181-8
-
(1979)
Virology
, vol.96
, pp. 159-165
-
-
Cleaves, G.R.1
Dubin, D.T.2
-
27
-
-
0025116324
-
Flavivirus genome organization, expression, and replication
-
Chambers TJ, Hahn CS, Galler R, Rice CM. 1990. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44: 649-688. https://doi.org/10.1146/annurev.mi.44.100190.003245
-
(1990)
Annu Rev Microbiol
, vol.44
, pp. 649-688
-
-
Chambers, T.J.1
Hahn, C.S.2
Galler, R.3
Rice, C.M.4
-
28
-
-
84891084459
-
Revisiting dengue virushost cell interaction: New insights into molecular and cellular virology
-
Acosta EG, Kumar A, Bartenschlager R. 2014. Revisiting dengue virushost cell interaction: new insights into molecular and cellular virology. Adv Virus Res 88:1-109. https://doi.org/10.1016/B978-0-12-800098-4.00001-5
-
(2014)
Adv Virus Res
, vol.88
, pp. 1-109
-
-
Acosta, E.G.1
Kumar, A.2
Bartenschlager, R.3
-
29
-
-
64649097038
-
Composition and three-dimensional architecture of the dengue virus replication and assembly sites
-
Welsch S, Miller S, Romero-Brey I, Merz A, Bleck CK, Walther P, Fuller SD, Antony C, Krijnse-Locker J, Bartenschlager R. 2009. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5:365-375. https://doi.org/10.1016/j.chom.2009.03.007
-
(2009)
Cell Host Microbe
, vol.5
, pp. 365-375
-
-
Welsch, S.1
Miller, S.2
Romero-Brey, I.3
Merz, A.4
Bleck, C.K.5
Walther, P.6
Fuller, S.D.7
Antony, C.8
Krijnse-Locker, J.9
Bartenschlager, R.10
-
30
-
-
84872749486
-
Early dengue virus protein synthesis induces extensive rearrangement of the endoplasmic reticulum independent of the UPR and SREBP-2 pathway
-
Peña J, Harris E. 2012. Early dengue virus protein synthesis induces extensive rearrangement of the endoplasmic reticulum independent of the UPR and SREBP-2 pathway. PLoS One 7:e38202. https://doi.org/10.1371/journal.pone.0038202
-
(2012)
Plos One
, vol.7
-
-
Peña, J.1
Harris, E.2
-
31
-
-
79959344614
-
Flavivirus NS4A-induced autophagy protects cells against death and enhances virus replication
-
McLean JE, Wudzinska A, Datan E, Quaglino D, Zakeri Z. 2011. Flavivirus NS4A-induced autophagy protects cells against death and enhances virus replication. J Biol Chem 286:22147-22159. https://doi.org/10.1074/jbc.M110.192500
-
(2011)
J Biol Chem
, vol.286
, pp. 22147-22159
-
-
McLean, J.E.1
Wudzinska, A.2
Datan, E.3
Quaglino, D.4
Zakeri, Z.5
-
32
-
-
84937699264
-
Dengue virus inhibition of autophagic flux and dependency of viral replication on proteasomal degradation of the autophagy receptor p62
-
Metz P, Chiramel A, Chatel-Chaix L, Alvisi G, Bankhead P, Mora-Rodriguez R, Long G, Hamacher-Brady A, Brady NR, Bartenschlager R. 2015. Dengue virus inhibition of autophagic flux and dependency of viral replication on proteasomal degradation of the autophagy receptor p62. J Virol 89:8026-8041. https://doi.org/10.1128/JVI.00787-15
-
(2015)
J Virol
, vol.89
, pp. 8026-8041
-
-
Metz, P.1
Chiramel, A.2
Chatel-Chaix, L.3
Alvisi, G.4
Bankhead, P.5
Mora-Rodriguez, R.6
Long, G.7
Hamacher-Brady, A.8
Brady, N.R.9
Bartenschlager, R.10
-
34
-
-
84936935012
-
Dengue virus NS proteins inhibit RIG-I/MAVS signaling by blocking TBK1/IRF3 phosphorylation: Dengue virus serotype 1 NS4A is a unique interferon-regulating virulence determinant
-
Dalrymple NA, Cimica V, Mackow ER. 2015. Dengue virus NS proteins inhibit RIG-I/MAVS signaling by blocking TBK1/IRF3 phosphorylation: dengue virus serotype 1 NS4A is a unique interferon-regulating virulence determinant. mBio 6:e00553-15. https://doi.org/10.1128/mBio.00553-15
-
(2015)
Mbio
, vol.6
, pp. e00515-e00553
-
-
Dalrymple, N.A.1
Cimica, V.2
Mackow, E.R.3
-
35
-
-
84905400783
-
G3BP1, G3BP2 and CAPRIN1 are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA
-
Bidet K, Dadlani D, Garcia-Blanco MA. 2014. G3BP1, G3BP2 and CAPRIN1 are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA. PLoS Pathog 10:e1004242. https://doi.org/10.1371/journal.ppat.1004242
-
(2014)
Plos Pathog
, vol.10
-
-
Bidet, K.1
Dadlani, D.2
Garcia-Blanco, M.A.3
-
36
-
-
34547456097
-
Interaction of TIA-1/TIAR with West Nile and dengue virus products in infected cells interferes with stress granule formation and processing body assembly
-
Emara MM, Brinton MA. 2007. Interaction of TIA-1/TIAR with West Nile and dengue virus products in infected cells interferes with stress granule formation and processing body assembly. Proc Natl Acad Sci USA 104: 9041-9046. https://doi.org/10.1073/pnas.0703348104
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 9041-9046
-
-
Emara, M.M.1
Brinton, M.A.2
-
37
-
-
79954601093
-
Dengue virus modulates the unfolded protein response in a time-dependent manner
-
Peña J, Harris E. 2011. Dengue virus modulates the unfolded protein response in a time-dependent manner. J Biol Chem 286:14226-14236. https://doi.org/10.1074/jbc.M111.222703
-
(2011)
J Biol Chem
, vol.286
, pp. 14226-14236
-
-
Peña, J.1
Harris, E.2
-
38
-
-
35748966391
-
Dengue virus serotype infection specifies the activation of the unfolded protein response
-
Umareddy I, Pluquet O, Wang QY, Vasudevan SG, Chevet E, Gu F. 2007. Dengue virus serotype infection specifies the activation of the unfolded protein response. Virol J 4:91. https://doi.org/10.1186/1743-422X-4-91
-
(2007)
Virol J
, vol.4
, pp. 91
-
-
Umareddy, I.1
Pluquet, O.2
Wang, Q.Y.3
Vasudevan, S.G.4
Chevet, E.5
Gu, F.6
-
39
-
-
84919639950
-
Cellular oxidative stress response controls the antiviral and apoptotic programs in dengue virus-infected dendritic cells
-
Olagnier D, Peri S, Steel C, van Montfoort N, Chiang C, Beljanski V, Slifker M, He Z, Nichols CN, Lin R, Balachandran S, Hiscott J. 2014. Cellular oxidative stress response controls the antiviral and apoptotic programs in dengue virus-infected dendritic cells. PLoS Pathog 10:e1004566. https://doi.org/10.1371/journal.ppat.1004566
-
(2014)
Plos Pathog
, vol.10
-
-
Olagnier, D.1
Peri, S.2
Steel, C.3
Van Montfoort, N.4
Chiang, C.5
Beljanski, V.6
Slifker, M.7
He, Z.8
Nichols, C.N.9
Lin, R.10
Balachandran, S.11
Hiscott, J.12
-
40
-
-
33644778763
-
Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited
-
Edgil D, Polacek C, Harris E. 2006. Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited. J Virol 80:2976-2986. https://doi.org/10.1128/JVI.80.6.2976-2986.2006
-
(2006)
J Virol
, vol.80
, pp. 2976-2986
-
-
Edgil, D.1
Polacek, C.2
Harris, E.3
-
41
-
-
0033604281
-
Impaired antiviral response in human hepatoma cells
-
Keskinen P, Nyqvist M, Sareneva T, Pirhonen J, Melén K, Julkunen I. 1999. Impaired antiviral response in human hepatoma cells. Virology 263: 364-375. https://doi.org/10.1006/viro.1999.9983
-
(1999)
Virology
, vol.263
, pp. 364-375
-
-
Keskinen, P.1
Nyqvist, M.2
Sareneva, T.3
Pirhonen, J.4
Melén, K.5
Julkunen, I.6
-
42
-
-
84953215262
-
Live cell analysis and mathematical modeling identify determinants of attenuation of dengue virus 2=-O-methylation mutant
-
Schmid B, Rinas M, Ruggieri A, Acosta EG, Bartenschlager M, Reuter A, Fischl W, Harder N, Bergeest JP, Flossdorf M, Rohr K, Höfer T, Bartenschlager R. 2015. Live cell analysis and mathematical modeling identify determinants of attenuation of dengue virus 2=-O-methylation mutant. PLoS Pathog 11:e1005345. https://doi.org/10.1371/journal.ppat.1005345
-
(2015)
Plos Pathog
, vol.11
-
-
Schmid, B.1
Rinas, M.2
Ruggieri, A.3
Acosta, E.G.4
Bartenschlager, M.5
Reuter, A.6
Fischl, W.7
Harder, N.8
Bergeest, J.P.9
Flossdorf, M.10
Rohr, K.11
Höfer, T.12
Bartenschlager, R.13
-
43
-
-
63949084607
-
SUnSET, a nonradioactive method to monitor protein synthesis
-
Schmidt EK, Clavarino G, Ceppi M, Pierre P. 2009. SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods 6:275-277. https://doi.org/10.1038/nmeth.1314
-
(2009)
Nat Methods
, vol.6
, pp. 275-277
-
-
Schmidt, E.K.1
Clavarino, G.2
Ceppi, M.3
Pierre, P.4
-
44
-
-
0006331359
-
Inhibition of protein synthesis by puromycin
-
Nathans D. 1964. Inhibition of protein synthesis by puromycin. Fed Proc 23:984-989
-
(1964)
Fed Proc
, vol.23
, pp. 984-989
-
-
Nathans, D.1
-
45
-
-
0015216932
-
The mechanism by which cycloheximide and related glutarimide antibiotics inhibit peptide synthesis on reticulocyte ribosomes
-
Obrig TG, Culp WJ, McKeehan WL, Hardesty B. 1971. The mechanism by which cycloheximide and related glutarimide antibiotics inhibit peptide synthesis on reticulocyte ribosomes. J Biol Chem 246:174-181
-
(1971)
J Biol Chem
, vol.246
, pp. 174-181
-
-
Obrig, T.G.1
Culp, W.J.2
McKeehan, W.L.3
Hardesty, B.4
-
46
-
-
84860274834
-
Nuclear translation visualized by ribosome-bound nascent chain puromycylation
-
David A, Dolan BP, Hickman HD, Knowlton JJ, Clavarino G, Pierre P, Bennink JR, Yewdell JW. 2012. Nuclear translation visualized by ribosome-bound nascent chain puromycylation. J Cell Biol 197:45-57. https://doi.org/10.1083/jcb.201112145
-
(2012)
J Cell Biol
, vol.197
, pp. 45-57
-
-
David, A.1
Dolan, B.P.2
Hickman, H.D.3
Knowlton, J.J.4
Clavarino, G.5
Pierre, P.6
Bennink, J.R.7
Yewdell, J.W.8
-
47
-
-
84947327742
-
Methods for the characterization of stress granules in virus infected cells
-
Panas MD, Kedersha N, McInerney GM. 2015. Methods for the characterization of stress granules in virus infected cells. Methods 90:57-64. https://doi.org/10.1016/j.ymeth.2015.04.009
-
(2015)
Methods
, vol.90
, pp. 57-64
-
-
Panas, M.D.1
Kedersha, N.2
McInerney, G.M.3
-
48
-
-
84996773946
-
Translation of 5= leaders is pervasive in genes resistant to eIF2 repression
-
Andreev DE, O’Connor PB, Fahey C, Kenny EM, Terenin IM, Dmitriev SE, Cormican P, Morris DW, Shatsky IN, Baranov PV. 2015. Translation of 5= leaders is pervasive in genes resistant to eIF2 repression. Elife 4:e03971. https://doi.org/10.7554/eLife.03971
-
(2015)
Elife
, vol.4
-
-
Andreev, D.E.1
O’Connor, P.B.2
Fahey, C.3
Kenny, E.M.4
Terenin, I.M.5
Dmitriev, S.E.6
Cormican, P.7
Morris, D.W.8
Shatsky, I.N.9
Baranov, P.V.10
-
49
-
-
20144378698
-
Heme-regulated inhibitor kinasemediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure
-
McEwen E, Kedersha N, Song B, Scheuner D, Gilks N, Han A, Chen JJ, Anderson P, Kaufman RJ. 2005. Heme-regulated inhibitor kinasemediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. J Biol Chem 280:16925-16933. https://doi.org/10.1074/jbc.M412882200
-
(2005)
J Biol Chem
, vol.280
, pp. 16925-16933
-
-
McEwen, E.1
Kedersha, N.2
Song, B.3
Scheuner, D.4
Gilks, N.5
Han, A.6
Chen, J.J.7
Erson, P.8
Kaufman, R.J.9
-
50
-
-
84875802186
-
Nuclear localization of dengue virus nonstructural protein 5 does not strictly correlate with efficient viral RNA replication and inhibition of type I interferon signaling
-
Kumar A, Bühler S, Selisko B, Davidson A, Mulder K, Canard B, Miller S, Bartenschlager R. 2013. Nuclear localization of dengue virus nonstructural protein 5 does not strictly correlate with efficient viral RNA replication and inhibition of type I interferon signaling. J Virol 87:4545-4557. https://doi.org/10.1128/JVI.03083-12
-
(2013)
J Virol
, vol.87
, pp. 4545-4557
-
-
Kumar, A.1
Bühler, S.2
Selisko, B.3
Davidson, A.4
Mulder, K.5
Canard, B.6
Miller, S.7
Bartenschlager, R.8
-
51
-
-
0034870535
-
Activity of the hepatitis A virus IRES requires association between the cap-binding translation initiation factor (EIF4E) and eIF4G
-
Ali IK, McKendrick L, Morley SJ, Jackson RJ. 2001. Activity of the hepatitis A virus IRES requires association between the cap-binding translation initiation factor (eIF4E) and eIF4G. J Virol 75:7854-7863. https://doi.org/10.1128/JVI.75.17.7854-7863.2001
-
(2001)
J Virol
, vol.75
, pp. 7854-7863
-
-
Ali, I.K.1
McKendrick, L.2
Morley, S.J.3
Jackson, R.J.4
-
52
-
-
33749379882
-
Global translational responses to oxidative stress impact upon multiple levels of protein synthesis
-
Shenton D, Smirnova JB, Selley JN, Carroll K, Hubbard SJ, Pavitt GD, Ashe MP, Grant CM. 2006. Global translational responses to oxidative stress impact upon multiple levels of protein synthesis. J Biol Chem 281: 29011-29021. https://doi.org/10.1074/jbc.M601545200
-
(2006)
J Biol Chem
, vol.281
, pp. 29011-29021
-
-
Shenton, D.1
Smirnova, J.B.2
Selley, J.N.3
Carroll, K.4
Hubbard, S.J.5
Pavitt, G.D.6
Ashe, M.P.7
Grant, C.M.8
-
53
-
-
81055155799
-
Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes
-
Ingolia NT, Lareau LF, Weissman JS. 2011. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147:789-802. https://doi.org/10.1016/j.cell.2011.10.002
-
(2011)
Cell
, vol.147
, pp. 789-802
-
-
Ingolia, N.T.1
Lareau, L.F.2
Weissman, J.S.3
-
54
-
-
0017577805
-
Inhibition of translation in eukaryotic systems by harringtonine
-
Fresno M, Jiménez A, Vázquez D. 1977. Inhibition of translation in eukaryotic systems by harringtonine. Eur J Biochem 72:323-330. https://doi.org/10.1111/j.1432-1033.1977.tb11256.x
-
(1977)
Eur J Biochem
, vol.72
, pp. 323-330
-
-
Fresno, M.1
Jiménez, A.2
Vázquez, D.3
-
55
-
-
0025358704
-
Increased phosphorylation of elongation factor 2 during mitosis in transformed human amnion cells correlates with a decreased rate of protein synthesis
-
Celis JE, Madsen P, Ryazanov AG. 1990. Increased phosphorylation of elongation factor 2 during mitosis in transformed human amnion cells correlates with a decreased rate of protein synthesis. Proc Natl Acad Sci USA87:4231-4235. https://doi.org/10.1073/pnas.87.11.4231
-
(1990)
Proc Natl Acad Sci USA87
, pp. 4231-4235
-
-
Celis, J.E.1
Madsen, P.2
Ryazanov, A.G.3
-
56
-
-
84867167962
-
Dynamic oscillation of translation and stress granule formation mark the cellular response to virus infection
-
Ruggieri A, Dazert E, Metz P, Hofmann S, Bergeest JP, Mazur J, Bankhead P, Hiet MS, Kallis S, Alvisi G, Samuel CE, Lohmann V, Kaderali L, Rohr K, Frese M, Stoecklin G, Bartenschlager R. 2012. Dynamic oscillation of translation and stress granule formation mark the cellular response to virus infection. Cell Host Microbe 12:71-85. https://doi.org/10.1016/j.chom.2012.05.013
-
(2012)
Cell Host Microbe
, vol.12
, pp. 71-85
-
-
Ruggieri, A.1
Dazert, E.2
Metz, P.3
Hofmann, S.4
Bergeest, J.P.5
Mazur, J.6
Bankhead, P.7
Hiet, M.S.8
Kallis, S.9
Alvisi, G.10
Samuel, C.E.11
Lohmann, V.12
Kaderali, L.13
Rohr, K.14
Frese, M.15
Stoecklin, G.16
Bartenschlager, R.17
-
57
-
-
84861302600
-
West Nile virus infections suppress early viral RNA synthesis and avoid inducing the cell stress granule response
-
Courtney SC, Scherbik SV, Stockman BM, Brinton MA. 2012. West Nile virus infections suppress early viral RNA synthesis and avoid inducing the cell stress granule response. J Virol 86:3647-3657. https://doi.org/10.1128/JVI.06549-11
-
(2012)
J Virol
, vol.86
, pp. 3647-3657
-
-
Courtney, S.C.1
Scherbik, S.V.2
Stockman, B.M.3
Brinton, M.A.4
-
58
-
-
33749493493
-
Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2alpha phosphorylation
-
Mazroui R, Sukarieh R, Bordeleau ME, Kaufman RJ, Northcote P, Tanaka J, Gallouzi I, Pelletier J. 2006. Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2alpha phosphorylation. Mol Biol Cell 17:4212-4219. https://doi.org/10.1091/mbc.E06-04-0318
-
(2006)
Mol Biol Cell
, vol.17
, pp. 4212-4219
-
-
Mazroui, R.1
Sukarieh, R.2
Bordeleau, M.E.3
Kaufman, R.J.4
Northcote, P.5
Tanaka, J.6
Gallouzi, I.7
Pelletier, J.8
-
59
-
-
33646353201
-
Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A
-
Bordeleau ME, Mori A, Oberer M, Lindqvist L, Chard LS, Higa T, Belsham GJ, Wagner G, Tanaka J, Pelletier J. 2006. Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A. Nat Chem Biol 2:213-220. https://doi.org/10.1038/nchembio776
-
(2006)
Nat Chem Biol
, vol.2
, pp. 213-220
-
-
Bordeleau, M.E.1
Mori, A.2
Oberer, M.3
Lindqvist, L.4
Chard, L.S.5
Higa, T.6
Belsham, G.J.7
Wagner, G.8
Tanaka, J.9
Pelletier, J.10
-
60
-
-
33645714857
-
Phosphatebinding tag, a new tool to visualize phosphorylated proteins
-
Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T. 2006. Phosphatebinding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics 5:749-757. https://doi.org/10.1074/mcp.T500024-MCP200
-
(2006)
Mol Cell Proteomics
, vol.5
, pp. 749-757
-
-
Kinoshita, E.1
Kinoshita-Kikuta, E.2
Takiyama, K.3
Koike, T.4
-
61
-
-
84988352997
-
Integrated stress response of vertebrates is regulated by four eIF2alpha kinases
-
Taniuchi S, Miyake M, Tsugawa K, Oyadomari M, Oyadomari S. 2016. Integrated stress response of vertebrates is regulated by four eIF2alpha kinases. Sci Rep 6:32886. https://doi.org/10.1038/srep32886
-
(2016)
Sci Rep
, vol.6
, pp. 32886
-
-
Taniuchi, S.1
Miyake, M.2
Tsugawa, K.3
Oyadomari, M.4
Oyadomari, S.5
-
62
-
-
0025298202
-
Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon
-
Meurs E, Chong K, Galabru J, Thomas NS, Kerr IM, Williams BR, Hovanessian AG. 1990. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62:379-390. https://doi.org/10.1016/0092-8674(90)90374-N
-
(1990)
Cell
, vol.62
, pp. 379-390
-
-
Meurs, E.1
Chong, K.2
Galabru, J.3
Thomas, N.S.4
Kerr, I.M.5
Williams, B.R.6
Hovanessian, A.G.7
-
63
-
-
0041703031
-
The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: Elucidation by GADD34-deficient mice
-
Kojima E, Takeuchi A, Haneda M, Yagi A, Hasegawa T, Yamaki K, Takeda K, Akira S, Shimokata K, Isobe K. 2003. The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: elucidation by GADD34-deficient mice. FASEB J 17:1573-1575. https://doi.org/10.1096/fj.02-1184fje
-
(2003)
FASEB J
, vol.17
, pp. 1573-1575
-
-
Kojima, E.1
Takeuchi, A.2
Haneda, M.3
Yagi, A.4
Hasegawa, T.5
Yamaki, K.6
Takeda, K.7
Akira, S.8
Shimokata, K.9
Isobe, K.10
-
64
-
-
0041315834
-
Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress
-
Ma Y, Hendershot LM. 2003. Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress. J Biol Chem 278:34864-34873. https://doi.org/10.1074/jbc.M301107200
-
(2003)
J Biol Chem
, vol.278
, pp. 34864-34873
-
-
Ma, Y.1
Hendershot, L.M.2
-
65
-
-
0037416211
-
Stressinduced gene expression requires programmed recovery from translational repression
-
Novoa I, Zhang Y, Zeng H, Jungreis R, Harding HP, Ron D. 2003. Stressinduced gene expression requires programmed recovery from translational repression. EMBO J 22:1180-1187. https://doi.org/10.1093/emboj/cdg112
-
(2003)
EMBO J
, vol.22
, pp. 1180-1187
-
-
Novoa, I.1
Zhang, Y.2
Zeng, H.3
Jungreis, R.4
Harding, H.P.5
Ron, D.6
-
66
-
-
84943338797
-
EIF4F: A retrospective
-
Merrick WC. 2015. eIF4F: a retrospective. J Biol Chem 290:24091-24099. https://doi.org/10.1074/jbc.R115.675280
-
(2015)
J Biol Chem
, vol.290
, pp. 24091-24099
-
-
Merrick, W.C.1
-
67
-
-
65549145048
-
An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
-
Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS. 2009. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284:8023-8032. https://doi.org/10.1074/jbc.M900301200
-
(2009)
J Biol Chem
, vol.284
, pp. 8023-8032
-
-
Thoreen, C.C.1
Kang, S.A.2
Chang, J.W.3
Liu, Q.4
Zhang, J.5
Gao, Y.6
Reichling, L.J.7
Sim, T.8
Sabatini, D.M.9
Gray, N.S.10
-
68
-
-
84920758110
-
4E-BP restrains eIF4E phosphorylation
-
Müller D, Lasfargues C, El Khawand S, Alard A, Schneider RJ, Bousquet C, Pyronnet S, Martineau Y. 2013. 4E-BP restrains eIF4E phosphorylation. Translation (Austin) 1:e25819. https://doi.org/10.4161/trla.25819
-
(2013)
Translation (Austin)
, vol.1
-
-
Müller, D.1
Lasfargues, C.2
El Khawand, S.3
Alard, A.4
Schneider, R.J.5
Bousquet, C.6
Pyronnet, S.7
Martineau, Y.8
-
69
-
-
77957852191
-
Regulation of eukaryotic initiation factor 4E (EIF4E) phosphorylation by mitogenactivated protein kinase occurs through modulation of Mnk1-eIF4G interaction
-
Shveygert M, Kaiser C, Bradrick SS, Gromeier M. 2010. Regulation of eukaryotic initiation factor 4E (eIF4E) phosphorylation by mitogenactivated protein kinase occurs through modulation of Mnk1-eIF4G interaction. Mol Cell Biol 30:5160-5167. https://doi.org/10.1128/MCB.00448-10
-
(2010)
Mol Cell Biol
, vol.30
, pp. 5160-5167
-
-
Shveygert, M.1
Kaiser, C.2
Bradrick, S.S.3
Gromeier, M.4
-
70
-
-
0032981328
-
Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo
-
Waskiewicz AJ, Johnson JC, Penn B, Mahalingam M, Kimball SR, Cooper JA. 1999. Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol Cell Biol 19:1871-1880. https://doi.org/10.1128/MCB.19.3.1871
-
(1999)
Mol Cell Biol
, vol.19
, pp. 1871-1880
-
-
Waskiewicz, A.J.1
Johnson, J.C.2
Penn, B.3
Mahalingam, M.4
Kimball, S.R.5
Cooper, J.A.6
-
71
-
-
0033521535
-
Human eukaryotic translation initiation factor 4G (EIF4G) recruits mnk1 to phosphorylate eIF4E
-
Pyronnet S, Imataka H, Gingras AC, Fukunaga R, Hunter T, Sonenberg N. 1999. Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J 18:270-279. https://doi.org/10.1093/emboj/18.1.270
-
(1999)
EMBO J
, vol.18
, pp. 270-279
-
-
Pyronnet, S.1
Imataka, H.2
Gingras, A.C.3
Fukunaga, R.4
Hunter, T.5
Sonenberg, N.6
-
72
-
-
84929095310
-
Murine norovirus 1 (MNV1) replication induces translational control of the host by regulating eIF4E activity during infection
-
Royall E, Doyle N, Abdul-Wahab A, Emmott E, Morley SJ, Goodfellow I, Roberts LO, Locker N. 2015. Murine norovirus 1 (MNV1) replication induces translational control of the host by regulating eIF4E activity during infection. J Biol Chem 290:4748-4758. https://doi.org/10.1074/jbc.M114.602649
-
(2015)
J Biol Chem
, vol.290
, pp. 4748-4758
-
-
Royall, E.1
Doyle, N.2
Abdul-Wahab, A.3
Emmott, E.4
Morley, S.J.5
Goodfellow, I.6
Roberts, L.O.7
Locker, N.8
-
73
-
-
61749103876
-
Stability of eukaryotic translation initiation factor 4E mRNA is regulated by HuR, and this activity is dysregulated in cancer
-
Topisirovic I, Siddiqui N, Orolicki S, Skrabanek LA, Tremblay M, Hoang T, Borden KL. 2009. Stability of eukaryotic translation initiation factor 4E mRNA is regulated by HuR, and this activity is dysregulated in cancer. Mol Cell Biol 29:1152-1162. https://doi.org/10.1128/MCB.01532-08
-
(2009)
Mol Cell Biol
, vol.29
, pp. 1152-1162
-
-
Topisirovic, I.1
Siddiqui, N.2
Orolicki, S.3
Skrabanek, L.A.4
Tremblay, M.5
Hoang, T.6
Borden, K.L.7
-
74
-
-
0033862548
-
Phosphorylation of eIF-4E on Ser 209 in response to mitogenic and inflammatory stimuli is faithfully detected by specific antibodies
-
Tschopp C, Knauf U, Brauchle M, Zurini M, Ramage P, Glueck D, New L, Han J, Gram H. 2000. Phosphorylation of eIF-4E on Ser 209 in response to mitogenic and inflammatory stimuli is faithfully detected by specific antibodies. Mol Cell Biol Res Commun 3:205-211. https://doi.org/10.1006/mcbr.2000.0217
-
(2000)
Mol Cell Biol Res Commun
, vol.3
, pp. 205-211
-
-
Tschopp, C.1
Knauf, U.2
Brauchle, M.3
Zurini, M.4
Ramage, P.5
Glueck, D.6
New, L.7
Han, J.8
Gram, H.9
-
75
-
-
0346750817
-
Mnk1 is required for angiotensin II-induced protein synthesis in vascular smooth muscle cells
-
Ishida M, Ishida T, Nakashima H, Miho N, Miyagawa K, Chayama K, Oshima T, Kambe M, Yoshizumi M. 2003. Mnk1 is required for angiotensin II-induced protein synthesis in vascular smooth muscle cells. Circ Res 93:1218-1224. https://doi.org/10.1161/01.RES.0000105570.34585.F2
-
(2003)
Circ Res
, vol.93
, pp. 1218-1224
-
-
Ishida, M.1
Ishida, T.2
Nakashima, H.3
Miho, N.4
Miyagawa, K.5
Chayama, K.6
Oshima, T.7
Kambe, M.8
Yoshizumi, M.9
-
76
-
-
0028988138
-
SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1
-
Cuenda A, Rouse J, Doza YN, Meier R, Cohen P, Gallagher TF, Young PR, Lee JC. 1995. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett 364:229-233. https://doi.org/10.1016/0014-5793(95)00357-F
-
(1995)
FEBS Lett
, vol.364
, pp. 229-233
-
-
Cuenda, A.1
Rouse, J.2
Doza, Y.N.3
Meier, R.4
Cohen, P.5
Gallagher, T.F.6
Young, P.R.7
Lee, J.C.8
-
77
-
-
0343431521
-
Translational control of viral gene expression in eukaryotes
-
Gale M, Jr., Tan SL, Katze MG. 2000. Translational control of viral gene expression in eukaryotes. Microbiol Mol Biol Rev 64:239-280. https://doi.org/10.1128/MMBR.64.2.239-280.2000
-
(2000)
Microbiol Mol Biol Rev
, vol.64
, pp. 239-280
-
-
Gale, M.1
Tan, S.L.2
Katze, M.G.3
-
78
-
-
33845809231
-
P bodies: At the crossroads of post-transcriptional pathways
-
Eulalio A, Behm-Ansmant I, Izaurralde E. 2007. P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 8:9-22. https://doi.org/10.1038/nrm2080
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 9-22
-
-
Eulalio, A.1
Behm-Ansmant, I.2
Izaurralde, E.3
-
80
-
-
33746516731
-
HnRNP A1 relocalization to the stress granules reflects a role in the stress response
-
Guil S, Long JC, Cáceres JF. 2006. hnRNP A1 relocalization to the stress granules reflects a role in the stress response. Mol Cell Biol 26: 5744-5758. https://doi.org/10.1128/MCB.00224-06
-
(2006)
Mol Cell Biol
, vol.26
, pp. 5744-5758
-
-
Guil, S.1
Long, J.C.2
Cáceres, J.F.3
-
81
-
-
23844516065
-
The Mnks are novel components in the control of TNF alpha biosynthesis and phosphorylate and regulate hnRNP A1
-
Buxadé M, Parra JL, Rousseau S, Shpiro N, Marquez R, Morrice N, Bain J, Espel E, Proud CG. 2005. The Mnks are novel components in the control of TNF alpha biosynthesis and phosphorylate and regulate hnRNP A1. Immunity 23:177-189. https://doi.org/10.1016/j.immuni.2005.06.009
-
(2005)
Immunity
, vol.23
, pp. 177-189
-
-
Buxadé, M.1
Parra, J.L.2
Rousseau, S.3
Shpiro, N.4
Marquez, R.5
Morrice, N.6
Bain, J.7
Espel, E.8
Proud, C.G.9
-
82
-
-
84944907005
-
Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization
-
Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, Mittag T, Taylor JP. 2015. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163: 123-133. https://doi.org/10.1016/j.cell.2015.09.015
-
(2015)
Cell
, vol.163
, pp. 123-133
-
-
Molliex, A.1
Temirov, J.2
Lee, J.3
Coughlin, M.4
Kanagaraj, A.P.5
Kim, H.J.6
Mittag, T.7
Taylor, J.P.8
-
83
-
-
84859219968
-
Balanced codon usage optimizes eukaryotic translational efficiency
-
Qian W, Yang JR, Pearson NM, Maclean C, Zhang J. 2012. Balanced codon usage optimizes eukaryotic translational efficiency. PLoS Genet 8:e1002603. https://doi.org/10.1371/journal.pgen.1002603
-
(2012)
Plos Genet
, vol.8
-
-
Qian, W.1
Yang, J.R.2
Pearson, N.M.3
Maclean, C.4
Zhang, J.5
-
84
-
-
84929051884
-
Large-scale genomic analysis of codon usage in dengue virus and evaluation of its phylogenetic dependence
-
851425
-
Lara-Ramírez EE, Salazar MI, López-López Mde J, Salas-Benito JS, Sánchez-Varela A, Guo X. 2014. Large-scale genomic analysis of codon usage in dengue virus and evaluation of its phylogenetic dependence. Biomed Res Int 2014:851425. https://doi.org/10.1155/2014/851425
-
(2014)
Biomed Res Int
, vol.2014
-
-
Lara-Ramírez, E.E.1
Salazar, M.I.2
López-López Mde, J.3
Salas-Benito, J.S.4
Sánchez-Varela, A.5
Guo, X.6
-
85
-
-
84886400497
-
The distribution of synonymous codon choice in the translation initiation region of dengue virus
-
Zhou JH, Zhang J, Sun DJ, Ma Q, Chen HT, Ma LN, Ding YZ, Liu YS. 2013. The distribution of synonymous codon choice in the translation initiation region of dengue virus. PLoS One 8:e77239. https://doi.org/10.1371/journal.pone.0077239
-
(2013)
Plos One
, vol.8
-
-
Zhou, J.H.1
Zhang, J.2
Sun, D.J.3
Ma, Q.4
Chen, H.T.5
Ma, L.N.6
Ding, Y.Z.7
Liu, Y.S.8
-
86
-
-
84935893709
-
Dengue virus NS1 protein interacts with the ribosomal protein RPL18: This interaction is required for viral translation and replication in huh-7 cells
-
Cervantes-Salazar M, Angel-Ambrocio AH, Soto-Acosta R, BautistaCarbajal P, Hurtado-Monzon AM, Alcaraz-Estrada SL, Ludert JE, Del Angel RM. 2015. Dengue virus NS1 protein interacts with the ribosomal protein RPL18: this interaction is required for viral translation and replication in huh-7 cells. Virology 484:113-126. https://doi.org/10.1016/j.virol.2015.05.017
-
(2015)
Virology
, vol.484
, pp. 113-126
-
-
Cervantes-Salazar, M.1
Angel-Ambrocio, A.H.2
Soto-Acosta, R.3
Bautistacarbajal, P.4
Hurtado-Monzon, A.M.5
Alcaraz-Estrada, S.L.6
Ludert, J.E.7
Del Angel, R.M.8
-
87
-
-
0033914368
-
Human skin Langerhans cells are targets of dengue virus infection
-
Wu SJ, Grouard-Vogel G, Sun W, Mascola JR, Brachtel E, Putvatana R, Louder MK, Filgueira L, Marovich MA, Wong HK, Blauvelt A, Murphy GS, Robb ML, Innes BL, Birx DL, Hayes CG, Frankel SS. 2000. Human skin Langerhans cells are targets of dengue virus infection. Nat Med 6:816-820. https://doi.org/10.1038/77553
-
(2000)
Nat Med
, vol.6
, pp. 816-820
-
-
Wu, S.J.1
Grouard-Vogel, G.2
Sun, W.3
Mascola, J.R.4
Brachtel, E.5
Putvatana, R.6
Louder, M.K.7
Filgueira, L.8
Marovich, M.A.9
Wong, H.K.10
Blauvelt, A.11
Murphy, G.S.12
Robb, M.L.13
Innes, B.L.14
Birx, D.L.15
Hayes, C.G.16
Frankel, S.S.17
-
88
-
-
23044437222
-
Complete replication of hepatitis C virus in cell culture
-
Lindenbach BD, Evans MJ, Syder AJ, Wölk B, Tellinghuisen TL, Liu CC, Maruyama T, Hynes RO, Burton DR, McKeating JA, Rice CM. 2005. Complete replication of hepatitis C virus in cell culture. Science 309: 623-626. https://doi.org/10.1126/science.1114016
-
(2005)
Science
, vol.309
, pp. 623-626
-
-
Lindenbach, B.D.1
Evans, M.J.2
Syder, A.J.3
Wölk, B.4
Tellinghuisen, T.L.5
Liu, C.C.6
Maruyama, T.7
Hynes, R.O.8
Burton, D.R.9
McKeating, J.A.10
Rice, C.M.11
-
89
-
-
84867186265
-
Translation suppression promotes stress granule formation and cell survival in response to cold shock
-
Hofmann S, Cherkasova V, Bankhead P, Bukau B, Stoecklin G. 2012. Translation suppression promotes stress granule formation and cell survival in response to cold shock. Mol Biol Cell 23:3786-3800. https://doi.org/10.1091/mbc.E12-04-0296
-
(2012)
Mol Biol Cell
, vol.23
, pp. 3786-3800
-
-
Hofmann, S.1
Cherkasova, V.2
Bankhead, P.3
Bukau, B.4
Stoecklin, G.5
|