-
1
-
-
75749103383
-
Rate, molecular spectrum, and consequences of human mutation
-
Lynch M. Rate, molecular spectrum, and consequences of human mutation. Proc Natl Acad Sci USA 2010; 107: 961–968.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 961-968
-
-
Lynch, M.1
-
2
-
-
84880720828
-
Genome mosaicism–one human, multiple genomes
-
Lupski JR. Genome mosaicism–one human, multiple genomes. Science 2013; 341: 358–359.
-
(2013)
Science
, vol.341
, pp. 358-359
-
-
Lupski, J.R.1
-
3
-
-
84876592083
-
A genomic view of mosaicism and human disease
-
Biesecker LG, Spinner NB. A genomic view of mosaicism and human disease. Nat Rev Genet 2013; 14: 307–320.
-
(2013)
Nat Rev Genet
, vol.14
, pp. 307-320
-
-
Biesecker, L.G.1
Spinner, N.B.2
-
5
-
-
84893657126
-
Brain somatic mutations: The dark matter of psychiatric genetics?
-
Insel TR. Brain somatic mutations: the dark matter of psychiatric genetics? Mol Psychiatry 2014; 19: 156–158.
-
(2014)
Mol Psychiatry
, vol.19
, pp. 156-158
-
-
Insel, T.R.1
-
6
-
-
80054998431
-
Corridors of migrating neurons in the human brain and their decline during infancy
-
Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai H-H, Wong M et al. Corridors of migrating neurons in the human brain and their decline during infancy. Nature 2011; 478: 382–386.
-
(2011)
Nature
, vol.478
, pp. 382-386
-
-
Sanai, N.1
Nguyen, T.2
Ihrie, R.A.3
Mirzadeh, Z.4
Tsai, H.-H.5
Wong, M.6
-
7
-
-
0031789814
-
Neurogenesis in the adult human hippocampus
-
Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn A-M, Nordborg C, Peterson DA et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4: 1313–1317.
-
(1998)
Nat Med
, vol.4
, pp. 1313-1317
-
-
Eriksson, P.S.1
Perfilieva, E.2
Björk-Eriksson, T.3
Alborn, A.-M.4
Nordborg, C.5
Peterson, D.A.6
-
8
-
-
84896732922
-
Neurogenesis in the striatum of the adult human brain
-
Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J et al. Neurogenesis in the striatum of the adult human brain. Cell 2014; 156: 1072–1083.
-
(2014)
Cell
, vol.156
, pp. 1072-1083
-
-
Ernst, A.1
Alkass, K.2
Bernard, S.3
Salehpour, M.4
Perl, S.5
Tisdale, J.6
-
9
-
-
84878831768
-
Dynamics of hippocampal neurogenesis in adult humans
-
Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB et al. Dynamics of hippocampal neurogenesis in adult humans. Cell 2013; 153: 1219–1227.
-
(2013)
Cell
, vol.153
, pp. 1219-1227
-
-
Spalding, K.L.1
Bergmann, O.2
Alkass, K.3
Bernard, S.4
Salehpour, M.5
Huttner, H.B.6
-
10
-
-
1442354188
-
Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration
-
Sanai N, Tramontin AD, Quiñones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nat Cell Biol 2004; 427: 740–744.
-
(2004)
Nat Cell Biol
, vol.427
, pp. 740-744
-
-
Sanai, N.1
Tramontin, A.D.2
Quiñones-Hinojosa, A.3
Barbaro, N.M.4
Gupta, N.5
Kunwar, S.6
-
11
-
-
84922584195
-
Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain
-
Cai X, Evrony GD, Lehmann HS, Elhosary PC, Mehta BK, Poduri A et al. Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep 2014; 8: 1280–1289.
-
(2014)
Cell Rep
, vol.8
, pp. 1280-1289
-
-
Cai, X.1
Evrony, G.D.2
Lehmann, H.S.3
Elhosary, P.C.4
Mehta, B.K.5
Poduri, A.6
-
12
-
-
84887315590
-
Mosaic copy number variation in human neurons
-
McConnell MJ, Lindberg MR, Brennand KJ, Piper JC, Voet T, Cowing-Zitron C et al. Mosaic copy number variation in human neurons. Science 2013; 342: 632–637.
-
(2013)
Science
, vol.342
, pp. 632-637
-
-
McConnell, M.J.1
Lindberg, M.R.2
Brennand, K.J.3
Piper, J.C.4
Voet, T.5
Cowing-Zitron, C.6
-
14
-
-
84920746893
-
Cell lineage analysis in human brain using endogenous retroelements
-
Evrony GD, Lee E, Mehta BK, Benjamini Y. Cell lineage analysis in human brain using endogenous retroelements. Neuron 2015; 85: 49–59.
-
(2015)
Neuron
, vol.85
, pp. 49-59
-
-
Evrony, G.D.1
Lee, E.2
Mehta, B.K.3
Benjamini, Y.4
-
15
-
-
84875490185
-
Cancer genome landscapes
-
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer genome landscapes. Science 2013; 339: 1546–1558.
-
(2013)
Science
, vol.339
, pp. 1546-1558
-
-
Vogelstein, B.1
Papadopoulos, N.2
Velculescu, V.E.3
Zhou, S.4
Diaz, L.A.5
Kinzler, K.W.6
-
17
-
-
31144436747
-
The human connectome: A structural description of the human brain
-
Sporns O, Tononi G, Kötter R. The human connectome: a structural description of the human brain. PLOS Comput Biol 2005; 1: e42.
-
(2005)
PLOS Comput Biol
, vol.1
, pp. e42
-
-
Sporns, O.1
Tononi, G.2
Kötter, R.3
-
18
-
-
77951126500
-
Catastrophic cascade of failures in interdependent networks
-
Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S. Catastrophic cascade of failures in interdependent networks. Nature 2010; 464: 1025–1028.
-
(2010)
Nature
, vol.464
, pp. 1025-1028
-
-
Buldyrev, S.V.1
Parshani, R.2
Paul, G.3
Stanley, H.E.4
Havlin, S.5
-
19
-
-
84874934617
-
Connectomics and epilepsy
-
Engel J Jr, Thompson PM, Stern JM, Staba RJ, Bragin A, Mody I et al. Connectomics and epilepsy. Curr Opin Neurobiol 2013; 26: 186–194.
-
(2013)
Curr Opin Neurobiol
, vol.26
, pp. 186-194
-
-
Engel, J.1
Thompson, P.M.2
Stern, J.M.3
Staba, R.J.4
Bragin, A.5
Mody, I.6
-
20
-
-
84866845650
-
Connectomic intermediate phenotypes for psychiatric disorders
-
Fornito A, Bullmore ET. Connectomic intermediate phenotypes for psychiatric disorders. Front Psychiatry 2012; 3: 32.
-
(2012)
Front Psychiatry
, vol.3
, pp. 32
-
-
Fornito, A.1
Bullmore, E.T.2
-
21
-
-
84923174333
-
The idiosyncratic brain: Distortion of spontaneous connectivity patterns in autism spectrum disorder
-
Hahamy A, Behrmann M, Malach R. The idiosyncratic brain: distortion of spontaneous connectivity patterns in autism spectrum disorder. Nat Neurosci 2015; 18: 302–309.
-
(2015)
Nat Neurosci
, vol.18
, pp. 302-309
-
-
Hahamy, A.1
Behrmann, M.2
Malach, R.3
-
22
-
-
84872226809
-
Brain structural and functional connectivity and the progression of neuropathology in Alzheimer's disease
-
Matthews PM, Filippini N, Douaud G. Brain structural and functional connectivity and the progression of neuropathology in Alzheimer's disease. J Alzheimers Dis 2013; 33(Suppl 1): S163–S172.
-
(2013)
J Alzheimers Dis
, vol.33
, pp. S163-S172
-
-
Matthews, P.M.1
Filippini, N.2
Douaud, G.3
-
23
-
-
84926286498
-
Leaver AM. connectome and schizophrenia
-
Narr KL. Leaver AM. connectome and schizophrenia. Curr Opin Psychiatry 2015; 28: 229–235.
-
(2015)
Curr Opin Psychiatry
, vol.28
, pp. 229-235
-
-
Narr, K.L.1
-
24
-
-
84888427875
-
Brain ‘Globalopathies’ cause mental disorders
-
Peled A. Brain ‘Globalopathies’ cause mental disorders. Med Hypothese 2013; 81: 1046–1055.
-
(2013)
Med Hypothese
, vol.81
, pp. 1046-1055
-
-
Peled, A.1
-
25
-
-
84922365660
-
Connectopathy in ageing and dementia
-
Toga AW, Thompson PM. Connectopathy in ageing and dementia. Brain 2014; 137: 3104–3106.
-
(2014)
Brain
, vol.137
, pp. 3104-3106
-
-
Toga, A.W.1
Thompson, P.M.2
-
27
-
-
84908391631
-
Describing the genetic architecture of epilepsy through heritability analysis
-
Speed D, O'Brien TJ, Palotie A, Shkura K, Marson AG, Balding DJ et al. Describing the genetic architecture of epilepsy through heritability analysis. Brain 2014; 137: 2680–2689.
-
(2014)
Brain
, vol.137
, pp. 2680-2689
-
-
Speed, D.1
O'brien, T.J.2
Palotie, A.3
Shkura, K.4
Marson, A.G.5
Balding, D.J.6
-
28
-
-
42349095075
-
Advances in autism genetics: On the threshold of a new neurobiology
-
Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 2008; 9: 341–355.
-
(2008)
Nat Rev Genet
, vol.9
, pp. 341-355
-
-
Abrahams, B.S.1
Geschwind, D.H.2
-
29
-
-
0031939076
-
The genetic epidemiology of schizophrenia in a Finnish twin cohort—A population-based modeling study
-
Cannon TD, Kaprio J, Lonnqvist J, Huttunen M, Koskenvuo M. The genetic epidemiology of schizophrenia in a Finnish twin cohort—A population-based modeling study. Archives Gen Psychiatry 1998; 55: 67–74.
-
(1998)
Archives Gen Psychiatry
, vol.55
, pp. 67-74
-
-
Cannon, T.D.1
Kaprio, J.2
Lonnqvist, J.3
Huttunen, M.4
Koskenvuo, M.5
-
30
-
-
0033810465
-
Genetic epidemiology of major depression: Review and meta-analysis
-
Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: Review and meta-analysis. Am J Psychiatry 2000; 157: 1552–1562.
-
(2000)
Am J Psychiatry
, vol.157
, pp. 1552-1562
-
-
Sullivan, P.F.1
Neale, M.C.2
Kendler, K.S.3
-
31
-
-
18844479720
-
Heritability for Alzheimer's disease: The study of dementia in Swedish twins
-
Gatz M, Pedersen NL, Berg S, Johansson B, Johansson K, Mortimer JA et al. Heritability for Alzheimer's disease: the study of dementia in Swedish twins. J Gerontol A Biol Sci Med Sci 1997; 52A: M117–M125.
-
(1997)
J Gerontol a Biol Sci Med Sci
, vol.52A
, pp. M117-M125
-
-
Gatz, M.1
Pedersen, N.L.2
Berg, S.3
Johansson, B.4
Johansson, K.5
Mortimer, J.A.6
-
32
-
-
84866512992
-
De novo mutations in neurological and psychiatric disorders: Effects, diagnosis and prevention
-
Gauthier J, Rouleau GA. De novo mutations in neurological and psychiatric disorders: effects, diagnosis and prevention. Genome Med 2012; 4: 71.
-
(2012)
Genome Med
, vol.4
, pp. 71
-
-
Gauthier, J.1
Rouleau, G.A.2
-
33
-
-
84863970074
-
De novo mutations in human genetic disease
-
Veltman JA, Brunner HG. De novo mutations in human genetic disease. Nat Rev Genet 2012; 13: 565–575.
-
(2012)
Nat Rev Genet
, vol.13
, pp. 565-575
-
-
Veltman, J.A.1
Brunner, H.G.2
-
34
-
-
85122193071
-
De novo mutations in epileptic encephalopathies
-
Consortium E, Project EPG, De novo mutations in epileptic encephalopathies. Nature 2013; 501: 1–7.
-
(2013)
Nature
, vol.501
, pp. 1-7
-
-
Consortium, E.1
Project, E.P.G.2
-
35
-
-
84912101541
-
The contribution of de novo coding mutations to autism spectrum disorder
-
Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 2014; 515: 216–221.
-
(2014)
Nature
, vol.515
, pp. 216-221
-
-
Iossifov, I.1
O'roak, B.J.2
Sanders, S.J.3
Ronemus, M.4
Krumm, N.5
Levy, D.6
-
36
-
-
84893919352
-
De novo mutations in schizophrenia implicate synaptic networks
-
Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 2014; 506: 179–184.
-
(2014)
Nature
, vol.506
, pp. 179-184
-
-
Fromer, M.1
Pocklington, A.J.2
Kavanagh, D.H.3
Williams, H.J.4
Dwyer, S.5
Gormley, P.6
-
37
-
-
84893708713
-
A de novo convergence of autism genetics and molecular neuroscience
-
Krumm N, O'Roak BJ, Shendure J, Eichler EE. A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci 2014; 37: 95–105.
-
(2014)
Trends Neurosci
, vol.37
, pp. 95-105
-
-
Krumm, N.1
O'roak, B.J.2
Shendure, J.3
Eichler, E.E.4
-
38
-
-
84860741138
-
Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations
-
O'Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012; 485: 246–U136.
-
(2012)
Nature
, vol.485
, pp. 246
-
-
O'roak, B.J.1
Vives, L.2
Girirajan, S.3
Karakoc, E.4
Krumm, N.5
Coe, B.P.6
-
39
-
-
46249093584
-
Strong association of de novo copy number mutations with sporadic schizophrenia
-
Bin Xu, Roos JL, Levy S, Van Rensburg EJ, Gogos JA, Karayiorgou M. Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 2008; 40: 880–885.
-
(2008)
Nat Genet
, vol.40
, pp. 880-885
-
-
Xu, B.1
Roos, J.L.2
Levy, S.3
van Rensburg, E.J.4
Gogos, J.A.5
Karayiorgou, M.6
-
40
-
-
84908007872
-
Epilepsy surgery in children and adults
-
Ryvlin P, Cross JH, Rheims S. Epilepsy surgery in children and adults. Lancet Neurol 2014; 13: 1114–1126.
-
(2014)
Lancet Neurol
, vol.13
, pp. 1114-1126
-
-
Ryvlin, P.1
Cross, J.H.2
Rheims, S.3
-
42
-
-
70349221090
-
Focal brain malformations: Seizures, signaling, sequencing
-
Crino PB. Focal brain malformations: seizures, signaling, sequencing. Epilepsia 2009; 50(Suppl 9): 3–8.
-
(2009)
Epilepsia
, vol.50
, pp. 3-8
-
-
Crino, P.B.1
-
43
-
-
84864402732
-
De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly
-
Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A et al. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet 2012; 44: 941–945.
-
(2012)
Nat Genet
, vol.44
, pp. 941-945
-
-
Lee, J.H.1
Huynh, M.2
Silhavy, J.L.3
Kim, S.4
Dixon-Salazar, T.5
Heiberg, A.6
-
44
-
-
84859646140
-
Somatic activation of AKT3 causes hemispheric developmental brain malformations
-
Poduri A, Evrony GD, Cai X, Elhosary PC, Beroukhim R, Lehtinen MK et al. Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 2012; 74: 41–48.
-
(2012)
Neuron
, vol.74
, pp. 41-48
-
-
Poduri, A.1
Evrony, G.D.2
Cai, X.3
Elhosary, P.C.4
Beroukhim, R.5
Lehtinen, M.K.6
-
45
-
-
84864400015
-
De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes
-
Rivière J-B, Mirzaa GM, O'Roak BJ, Beddaoui M, Alcantara D, Conway RL et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet 2012; 44: 934–940.
-
(2012)
Nat Genet
, vol.44
, pp. 934-940
-
-
Rivière, J.-B.1
Mirzaa, G.M.2
O'roak, B.J.3
Beddaoui, M.4
Alcantara, D.5
Conway, R.L.6
-
46
-
-
84925674581
-
Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia
-
D’Gama AM, Geng Y, Couto JA, Martin B, Boyle EA, LaCoursiere CM et al. Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia. Ann Neurol 2015; 77: 720–725.
-
(2015)
Ann Neurol
, vol.77
, pp. 720-725
-
-
D’Gama, A.M.1
Geng, Y.2
Couto, J.A.3
Martin, B.4
Boyle, E.A.5
Lacoursiere, C.M.6
-
47
-
-
84939654470
-
PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia
-
Jansen LA, Mirzaa GM, Ishak GE, O'Roak BJ, Hiatt JB, Roden WH et al. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia. Brain 2015; 138: 1613–1628.
-
(2015)
Brain
, vol.138
, pp. 1613-1628
-
-
Jansen, L.A.1
Mirzaa, G.M.2
Ishak, G.E.3
O'roak, B.J.4
Hiatt, J.B.5
Roden, W.H.6
-
48
-
-
84931090578
-
Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy
-
Lim JS, Kim W-I, Kang H-C, Kim SH, Park AH, Park EK et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat Med 2015; 21: 395–400.
-
(2015)
Nat Med
, vol.21
, pp. 395-400
-
-
Lim, J.S.1
Kim, W.-I.2
Kang, H.-C.3
Kim, S.H.4
Park, A.H.5
Park, E.K.6
-
49
-
-
84939653040
-
Somatic mutations in the MTOR gene cause focal cortical dysplasia type IIb
-
Nakashima M, Saitsu H, Takei N, Tohyama J, Kato M, Kitaura H et al. Somatic mutations in the MTOR gene cause focal cortical dysplasia type IIb. Ann Neurol 2015; 78: 375–386.
-
(2015)
Ann Neurol
, vol.78
, pp. 375-386
-
-
Nakashima, M.1
Saitsu, H.2
Takei, N.3
Tohyama, J.4
Kato, M.5
Kitaura, H.6
-
50
-
-
84901284227
-
The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism
-
Di Martino A, Yan CG, Li Q, Denio E, Castellanos FX, Alaerts K et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry 2014; 19: 659–667.
-
(2014)
Mol Psychiatry
, vol.19
, pp. 659-667
-
-
Di Martino, A.1
Yan, C.G.2
Li, Q.3
Denio, E.4
Castellanos, F.X.5
Alaerts, K.6
-
51
-
-
84860741138
-
Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations
-
O'Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012; 485: 246–250.
-
(2012)
Nature
, vol.485
, pp. 246-250
-
-
O'roak, B.J.1
Vives, L.2
Girirajan, S.3
Karakoc, E.4
Krumm, N.5
Coe, B.P.6
-
52
-
-
84860712363
-
Patterns and rates of exonic de novo mutations in autism spectrum disorders
-
Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha KE, Sabo A et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 2012; 485: 242–U129.
-
(2012)
Nature
, vol.485
, pp. 242
-
-
Neale, B.M.1
Kou, Y.2
Liu, L.3
Ma'ayan, A.4
Samocha, K.E.5
Sabo, A.6
-
54
-
-
85005917083
-
Focal cortical dysplasias in autism spectrum disorders
-
Casanova MF, El-Baz AS, Kamat SS, Dombroski BA, Khalifa F, Elnakib A et al. Focal cortical dysplasias in autism spectrum disorders. Acta Neuropathol Commun 2013; 1: 67.
-
(2013)
Acta Neuropathol Commun
, vol.1
-
-
Casanova, M.F.1
El-Baz, A.S.2
Kamat, S.S.3
Dombroski, B.A.4
Khalifa, F.5
Elnakib, A.6
-
55
-
-
84896918827
-
Patches of disorganization in the neocortex of children with autism
-
Stoner R, Chow ML, Boyle MP, Sunkin SM, Mouton PR, Roy S et al. Patches of disorganization in the neocortex of children with autism. N Engl J Med 2014; 370: 1209–1219.
-
(2014)
N Engl J Med
, vol.370
, pp. 1209-1219
-
-
Stoner, R.1
Chow, M.L.2
Boyle, M.P.3
Sunkin, S.M.4
Mouton, P.R.5
Roy, S.6
-
56
-
-
77953028667
-
The neuropathology of autism: Defects of neurogenesis and neuronal migration, and dysplastic changes
-
Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Marchi E et al. The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 2010; 119: 755–770.
-
(2010)
Acta Neuropathol
, vol.119
, pp. 755-770
-
-
Wegiel, J.1
Kuchna, I.2
Nowicki, K.3
Imaki, H.4
Wegiel, J.5
Marchi, E.6
-
57
-
-
84949432392
-
Targeted DNA sequencing from autism spectrum disorder brains implicates multiple genetic mechanisms
-
D’Gama AM, Pochareddy S, Li M, Jamuar SS, Reiff RE, Lam A-TN et al. Targeted DNA sequencing from autism spectrum disorder brains implicates multiple genetic mechanisms. Neuron 2015; 88: 910–917.
-
(2015)
Neuron
, vol.88
, pp. 910-917
-
-
D’Gama, A.M.1
Pochareddy, S.2
Li, M.3
Jamuar, S.S.4
Reiff, R.E.5
A-Tn, L.6
-
58
-
-
84870839107
-
Mitochondrial mutations and polymorphisms in psychiatric disorders
-
Sequeira A, Martin MV, Rollins B, Moon EA, Bunney WE, Macciardi F et al. Mitochondrial mutations and polymorphisms in psychiatric disorders. Front Gene 2012; 3: 103.
-
(2012)
Front Gene
, vol.3
, pp. 103
-
-
Sequeira, A.1
Martin, M.V.2
Rollins, B.3
Moon, E.A.4
Bunney, W.E.5
Macciardi, F.6
-
59
-
-
21844439212
-
Genetic or epigenetic difference causing discordance between monozygotic twins as a clue to molecular basis of mental disorders
-
Kato T, Iwamoto K, Kakiuchi C, Kuratomi G, Okazaki Y. Genetic or epigenetic difference causing discordance between monozygotic twins as a clue to molecular basis of mental disorders. Mol Psychiatry 2005; 10: 622–630.
-
(2005)
Mol Psychiatry
, vol.10
, pp. 622-630
-
-
Kato, T.1
Iwamoto, K.2
Kakiuchi, C.3
Kuratomi, G.4
Okazaki, Y.5
-
60
-
-
84938379545
-
Sparse whole-genome sequencing identifies two loci for major depressive disorder
-
Consortium C. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 2015; 523: 588–591.
-
(2015)
Nature
, vol.523
, pp. 588-591
-
-
Consortium, C.1
-
61
-
-
84904804929
-
Biological insights from 108 schizophrenia-associated genetic loci
-
Consortium SWGOTPG. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511: 421–427.
-
(2014)
Nature
, vol.511
, pp. 421-427
-
-
-
62
-
-
81855183787
-
Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder
-
Dempster EL, Pidsley R, Schalkwyk LC, Owens S, Georgiades A, Kane F et al. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum Mol Gen 2011; 20: 4786–4796.
-
(2011)
Hum Mol Gen
, vol.20
, pp. 4786-4796
-
-
Dempster, E.L.1
Pidsley, R.2
Schalkwyk, L.C.3
Owens, S.4
Georgiades, A.5
Kane, F.6
-
63
-
-
14844331064
-
Specificity of prefrontal dysfunction and context processing deficits to schizophrenia in never-medicated patients with first-episode psychosis
-
MacDonald AW III, Carter CS, Kerns JG. Specificity of prefrontal dysfunction and context processing deficits to schizophrenia in never-medicated patients with first-episode psychosis. Am J Psychiatry 2005; 162: 475–484.
-
(2005)
Am J Psychiatry
, vol.162
, pp. 475-484
-
-
Macdonald, A.W.1
Carter, C.S.2
Kerns, J.G.3
-
64
-
-
79958139969
-
Localization of dysfunction in major depressive disorder: Prefrontal cortex and amygdala
-
Murray EA, Wise SP, Drevets WC. Localization of dysfunction in major depressive disorder: prefrontal cortex and amygdala. Biol Psychiatry 2011; 69: e43–e45.
-
(2011)
Biol Psychiatry
, vol.69
, pp. e43-e45
-
-
Murray, E.A.1
Wise, S.P.2
Drevets, W.C.3
-
65
-
-
84892789989
-
Increased L1 retrotransposition in the neuronal genome in schizophrenia
-
Bundo M, Toyoshima M, Okada Y, Akamatsu W, Ueda J, Nemoto-Miyauchi T et al. Increased L1 retrotransposition in the neuronal genome in schizophrenia. Neuron 2014; 81: 306–313.
-
(2014)
Neuron
, vol.81
, pp. 306-313
-
-
Bundo, M.1
Toyoshima, M.2
Okada, Y.3
Akamatsu, W.4
Ueda, J.5
Nemoto-Miyauchi, T.6
-
66
-
-
84892970354
-
Somatic deletions implicated in functional diversity of brain cells of individuals with schizophrenia and unaffected controls
-
Kim J, Shin J-Y, Kim J-I, Seo J-S, Webster MJ, Lee D et al. Somatic deletions implicated in functional diversity of brain cells of individuals with schizophrenia and unaffected controls. Sci Rep 2014; 4: 3807.
-
(2014)
Sci Rep
, vol.4
-
-
Kim, J.1
Shin, J.-Y.2
Kim, J.-I.3
Seo, J.-S.4
Webster, M.J.5
Lee, D.6
-
68
-
-
80052620148
-
The ‘somatic-spread’ hypothesis for sporadic neurodegen-erative diseases
-
Pamphlett R. The ‘somatic-spread’ hypothesis for sporadic neurodegen-erative diseases. Med Hypothese 2011; 77: 544–547.
-
(2011)
Med Hypothese
, vol.77
, pp. 544-547
-
-
Pamphlett, R.1
-
70
-
-
77949848854
-
Prion-like transmission of protein aggregates in neurodegenerative diseases
-
Brundin P, Melki R, Kopito R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 2010; 11: 301–307.
-
(2010)
Nat Rev Mol Cell Biol
, vol.11
, pp. 301-307
-
-
Brundin, P.1
Melki, R.2
Kopito, R.3
-
71
-
-
84947865675
-
On the identification of low allele frequency mosaic mutations in the brains of Alzheimer disease patients
-
Frigerio CS, Lau P, Troakes C, Deramecourt V, Gele P, Van Loo P et al. On the identification of low allele frequency mosaic mutations in the brains of Alzheimer disease patients. Alzheimers Dement 2015; 11: 1265–1276.
-
(2015)
Alzheimers Dement
, vol.11
, pp. 1265-1276
-
-
Frigerio, C.S.1
Lau, P.2
Troakes, C.3
Deramecourt, V.4
Gele, P.5
van Loo, P.6
-
72
-
-
84907970240
-
Somatic signature of brain-specific single nucleotide variations in sporadic Alzheimer's disease
-
Parcerisas A, Rubio SE, Muhaisen A, Gómez-Ramos A, Pujadas L, Puiggros M et al. Somatic signature of brain-specific single nucleotide variations in sporadic Alzheimer's disease. J Alzheimers Dis 2014; 42: 1357–1382.
-
(2014)
J Alzheimers Dis
, vol.42
, pp. 1357-1382
-
-
Parcerisas, A.1
Rubio, S.E.2
Muhaisen, A.3
Gómez-Ramos, A.4
Pujadas, L.5
Puiggros, M.6
-
73
-
-
84907313347
-
Somatic mutations in cerebral cortical malformations
-
Jamuar SS, Lam A-TN, Kircher M, D’Gama AM, Wang J, Barry BJ et al. Somatic mutations in cerebral cortical malformations. N Engl J Med 2014; 371: 733–743.
-
(2014)
N Engl J Med
, vol.371
, pp. 733-743
-
-
Jamuar, S.S.1
Lam, A.-T.2
Kircher, M.3
D’Gama, A.M.4
Wang, J.5
Barry, B.J.6
-
74
-
-
84877957142
-
Sturge–Weber Syndrome and Port-Wine Stains caused by somatic mutation in GNAQ
-
Shirley MD, Tang H, Gallione CJ, Baugher JD, Frelin LP, Cohen B et al. Sturge–Weber Syndrome and Port-Wine Stains caused by somatic mutation in GNAQ. N Engl J Med 2013; 368: 1971–1979.
-
(2013)
N Engl J Med
, vol.368
, pp. 1971-1979
-
-
Shirley, M.D.1
Tang, H.2
Gallione, C.J.3
Baugher, J.D.4
Frelin, L.P.5
Cohen, B.6
-
75
-
-
84934769334
-
Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform
-
Schirmer M, Ijaz UZ, D'Amore R, Hall N, Sloan WT, Quince C. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res 2015; 43: e37.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. e37
-
-
Schirmer, M.1
Ijaz, U.Z.2
D'amore, R.3
Hall, N.4
Sloan, W.T.5
Quince, C.6
-
76
-
-
84876020288
-
Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation
-
Costello M, Pugh TJ, Fennell TJ, Stewart C, Lichtenstein L, Meldrim JC et al. Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation. Nucleic Acids Res 2013; 41: e67–e67.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. e67-e67
-
-
Costello, M.1
Pugh, T.J.2
Fennell, T.J.3
Stewart, C.4
Lichtenstein, L.5
Meldrim, J.C.6
-
77
-
-
80051688000
-
Field guide to next‐generation DNA sequencers
-
GLENN TC. Field guide to next‐generation DNA sequencers. Mol Ecol Resour 2011; 11: 759–769.
-
(2011)
Mol Ecol Resour
, vol.11
, pp. 759-769
-
-
Tc, G.1
-
78
-
-
84890565382
-
The role of replicates for error mitigation in next-generation sequencing
-
Robasky K, Lewis NE, Church GM. The role of replicates for error mitigation in next-generation sequencing. Nat Rev Genet 2013; 15: 56–62.
-
(2013)
Nat Rev Genet
, vol.15
, pp. 56-62
-
-
Robasky, K.1
Lewis, N.E.2
Church, G.M.3
-
79
-
-
84882455458
-
Single-cell sequencing-based technologies will revolutionize whole-organism science
-
Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 2013; 14: 618–630.
-
(2013)
Nat Rev Genet
, vol.14
, pp. 618-630
-
-
Shapiro, E.1
Biezuner, T.2
Linnarsson, S.3
-
80
-
-
84920645442
-
A quantitative comparison of single-cell whole genome amplification methods
-
de Bourcy CFA, De Vlaminck I, Kanbar JN, Wang J, Gawad C, Quake SR. A quantitative comparison of single-cell whole genome amplification methods. PLoS ONE 2014; 9: e105585.
-
(2014)
Plos ONE
, vol.9
-
-
de Bourcy, C.F.A.1
de Vlaminck, I.2
Kanbar, J.N.3
Wang, J.4
Gawad, C.5
Quake, S.R.6
-
81
-
-
84939152741
-
SNES makes sense? Single-cell exome sequencing evolves
-
Voet T, Van Loo P. SNES makes sense? Single-cell exome sequencing evolves. Genome Biol 2015; 16: 86.
-
(2015)
Genome Biol
, vol.16
-
-
Voet, T.1
van Loo, P.2
-
82
-
-
84874025843
-
Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples
-
Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 2013; 31: 213–219.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 213-219
-
-
Cibulskis, K.1
Lawrence, M.S.2
Carter, S.L.3
Sivachenko, A.4
Jaffe, D.5
Sougnez, C.6
-
83
-
-
84883063871
-
Virmid: Accurate detection of somatic mutations with sample impurity inference
-
Kim S, Jeong K, Bhutani K, Lee J, Patel A, Scott E et al. Virmid: accurate detection of somatic mutations with sample impurity inference. Genome Biol 2013; 14: R90.
-
(2013)
Genome Biol
, vol.14
, pp. R90
-
-
Kim, S.1
Jeong, K.2
Bhutani, K.3
Lee, J.4
Patel, A.5
Scott, E.6
-
84
-
-
84864153492
-
Strelka: Accurate somatic small-variant calling from sequenced tumor-normal sample pairs
-
Saunders CT, Wong WSW, Swamy S, Becq J, Murray LJ, Cheetham RK. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics 2012; 28: 1811–1817.
-
(2012)
Bioinformatics
, vol.28
, pp. 1811-1817
-
-
Saunders, C.T.1
Wong, W.S.W.2
Swamy, S.3
Becq, J.4
Murray, L.J.5
Cheetham, R.K.6
-
85
-
-
84897403748
-
Comparison of somatic mutation calling methods in amplicon and whole exome sequence data
-
Xu H, DiCarlo J, Satya RV, Peng Q, Wang Y. Comparison of somatic mutation calling methods in amplicon and whole exome sequence data. BMC Genomics 2014; 15: 1.
-
(2014)
BMC Genomics
, vol.15
, Issue.1
-
-
Xu, H.1
Dicarlo, J.2
Satya, R.V.3
Peng, Q.4
Wang, Y.5
-
86
-
-
84943402390
-
SoloDel: A probabilistic model for detecting low-frequent somatic deletions from unmatched sequencing data
-
Kim J, Kim S, Nam H, Kim S, Lee D. SoloDel: a probabilistic model for detecting low-frequent somatic deletions from unmatched sequencing data. Bioinformatics 2015; 31: btv358–3113.
-
(2015)
Bioinformatics
, vol.31
, pp. btv358-3113
-
-
Kim, J.1
Kim, S.2
Nam, H.3
Kim, S.4
Lee, D.5
-
87
-
-
84871227763
-
LoFreq: A sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets
-
Wilm A, Aw PPK, Bertrand D, Yeo GHT, Ong SH, Wong CH et al. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res 2012; 40: gks918–11201.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. gks918-11201
-
-
Wilm, A.1
Aw, P.P.K.2
Bertrand, D.3
Yeo, G.H.T.4
Ong, S.H.5
Wong, C.H.6
-
88
-
-
84898778301
-
A guide to genome engineering with programmable nucleases
-
Kim H, Kim J-S. A guide to genome engineering with programmable nucleases. Nat Rev Genet 2014; 15: 321–334.
-
(2014)
Nat Rev Genet
, vol.15
, pp. 321-334
-
-
Kim, H.1
Kim, J.-S.2
-
89
-
-
84900314611
-
CRISPR-Cas systems for editing, regulating and targeting genomes
-
Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014; 32: 347–355.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 347-355
-
-
Sander, J.D.1
Joung, J.K.2
-
90
-
-
84902096048
-
Development and applications of CRISPR-Cas9 for genome engineering
-
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157: 1262–1278.
-
(2014)
Cell
, vol.157
, pp. 1262-1278
-
-
Hsu, P.D.1
Lander, E.S.2
Zhang, F.3
-
91
-
-
84892749369
-
Genetic screens in human cells using the CRISPR/Cas9 system
-
Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR/Cas9 system. Science 2014; 343: 80–84.
-
(2014)
Science
, vol.343
, pp. 80-84
-
-
Wang, T.1
Wei, J.J.2
Sabatini, D.M.3
Lander, E.S.4
-
92
-
-
84892765883
-
Genome-scale CRISPR-Cas9 knockout screening in human cells
-
Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014; 343: 84–87.
-
(2014)
Science
, vol.343
, pp. 84-87
-
-
Shalem, O.1
Sanjana, N.E.2
Hartenian, E.3
Shi, X.4
Scott, D.A.5
Mikkelsen, T.S.6
-
93
-
-
84923118778
-
Rapid modelling of cooperating genetic events in cancer through somatic genome editing
-
Sánchez-Rivera FJ, Papagiannakopoulos T, Romero R, Tammela T, Bauer MR, Bhutkar A et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 2014; 516: 428–431.
-
(2014)
Nature
, vol.516
, pp. 428-431
-
-
Sánchez-Rivera, F.J.1
Papagiannakopoulos, T.2
Romero, R.3
Tammela, T.4
Bauer, M.R.5
Bhutkar, A.6
-
94
-
-
84908190503
-
CRISPR-mediated direct mutation of cancer genes in the mouse liver
-
Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 2000; 514: 380–384.
-
(2000)
Nature
, vol.514
, pp. 380-384
-
-
Xue, W.1
Chen, S.2
Yin, H.3
Tammela, T.4
Papagiannakopoulos, T.5
Joshi, N.S.6
-
95
-
-
84926061715
-
In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9
-
Swiech L, Heidenreich M, Banerjee A, Habib N, Li Y, Trombetta J et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 2015; 33: 102–106.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 102-106
-
-
Swiech, L.1
Heidenreich, M.2
Banerjee, A.3
Habib, N.4
Li, Y.5
Trombetta, J.6
-
96
-
-
84931291649
-
Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling
-
Zuckermann M, Hovestadt V, Knobbe-Thomsen CB, Zapatka M, Northcott PA, Schramm K et al. Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat Commun 2015; 6: 7391.
-
(2015)
Nat Commun
, vol.6
-
-
Zuckermann, M.1
Hovestadt, V.2
Knobbe-Thomsen, C.B.3
Zapatka, M.4
Northcott, P.A.5
Schramm, K.6
-
97
-
-
10044258730
-
Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function
-
Babiloni F, Cincotti F, Babiloni C, Carducci F, Mattia D, Astolfi L et al. Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function. Neuroimage 2005; 24: 118–131.
-
(2005)
Neuroimage
, vol.24
, pp. 118-131
-
-
Babiloni, F.1
Cincotti, F.2
Babiloni, C.3
Carducci, F.4
Mattia, D.5
Astolfi, L.6
-
98
-
-
52049091838
-
Imaging structural and functional connectivity: Towards a unified definition of human brain organization?
-
Guye M, Bartolomei F, Ranjeva J-P. Imaging structural and functional connectivity: towards a unified definition of human brain organization? Curr Opin Neurobiol 2008; 21: 393–403.
-
(2008)
Curr Opin Neurobiol
, vol.21
, pp. 393-403
-
-
Guye, M.1
Bartolomei, F.2
Ranjeva, J.-P.3
-
99
-
-
84857686815
-
Towards reliable spike-train recordings from thousands of neurons with multielectrodes
-
Einevoll GT, Franke F, Hagen E, Pouzat C, Harris KD. Towards reliable spike-train recordings from thousands of neurons with multielectrodes. Curr Opin Neurobiol 2012; 22: 11–17.
-
(2012)
Curr Opin Neurobiol
, vol.22
, pp. 11-17
-
-
Einevoll, G.T.1
Franke, F.2
Hagen, E.3
Pouzat, C.4
Harris, K.D.5
-
100
-
-
84898684536
-
A mesoscale connectome of the mouse brain
-
Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S et al. A mesoscale connectome of the mouse brain. Nature 2014; 508: 207–214.
-
(2014)
Nature
, vol.508
, pp. 207-214
-
-
Oh, S.W.1
Harris, J.A.2
Ng, L.3
Winslow, B.4
Cain, N.5
Mihalas, S.6
-
102
-
-
84930182225
-
High-resolution whole-brain staining for electron microscopic circuit reconstruction
-
Mikula S, Denk W. High-resolution whole-brain staining for electron microscopic circuit reconstruction. Nat Methods 2015; 12: 541–546.
-
(2015)
Nat Methods
, vol.12
, pp. 541-546
-
-
Mikula, S.1
Denk, W.2
|