메뉴 건너뛰기




Volumn 8, Issue 1, 2017, Pages

GIGANTEA is a co-chaperone which facilitates maturation of ZEITLUPE in the Arabidopsis circadian clock

Author keywords

[No Author keywords available]

Indexed keywords

CHAPERONE; F BOX PROTEIN; GIGANTEA PROTEIN; HEAT SHOCK PROTEIN 70; HEAT SHOCK PROTEIN 90; NUCLEAR PROTEIN; UNCLASSIFIED DRUG; ZEITLUPE PROTEIN; ARABIDOPSIS PROTEIN; GI PROTEIN, ARABIDOPSIS; PROTEIN BINDING; ZTL PROTEIN, ARABIDOPSIS;

EID: 85013760599     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/s41467-016-0014-9     Document Type: Article
Times cited : (101)

References (68)
  • 1
    • 84897418780 scopus 로고    scopus 로고
    • Wheels within wheels: The plant circadian system
    • Hsu, P. Y. & Harmer, S. L. Wheels within wheels: the plant circadian system. Trends Plant. Sci. 19, 240 (2014).
    • (2014) Trends Plant. Sci , vol.19 , pp. 240
    • Hsu, P.Y.1    Harmer, S.L.2
  • 2
    • 84939950077 scopus 로고    scopus 로고
    • The molecular ticks of the Drosophila circadian clock
    • Tataroglu, O. & Emery, P. The molecular ticks of the Drosophila circadian clock. Curr. Opin. Insect. Sci. 7, 51 (2015).
    • (2015) Curr. Opin. Insect. Sci , vol.7 , pp. 51
    • Tataroglu, O.1    Emery, P.2
  • 3
    • 84896876294 scopus 로고    scopus 로고
    • Multiple layers of posttranslational regulation refine circadian clock activity in Arabidopsis
    • Seo, P. J. & Mas, P. Multiple layers of posttranslational regulation refine circadian clock activity in Arabidopsis. Plant. Cell 26, 79 (2014).
    • (2014) Plant. Cell , vol.26 , pp. 79
    • Seo, P.J.1    Mas, P.2
  • 4
    • 84902198718 scopus 로고    scopus 로고
    • Interactive features of proteins composing eukaryotic circadian clocks
    • Crane, B. R. & Young, M. W. Interactive features of proteins composing eukaryotic circadian clocks. Annu. Rev. Biochem. 83, 191 (2014).
    • (2014) Annu. Rev. Biochem , vol.83 , pp. 191
    • Crane, B.R.1    Young, M.W.2
  • 5
    • 0348134861 scopus 로고    scopus 로고
    • Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana
    • Mas, P., Kim, W. Y., Somers, D. E. & Kay, S. A. Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426, 567 (2003).
    • (2003) Nature , vol.426 , pp. 567
    • Mas, P.1    Kim, W.Y.2    Somers, D.E.3    Kay, S.A.4
  • 6
    • 35348856969 scopus 로고    scopus 로고
    • Targeted degradation of PSEUDO-RESPONSE REGULATOR5 by an SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana
    • Kiba, T., Henriques, R., Sakakibara, H. & Chua, N. H. Targeted degradation of PSEUDO-RESPONSE REGULATOR5 by an SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana. Plant. Cell 19, 2516 (2007).
    • (2007) Plant. Cell , vol.19 , pp. 2516
    • Kiba, T.1    Henriques, R.2    Sakakibara, H.3    Chua, N.H.4
  • 7
    • 53149108244 scopus 로고    scopus 로고
    • Post-translational regulation of the Arabidopsis circadian clock through selective proteolysis and phosphorylation of pseudo-response regulator proteins
    • Fujiwara, S. et al. Post-translational regulation of the Arabidopsis circadian clock through selective proteolysis and phosphorylation of pseudo-response regulator proteins. J. Biol. Chem. 283, 23073 (2008).
    • (2008) J. Biol. Chem , vol.283 , pp. 23073
    • Fujiwara, S.1
  • 8
    • 84861402657 scopus 로고    scopus 로고
    • LOV domain-containing F-box proteins: Light-dependent protein degradation modules in Arabidopsis
    • Ito, S., Song, Y. H. & Imaizumi, T. LOV domain-containing F-box proteins: light-dependent protein degradation modules in Arabidopsis. Mol. Plant. 5, 573 (2012).
    • (2012) Mol. Plant , vol.5 , pp. 573
    • Ito, S.1    Song, Y.H.2    Imaizumi, T.3
  • 9
    • 34548813657 scopus 로고    scopus 로고
    • ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light
    • Kim, W. Y. et al. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449, 356 (2007).
    • (2007) Nature , vol.449 , pp. 356
    • Kim, W.Y.1
  • 10
    • 0033198884 scopus 로고    scopus 로고
    • GIGANTEA: A circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains
    • Fowler, S. et al. GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO. J. 18, 4679 (1999).
    • (1999) EMBO. J. , vol.18 , pp. 4679
    • Fowler, S.1
  • 11
    • 0001357490 scopus 로고    scopus 로고
    • Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene
    • Park, D. et al. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285, 1579 (1999).
    • (1999) Science , vol.285 , pp. 1579
    • Park, D.1
  • 12
    • 0037447277 scopus 로고    scopus 로고
    • Circadian phase-specific degradation of the F-box protein ZTL is mediated by the proteasome
    • Kim, W. Y., Geng, R. & Somers, D. E. Circadian phase-specific degradation of the F-box protein ZTL is mediated by the proteasome. Proc. Natl Acad. Sci. USA 100, 4933 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 4933
    • Kim, W.Y.1    Geng, R.2    Somers, D.E.3
  • 13
    • 84938579517 scopus 로고    scopus 로고
    • Comparative genomics and functional characterisation of the GIGANTEA gene from the temperate forage perennial ryegrass Lolium perenne
    • Gagic, M., Faville, M., Kardailsky, I. & Putterill, J. Comparative genomics and functional characterisation of the GIGANTEA gene from the temperate forage perennial ryegrass Lolium perenne. Plant. Mol. Biol. Rep. 33, 1098 (2015).
    • (2015) Plant. Mol. Biol. Rep , vol.33 , pp. 1098
    • Gagic, M.1    Faville, M.2    Kardailsky, I.3    Putterill, J.4
  • 14
    • 0034662979 scopus 로고    scopus 로고
    • GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis
    • Huq, E., Tepperman, J. M. & Quail, P. H. GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 97, 9789 (2000).
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 9789
    • Huq, E.1    Tepperman, J.M.2    Quail, P.H.3
  • 16
    • 79953169515 scopus 로고    scopus 로고
    • The circadian oscillator gene GIGANTEA mediates a longterm response of the Arabidopsis thaliana circadian clock to sucrose
    • Dalchau, N. et al. The circadian oscillator gene GIGANTEA mediates a longterm response of the Arabidopsis thaliana circadian clock to sucrose. Proc. Natl. Acad. Sci. USA 108, 5104 (2011).
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 5104
    • Dalchau, N.1
  • 17
    • 84875581613 scopus 로고    scopus 로고
    • Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis
    • Kim, W. Y. et al. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat. Commun. 4, 1352 (2013).
    • (2013) Nat. Commun , vol.4 , pp. 1352
    • Kim, W.Y.1
  • 18
    • 35348910170 scopus 로고    scopus 로고
    • FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis
    • Sawa, M., Nusinow, D. A., Kay, S. A. & Imaizumi, T. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318, 261 (2007).
    • (2007) Science , vol.318 , pp. 261
    • Sawa, M.1    Nusinow, D.A.2    Kay, S.A.3    Imaizumi, T.4
  • 19
    • 33846351661 scopus 로고    scopus 로고
    • GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation
    • Martin-Tryon, E. L., Kreps, J. A. & Harmer, S. L. GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation. Plant. Physiol. 143, 473 (2007).
    • (2007) Plant. Physiol , vol.143 , pp. 473
    • Martin-Tryon, E.L.1    Kreps, J.A.2    Harmer, S.L.3
  • 20
    • 27744434216 scopus 로고    scopus 로고
    • Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis
    • Mizoguchi, T. et al. Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant. Cell 17, 2255 (2005).
    • (2005) Plant. Cell , vol.17 , pp. 2255
    • Mizoguchi, T.1
  • 21
    • 33745453173 scopus 로고    scopus 로고
    • The molecular basis of temperature compensation in the Arabidopsis circadian clock
    • Gould, P. D. et al. The molecular basis of temperature compensation in the Arabidopsis circadian clock. Plant. Cell 18, 1177 (2006).
    • (2006) Plant. Cell , vol.18 , pp. 1177
    • Gould, P.D.1
  • 22
    • 84884270728 scopus 로고    scopus 로고
    • The F-box protein ZEITLUPE controls stability and nucleocytoplasmic partitioning of GIGANTEA
    • Kim, J., Geng, R., Gallenstein, R. A. & Somers, D. E. The F-box protein ZEITLUPE controls stability and nucleocytoplasmic partitioning of GIGANTEA. Development 140, 4060 (2013).
    • (2013) Development , vol.140 , pp. 4060
    • Kim, J.1    Geng, R.2    Gallenstein, R.A.3    Somers, D.E.4
  • 23
    • 32344450689 scopus 로고    scopus 로고
    • Arabidopsis GIGANTEA protein is post-transcriptionally regulated by light and dark
    • David, K. M., Armbruster, U., Tama, N. & Putterill, J. Arabidopsis GIGANTEA protein is post-transcriptionally regulated by light and dark. FEBS Lett. 580, 1193 (2006).
    • (2006) FEBS Lett , vol.580 , pp. 1193
    • David, K.M.1    Armbruster, U.2    Tama, N.3    Putterill, J.4
  • 24
    • 84875808511 scopus 로고    scopus 로고
    • ELF4 regulates GIGANTEA chromatin access through subnuclear sequestration
    • Kim, Y. et al. ELF4 regulates GIGANTEA chromatin access through subnuclear sequestration. Cell Rep. 3, 671 (2013).
    • (2013) Cell Rep , vol.3 , pp. 671
    • Kim, Y.1
  • 25
    • 56849102536 scopus 로고    scopus 로고
    • COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability
    • Yu, J. W. et al. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol. Cell 32, 617 (2008).
    • (2008) Mol. Cell , vol.32 , pp. 617
    • Yu, J.W.1
  • 26
    • 0029442314 scopus 로고
    • Assaying proteins for molecular chaperone activity
    • Lee, G. J. Assaying proteins for molecular chaperone activity. Methods Cell Biol. 50, 325 (1995).
    • (1995) Methods Cell Biol , vol.50 , pp. 325
    • Lee, G.J.1
  • 30
    • 85013840376 scopus 로고    scopus 로고
    • Networking of Chaperones by Co- Chaperones
    • Springer International Publishing Switzerland
    • Blatch, G. L. & Edkins, A. L. (eds). Networking of Chaperones by Co- Chaperones, Subcellular Biochemistry Vol. 78, 1-276 (Springer International Publishing Switzerland, 2015).
    • (2015) Subcellular Biochemistry , vol.78 , pp. 1-276
    • Blatch, G.L.1    Edkins, A.L.2
  • 31
    • 84857058279 scopus 로고    scopus 로고
    • Expanding the cellular molecular chaperone network through the ubiquitous cochaperones
    • Echtenkamp, F. J. & Freeman, B. C. Expanding the cellular molecular chaperone network through the ubiquitous cochaperones. Biochim. Biophys. Acta. 1823, 668 (2012).
    • (2012) Biochim. Biophys. Acta , vol.1823 , pp. 668
    • Echtenkamp, F.J.1    Freeman, B.C.2
  • 32
    • 80053629453 scopus 로고    scopus 로고
    • HSP90 functions in the circadian clock through stabilization of the client F-box protein ZEITLUPE
    • Kim, T. S. et al. HSP90 functions in the circadian clock through stabilization of the client F-box protein ZEITLUPE. Proc. Natl. Acad. Sci. USA 108, 16843 (2011).
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 16843
    • Kim, T.S.1
  • 33
    • 0032079487 scopus 로고    scopus 로고
    • The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network
    • Veinger, L., Diamant, S., Buchner, J. & Goloubinoff, P. The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273, 11032 (1998).
    • (1998) J. Biol. Chem , vol.273 , pp. 11032
    • Veinger, L.1    Diamant, S.2    Buchner, J.3    Goloubinoff, P.4
  • 35
    • 84964240132 scopus 로고    scopus 로고
    • Assays to characterize molecular chaperone function in vitro
    • Haslbeck, M. & Buchner, J. Assays to characterize molecular chaperone function in vitro. Methods Mol. Biol. 1292, 39 (2015).
    • (2015) Methods Mol. Biol , vol.1292 , pp. 39
    • Haslbeck, M.1    Buchner, J.2
  • 36
    • 0031024691 scopus 로고    scopus 로고
    • A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state
    • Lee, G. J., Roseman, A. M., Saibil, H. R. & Vierling, E. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO. J. 16, 659 (1997).
    • (1997) EMBO. J. , vol.16 , pp. 659
    • Lee, G.J.1    Roseman, A.M.2    Saibil, H.R.3    Vierling, E.4
  • 37
    • 0027507970 scopus 로고
    • Thermal switching between enhanced and arrested reactivation of bacterial glucose-6-phosphate dehydrogenase assisted by GroEL in the absence of ATP
    • Hansen, J. E. & Gafni, A. Thermal switching between enhanced and arrested reactivation of bacterial glucose-6-phosphate dehydrogenase assisted by GroEL in the absence of ATP. J. Biol. Chem. 268, 21632 (1993).
    • (1993) J. Biol. Chem , vol.268 , pp. 21632
    • Hansen, J.E.1    Gafni, A.2
  • 38
    • 84555209599 scopus 로고    scopus 로고
    • Chaperone-like properties of tobacco plastid thioredoxins f and m
    • Sanz-Barrio, R. et al. Chaperone-like properties of tobacco plastid thioredoxins f and m. J. Exp. Bot. 63, 365 (2012).
    • (2012) J. Exp. Bot , vol.63 , pp. 365
    • Sanz-Barrio, R.1
  • 39
    • 84952637757 scopus 로고    scopus 로고
    • The GroEL-GroES chaperonin machine: A nano-cage for protein folding
    • Hayer-Hartl, M., Bracher, A. & Hartl, F. U. The GroEL-GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem. Sci. 41, 62 (2016).
    • (2016) Trends Biochem. Sci , vol.41 , pp. 62
    • Hayer-Hartl, M.1    Bracher, A.2    Hartl, F.U.3
  • 40
    • 79960561221 scopus 로고    scopus 로고
    • Heat-induced chaperone activity of serine/threonine protein phosphatase 5 enhances thermotolerance in Arabidopsis thaliana
    • Park, J. H. et al. Heat-induced chaperone activity of serine/threonine protein phosphatase 5 enhances thermotolerance in Arabidopsis thaliana. New. Phytol. 191, 692 (2011).
    • (2011) New. Phytol , vol.191 , pp. 692
    • Park, J.H.1
  • 41
    • 33747875421 scopus 로고    scopus 로고
    • Adsorptive refolding of histidine-tagged glutathione S-transferase using metal affinity chromatography
    • Hutchinson, M. H. & Chase, H. A. Adsorptive refolding of histidine-tagged glutathione S-transferase using metal affinity chromatography. J. Chromatogr. A. 1128, 125 (2006).
    • (2006) J. Chromatogr. A , vol.1128 , pp. 125
    • Hutchinson, M.H.1    Chase, H.A.2
  • 42
    • 84938894728 scopus 로고    scopus 로고
    • Development of in vitro HSP90 foldase chaperone assay using a GST-fused real-substrate
    • Cha, J. Y., Kim, M., Kim, W. Y. & Kim, M. Development of in vitro HSP90 foldase chaperone assay using a GST-fused real-substrate. ZTL (ZEITLUPE) 58, 236 (2015).
    • (2015) ZTL (ZEITLUPE) , vol.58 , pp. 236
    • Cha, J.Y.1    Kim, M.2    Kim, W.Y.3    Kim, M.4
  • 44
    • 0033648159 scopus 로고    scopus 로고
    • Analysis of molecular chaperone activities using in vitro and in vivo approaches
    • Freeman, B. C., Michels, A., Song, J., Kampinga, H. H. & Morimoto, R. I. Analysis of molecular chaperone activities using in vitro and in vivo approaches. Methods Mol. Biol. 99, 393 (2000).
    • (2000) Methods Mol. Biol , vol.99 , pp. 393
    • Freeman, B.C.1    Michels, A.2    Song, J.3    Kampinga, H.H.4    Morimoto, R.I.5
  • 45
    • 84856990820 scopus 로고    scopus 로고
    • Intracellular refolding assay
    • Walther, T. V. & Maddalo, D. Intracellular refolding assay. J. Vis. Exp. 59, 3540 (2012).
    • (2012) J. Vis. Exp , vol.59 , pp. 3540
    • Walther, T.V.1    Maddalo, D.2
  • 46
    • 84870917750 scopus 로고    scopus 로고
    • Alternative bacterial two-component small heat shock protein systems
    • Bepperling, A. et al. Alternative bacterial two-component small heat shock protein systems. Proc. Natl. Acad. Sci. USA 109, 20407 (2012).
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 20407
    • Bepperling, A.1
  • 47
    • 79151472297 scopus 로고    scopus 로고
    • Expression, purification and characterisation of GIGANTEA: A circadian clock-controlled regulator of photoperiodic flowering in plants
    • Black, M. M., Stockum, C., Dickson, J. M., Putterill, J. & Arcus, V. L. Expression, purification and characterisation of GIGANTEA: a circadian clock-controlled regulator of photoperiodic flowering in plants. Protein. Expr. Purif. 76, 197 (2011).
    • (2011) Protein. Expr. Purif , vol.76 , pp. 197
    • Black, M.M.1    Stockum, C.2    Dickson, J.M.3    Putterill, J.4    Arcus, V.L.5
  • 48
    • 84881218748 scopus 로고    scopus 로고
    • Structure function and regulation of the Hsp90 machinery
    • Li, J. & Buchner, J. Structure, function and regulation of the Hsp90 machinery. Biomed. J. 36, 106 (2013).
    • (2013) Biomed. J , vol.36 , pp. 106
    • Li, J.1    Buchner, J.2
  • 49
    • 77953916528 scopus 로고    scopus 로고
    • HSP90 at the hub of protein homeostasis: Emerging mechanistic insights
    • Taipale, M., Jarosz, D. F. & Lindquist, S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell Biol. 11, 515 (2010).
    • (2010) Nat. Rev. Mol. Cell Biol , vol.11 , pp. 515
    • Taipale, M.1    Jarosz, D.F.2    Lindquist, S.3
  • 50
    • 84876707777 scopus 로고    scopus 로고
    • The chaperone Hsp90: Changing partners for demanding clients
    • Rohl, A., Rohrberg, J. & Buchner, J. The chaperone Hsp90: changing partners for demanding clients. Trends Biochem. Sci. 38, 253 (2013).
    • (2013) Trends Biochem. Sci , vol.38 , pp. 253
    • Rohl, A.1    Rohrberg, J.2    Buchner, J.3
  • 51
    • 84857042271 scopus 로고    scopus 로고
    • The Hsp90 chaperone machinery: Conformational dynamics and regulation by co-chaperones
    • Li, J., Soroka, J. & Buchner, J. The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim. Biophys. Acta. 1823, 624 (2012).
    • (2012) Biochim. Biophys. Acta , vol.1823 , pp. 624
    • Li, J.1    Soroka, J.2    Buchner, J.3
  • 52
    • 84857051938 scopus 로고    scopus 로고
    • The "active life" of Hsp90 complexes
    • Prodromou, C. The "active life" of Hsp90 complexes. Biochim. Biophys. Acta. 1823, 614 (2012).
    • (2012) Biochim. Biophys. Acta , vol.1823 , pp. 614
    • Prodromou, C.1
  • 53
    • 84904547311 scopus 로고    scopus 로고
    • A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways
    • Taipale, M. et al. A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways. Cell 158, 434 (2014).
    • (2014) Cell , vol.158 , pp. 434
    • Taipale, M.1
  • 54
    • 84865695733 scopus 로고    scopus 로고
    • Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition
    • Taipale, M. et al. Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150, 987 (2012).
    • (2012) Cell , vol.150 , pp. 987
    • Taipale, M.1
  • 55
    • 79957730170 scopus 로고    scopus 로고
    • Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling
    • Genest, O., Hoskins, J. R., Camberg, J. L., Doyle, S. M. & Wickner, S. Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling. Proc. Natl. Acad. Sci. USA 108, 8206 (2011).
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 8206
    • Genest, O.1    Hoskins, J.R.2    Camberg, J.L.3    Doyle, S.M.4    Wickner, S.5
  • 56
    • 0043234527 scopus 로고    scopus 로고
    • Synergistic activation of endothelial nitric-oxide synthase (eNOS) by HSP90 and Akt: Calcium-independent eNOS activation involves formation of an HSP90-Akt-CaM-bound eNOS complex
    • Takahashi, S. & Mendelsohn, M. E. Synergistic activation of endothelial nitric-oxide synthase (eNOS) by HSP90 and Akt: calcium-independent eNOS activation involves formation of an HSP90-Akt-CaM-bound eNOS complex. J. Biol. Chem. 278, 30821 (2003).
    • (2003) J. Biol. Chem , vol.278 , pp. 30821
    • Takahashi, S.1    Mendelsohn, M.E.2
  • 57
    • 0036931438 scopus 로고    scopus 로고
    • Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1
    • Panaretou, B., et al. Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol. Cell 10, 1307 (2002)
    • (2002) Mol. Cell , vol.10 , pp. 1307
    • Panaretou, B.1
  • 59
    • 84904502472 scopus 로고    scopus 로고
    • Plant Hsp90 and its co-chaperones
    • Breiman, A. Plant Hsp90 and its co-chaperones. Curr. Protein. Pept. Sci. 15, 232 (2014).
    • (2014) Curr. Protein. Pept. Sci , vol.15 , pp. 232
    • Breiman, A.1
  • 60
    • 0029852712 scopus 로고    scopus 로고
    • Molecular chaperone machines: Chaperone activities of the cyclophilin Cyp-40 and the steroid aporeceptorassociated protein p23
    • Freeman, B. C., Toft, D. O. & Morimoto, R. I. Molecular chaperone machines: chaperone activities of the cyclophilin Cyp-40 and the steroid aporeceptorassociated protein p23. Science 274, 1718 (1996).
    • (1996) Science , vol.274 , pp. 1718
    • Freeman, B.C.1    Toft, D.O.2    Morimoto, R.I.3
  • 61
    • 79960452274 scopus 로고    scopus 로고
    • Global functional map of the p23 molecular chaperone reveals an extensive cellular network
    • Echtenkamp, F. J. et al. Global functional map of the p23 molecular chaperone reveals an extensive cellular network. Mol. Cell 43, 229 (2011).
    • (2011) Mol. Cell , vol.43 , pp. 229
    • Echtenkamp, F.J.1
  • 62
    • 77957739456 scopus 로고    scopus 로고
    • Rapid assessment of gene function in the circadian clock using artificial microRNA in Arabidopsis mesophyll protoplasts
    • Kim, J. & Somers, D. E. Rapid assessment of gene function in the circadian clock using artificial microRNA in Arabidopsis mesophyll protoplasts. Plant. Physiol. 154, 611 (2010).
    • (2010) Plant. Physiol , vol.154 , pp. 611
    • Kim, J.1    Somers, D.E.2
  • 63
    • 0142245636 scopus 로고    scopus 로고
    • A gateway cloning vector set for high-throughput functional analysis of genes in planta
    • Curtis, M. D. & Grossniklaus, U. A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant. Physiol. 133, 462 (2003).
    • (2003) Plant. Physiol , vol.133 , pp. 462
    • Curtis, M.D.1    Grossniklaus, U.2
  • 64
    • 84861401508 scopus 로고    scopus 로고
    • GIGANTEA and EARLY FLOWERING 4 in Arabidopsis exhibit differential phase-specific genetic influences over a diurnal cycle
    • Kim, Y. et al. GIGANTEA and EARLY FLOWERING 4 in Arabidopsis exhibit differential phase-specific genetic influences over a diurnal cycle. Mol. Plant. 5, 678 (2012).
    • (2012) Mol. Plant , vol.5 , pp. 678
    • Kim, Y.1
  • 65
    • 6444243196 scopus 로고    scopus 로고
    • Formation of an SCF complex is required for proper regulation of circadian timing
    • Han, L., Mason, M., Risseeuw, E. P., Crosby, W. L. & Somers, D. E. Formation of an SCF complex is required for proper regulation of circadian timing. Plant. J. 40, 291 (2004).
    • (2004) Plant. J , vol.40 , pp. 291
    • Han, L.1    Mason, M.2    Risseeuw, E.P.3    Crosby, W.L.4    Somers, D.E.5
  • 66
    • 84863485565 scopus 로고    scopus 로고
    • Functional characterization of orchardgrass cytosolic Hsp70 (DgHsp70) and the negative regulation by Ca2+/AtCaM2 binding
    • Cha, J. Y. et al. Functional characterization of orchardgrass cytosolic Hsp70 (DgHsp70) and the negative regulation by Ca2+/AtCaM2 binding. Plant. Physiol. Biochem. 58, 29 (2012).
    • (2012) Plant. Physiol. Biochem , vol.58 , pp. 29
    • Cha, J.Y.1
  • 67
    • 84953288226 scopus 로고    scopus 로고
    • Proteomic analyses of the interaction between the plant-growth promoting rhizobacterium Paenibacillus polymyxa E681 and Arabidopsis thaliana
    • Kwon, Y. S. et al. Proteomic analyses of the interaction between the plant-growth promoting rhizobacterium Paenibacillus polymyxa E681 and Arabidopsis thaliana. Proteomics 16, 122 (2016).
    • (2016) Proteomics , vol.16 , pp. 122
    • Kwon, Y.S.1
  • 68
    • 84872177734 scopus 로고    scopus 로고
    • Transcriptional corepressor TOPLESS complexes with pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription
    • Wang, L., Kim, J. & Somers, D. E. Transcriptional corepressor TOPLESS complexes with pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription. Proc. Natl. Acad. Sci. USA 110, 761 (2013).
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 761
    • Wang, L.1    Kim, J.2    Somers, D.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.