메뉴 건너뛰기




Volumn 547, Issue , 2017, Pages 348-364

Stochastic model stationarization by eliminating the periodic term and its effect on time series prediction

Author keywords

ARIMA; Periodic term; Prediction; Stationarization; Streamflow; Temperature

Indexed keywords

FORECASTING; PERIODIC STRUCTURES; SPECTRUM ANALYSIS; STANDARDIZATION; STOCHASTIC MODELS; STOCHASTIC SYSTEMS; STREAM FLOW; TEMPERATURE; TIME SERIES;

EID: 85013128231     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2017.02.012     Document Type: Article
Times cited : (27)

References (61)
  • 2
    • 84927971063 scopus 로고    scopus 로고
    • Can air temperature be used to project influences of climate change on stream temperature?
    • Arismendi, I., Safeeq, M., Dunham, J.B., Johnson, S.L., Can air temperature be used to project influences of climate change on stream temperature?. Environ. Res. Lett., 9, 2014, 084015.
    • (2014) Environ. Res. Lett. , vol.9 , pp. 084015
    • Arismendi, I.1    Safeeq, M.2    Dunham, J.B.3    Johnson, S.L.4
  • 3
    • 0016093884 scopus 로고
    • Correcting inhomogeneity of variance with power transformation weighting
    • Box, G.E., Hill, W.J., Correcting inhomogeneity of variance with power transformation weighting. Technometrics 16 (1974), 385–389.
    • (1974) Technometrics , vol.16 , pp. 385-389
    • Box, G.E.1    Hill, W.J.2
  • 4
    • 84945595789 scopus 로고
    • Distribution of residual autocorrelations in autoregressive-integrated moving average time series models
    • Box, G.E., Pierce, D.A., Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J. Am. Statist. Assoc. 65 (1970), 1509–1526.
    • (1970) J. Am. Statist. Assoc. , vol.65 , pp. 1509-1526
    • Box, G.E.1    Pierce, D.A.2
  • 5
    • 70349505264 scopus 로고    scopus 로고
    • Time Series Analysis: Forecasting and Control
    • fifth ed. Wiley New York, USA
    • Box, G., Jenkins, G., Reinsel, G.C., Ljung, G.M., Time Series Analysis: Forecasting and Control. fifth ed., 2015, Wiley, New York, USA.
    • (2015)
    • Box, G.1    Jenkins, G.2    Reinsel, G.C.3    Ljung, G.M.4
  • 6
    • 0003691602 scopus 로고    scopus 로고
    • Time Series: Theory and Methods
    • second ed. Springer Science & Business Media New York, USA
    • Brockwell, P.J., Davis, R.A., Time Series: Theory and Methods. second ed., 2013, Springer Science & Business Media, New York, USA.
    • (2013)
    • Brockwell, P.J.1    Davis, R.A.2
  • 7
    • 33746265524 scopus 로고    scopus 로고
    • The thermal regime of rivers: a review
    • Caissie, D., The thermal regime of rivers: a review. Freshwater Biol. 51 (2006), 1389–1406.
    • (2006) Freshwater Biol. , vol.51 , pp. 1389-1406
    • Caissie, D.1
  • 8
    • 0035885424 scopus 로고    scopus 로고
    • Modelling of maximum daily water temperatures in a small stream using air temperatures
    • Caissie, D., El-Jabi, N., Satish, M.G., Modelling of maximum daily water temperatures in a small stream using air temperatures. J. Hydrol. 251 (2001), 14–28.
    • (2001) J. Hydrol. , vol.251 , pp. 14-28
    • Caissie, D.1    El-Jabi, N.2    Satish, M.G.3
  • 9
  • 10
    • 0029412179 scopus 로고
    • Product periodic autoregressive processes for modeling intermittent monthly streamflows
    • Chebaane, M., Salas, J.D., Boes, D.C., Product periodic autoregressive processes for modeling intermittent monthly streamflows. Water Resour. Res. 31 (1995), 1513–1518.
    • (1995) Water Resour. Res. , vol.31 , pp. 1513-1518
    • Chebaane, M.1    Salas, J.D.2    Boes, D.C.3
  • 11
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly, P., Anctil, F., Bobee, B., Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. Hydrol. 230 (2000), 244–257.
    • (2000) J. Hydrol. , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 12
    • 55349132422 scopus 로고    scopus 로고
    • Time Series Analysis
    • Springer-Verlag New York, USA
    • Cryer, J., Chan, K., Time Series Analysis. 2008, Springer-Verlag, New York, USA.
    • (2008)
    • Cryer, J.1    Chan, K.2
  • 13
    • 85013073866 scopus 로고
    • A Test of Independence of the Residuals based on the Cumulative Periodogram
    • Seasonal Adjustment Methods Unit Ottawa, Canada
    • Dagum, E.B., Lothian, J.R., Morry, M., A Test of Independence of the Residuals based on the Cumulative Periodogram. 1975, Seasonal Adjustment Methods Unit, Ottawa, Canada.
    • (1975)
    • Dagum, E.B.1    Lothian, J.R.2    Morry, M.3
  • 14
    • 78649765636 scopus 로고    scopus 로고
    • Multivariate modelling of water temperature in the Okanagan watershed
    • Daigle, A., St-Hilaire, A., Peters, D., Baird, D., Multivariate modelling of water temperature in the Okanagan watershed. Can. Water Resour. J. 35 (2010), 237–258.
    • (2010) Can. Water Resour. J. , vol.35 , pp. 237-258
    • Daigle, A.1    St-Hilaire, A.2    Peters, D.3    Baird, D.4
  • 15
    • 0004193547 scopus 로고    scopus 로고
    • Singular Spectrum Analysis: A New Tool in Time Series Analysis
    • Springer US, New York, USA
    • Elsner, J.B., Tsonis, A.A., Singular Spectrum Analysis: A New Tool in Time Series Analysis. 2013, Springer, US, New York, USA.
    • (2013)
    • Elsner, J.B.1    Tsonis, A.A.2
  • 16
    • 84877022172 scopus 로고    scopus 로고
    • Comparison of artificial neural networks and stochastic models in river discharge forecasting (Case study: Ghara-Aghaj River, Fars Province, Iran)
    • Fereydooni, M., Rahnemaei, M., Babazadeh, H., Sedghi, H., Elhami, M.R., Comparison of artificial neural networks and stochastic models in river discharge forecasting (Case study: Ghara-Aghaj River, Fars Province, Iran). Afr. J. Agric. Res. 7 (2012), 5446–5458.
    • (2012) Afr. J. Agric. Res. , vol.7 , pp. 5446-5458
    • Fereydooni, M.1    Rahnemaei, M.2    Babazadeh, H.3    Sedghi, H.4    Elhami, M.R.5
  • 17
    • 38849167375 scopus 로고    scopus 로고
    • Comparison of artificial intelligence techniques for river flow forecasting
    • Firat, M., Comparison of artificial intelligence techniques for river flow forecasting. Hydrol. Earth Syst. Sci. 12 (2008), 123–139.
    • (2008) Hydrol. Earth Syst. Sci. , vol.12 , pp. 123-139
    • Firat, M.1
  • 18
    • 85013053637 scopus 로고    scopus 로고
    • Comparison of artificial neural network algorithm for water quality prediction of river Ganga
    • Giri, A., Singh, N., Comparison of artificial neural network algorithm for water quality prediction of river Ganga. Environ. Res. J. 8 (2014), 55–63.
    • (2014) Environ. Res. J. , vol.8 , pp. 55-63
    • Giri, A.1    Singh, N.2
  • 19
    • 57649236049 scopus 로고    scopus 로고
    • Feasibility study of a geostatistical modelling of monthly maximum stream temperatures in a multivariate space
    • Guillemette, N., St-Hilaire, A., Ouarda, T.B., Bergeron, N., Robichaud, É., Bilodeau, L., Feasibility study of a geostatistical modelling of monthly maximum stream temperatures in a multivariate space. J. Hydrol. 364 (2009), 1–12.
    • (2009) J. Hydrol. , vol.364 , pp. 1-12
    • Guillemette, N.1    St-Hilaire, A.2    Ouarda, T.B.3    Bergeron, N.4    Robichaud, É.5    Bilodeau, L.6
  • 20
    • 84922780591 scopus 로고    scopus 로고
    • River water temperature in the United Kingdom changes over the 20th century and possible changes over the 21st century
    • Hannah, D.M., Garner, G., River water temperature in the United Kingdom changes over the 20th century and possible changes over the 21st century. Prog. Phys. Geogr. 39 (2015), 68–92.
    • (2015) Prog. Phys. Geogr. , vol.39 , pp. 68-92
    • Hannah, D.M.1    Garner, G.2
  • 21
    • 41449100808 scopus 로고    scopus 로고
    • River and stream temperature: dynamics, processes, models and implications
    • Hannah, D.M., Webb, B.W., Nobilis, F., River and stream temperature: dynamics, processes, models and implications. Hydrol. Process. 22 (2008), 899–901.
    • (2008) Hydrol. Process. , vol.22 , pp. 899-901
    • Hannah, D.M.1    Webb, B.W.2    Nobilis, F.3
  • 22
    • 84890351420 scopus 로고    scopus 로고
    • A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region
    • He, Z., Wen, X., Liu, H., Du, J., A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. J. Hydrol. 509 (2014), 379–386.
    • (2014) J. Hydrol. , vol.509 , pp. 379-386
    • He, Z.1    Wen, X.2    Liu, H.3    Du, J.4
  • 23
    • 0021639934 scopus 로고
    • A nonparametric trend test for seasonal data with serial dependence
    • Hirsch, R.M., Slack, J.R., A nonparametric trend test for seasonal data with serial dependence. Water Resour. Res. 20 (1984), 727–732.
    • (1984) Water Resour. Res. , vol.20 , pp. 727-732
    • Hirsch, R.M.1    Slack, J.R.2
  • 24
    • 33846813334 scopus 로고    scopus 로고
    • Hybrid neural network models for hydrologic time series forecasting
    • Jain, A., Kumar, A.M., Hybrid neural network models for hydrologic time series forecasting. Appl. Soft. Comput. 7 (2007), 585–592.
    • (2007) Appl. Soft. Comput. , vol.7 , pp. 585-592
    • Jain, A.1    Kumar, A.M.2
  • 25
    • 84896690113 scopus 로고    scopus 로고
    • Inferring air–water temperature relationships from river and catchment properties
    • Johnson, M.F., Wilby, R.L., Toone, J., Inferring air–water temperature relationships from river and catchment properties. Hydrol. Process. 28 (2014), 2912–2928.
    • (2014) Hydrol. Process. , vol.28 , pp. 2912-2928
    • Johnson, M.F.1    Wilby, R.L.2    Toone, J.3
  • 26
    • 84874509284 scopus 로고    scopus 로고
    • Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform
    • Kalteh, A.M., Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform. Comput. Geosci. 54 (2013), 1–8.
    • (2013) Comput. Geosci. , vol.54 , pp. 1-8
    • Kalteh, A.M.1
  • 27
    • 85013057341 scopus 로고    scopus 로고
    • Seasonal ARIMA for forecasting sea surface temperature of the north zone of the Bay of Bengal
    • Karim, M.R., Seasonal ARIMA for forecasting sea surface temperature of the north zone of the Bay of Bengal. Res. Rev.: J. Stat. 2 (2013), 23–31.
    • (2013) Res. Rev.: J. Stat. , vol.2 , pp. 23-31
    • Karim, M.R.1
  • 28
    • 0003525447 scopus 로고
    • Dynamic stochastic models from empirical data
    • Mathematic in Science Engineering, Academic Press Inc., Massachusetts, USA.
    • Kashyap, R.L., Rao, A.R., 1976. Dynamic stochastic models from empirical data. Mathematic in Science Engineering, Academic Press Inc., Massachusetts, USA.
    • (1976)
    • Kashyap, R.L.1    Rao, A.R.2
  • 29
    • 78751608738 scopus 로고    scopus 로고
    • A novel hybridization of artificial neural networks and ARIMA models for time series forecasting
    • Khashei, M., Bijari, M., A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Appl. Soft. Comput. 11 (2011), 2664–2675.
    • (2011) Appl. Soft. Comput. , vol.11 , pp. 2664-2675
    • Khashei, M.1    Bijari, M.2
  • 30
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • Kisi, Ö., River flow modeling using artificial neural networks. J. Hydrol. Eng. 9 (2004), 60–63.
    • (2004) J. Hydrol. Eng. , vol.9 , pp. 60-63
    • Kisi, Ö.1
  • 31
    • 34548425056 scopus 로고    scopus 로고
    • Comparison of different ANN techniques in river flow prediction
    • Kisi, O., Cigizoglu, H.K., Comparison of different ANN techniques in river flow prediction. Civ. Eng. Environ. Syst. 24 (2007), 211–231.
    • (2007) Civ. Eng. Environ. Syst. , vol.24 , pp. 211-231
    • Kisi, O.1    Cigizoglu, H.K.2
  • 32
    • 0002322469 scopus 로고
    • On a test of whether one of two random variables is stochastically larger than the other
    • Mann, H.B., Whitney, D.R., On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat., 1947, 50–60.
    • (1947) Ann. Math. Stat. , pp. 50-60
    • Mann, H.B.1    Whitney, D.R.2
  • 33
    • 0008072310 scopus 로고    scopus 로고
    • Stochastic hydrology and its use in water resources systems simulation and optimization
    • Springer Science+Business Media B.V. Dordrecht, Netherlands 483p
    • Marco, J.B., Harboe, R., Salas, J.D., Stochastic hydrology and its use in water resources systems simulation and optimization. Nato Advanced Science Institutes (ASI) Series E: Applied Sciences, VIII, 1993, Springer Science+Business Media B.V., Dordrecht, Netherlands 483p.
    • (1993) Nato Advanced Science Institutes (ASI) Series E: Applied Sciences , vol.8
    • Marco, J.B.1    Harboe, R.2    Salas, J.D.3
  • 34
    • 0008072310 scopus 로고    scopus 로고
    • Stochastic hydrology and its use in water resources systems simulation and optimization
    • Springer Netherlands, Dordrecht, Netherlands
    • Marco, J.B., Harboe, R., Salas, J.D., Stochastic hydrology and its use in water resources systems simulation and optimization. 2012, Springer, Netherlands, Dordrecht, Netherlands.
    • (2012)
    • Marco, J.B.1    Harboe, R.2    Salas, J.D.3
  • 35
    • 84973137761 scopus 로고    scopus 로고
    • Forecasting monthly inflow with extreme seasonal variation using the hybrid SARIMA-ANN Model
    • Moeeni, H., Bonakdari, H., Forecasting monthly inflow with extreme seasonal variation using the hybrid SARIMA-ANN Model. Stoch. Env. Res. Risk. A., 2016, 10.1007/s00477-016-1273-z.
    • (2016) Stoch. Env. Res. Risk. A.
    • Moeeni, H.1    Bonakdari, H.2
  • 36
    • 0041859373 scopus 로고    scopus 로고
    • Global warming and potential changes in fish habitat in US streams
    • Mohseni, O., Stefan, H.G., Eaton, J.G., Global warming and potential changes in fish habitat in US streams. Clim. Change 59 (2003), 389–409.
    • (2003) Clim. Change , vol.59 , pp. 389-409
    • Mohseni, O.1    Stefan, H.G.2    Eaton, J.G.3
  • 37
    • 34250017933 scopus 로고    scopus 로고
    • A science-based approach for identifying temperature-sensitive streams for rainbow trout
    • Nelitz, M.A., MacIsaac, E.A., Peterman, R.M., A science-based approach for identifying temperature-sensitive streams for rainbow trout. N. Am. J. Fisheries Manage. 27 (2007), 405–424.
    • (2007) N. Am. J. Fisheries Manage. , vol.27 , pp. 405-424
    • Nelitz, M.A.1    MacIsaac, E.A.2    Peterman, R.M.3
  • 38
    • 79955025170 scopus 로고    scopus 로고
    • Two hybrid Artificial Intelligence approaches for modeling rainfall–runoff process
    • Nourani, V., Kisi, Ö., Komasi, M., Two hybrid Artificial Intelligence approaches for modeling rainfall–runoff process. J. Hydrol. 402 (2011), 41–59.
    • (2011) J. Hydrol. , vol.402 , pp. 41-59
    • Nourani, V.1    Kisi, Ö.2    Komasi, M.3
  • 39
    • 84950129527 scopus 로고    scopus 로고
    • Comparative study of wavelet-ARIMA and wavelet-ANN models for temperature time series data in northeastern Bangladesh
    • Nury, A.H., Hasan, K., Alam, M.J.B., Comparative study of wavelet-ARIMA and wavelet-ANN models for temperature time series data in northeastern Bangladesh. J. King Saud Univ.-Sci., 2015, 10.1016/j.jksus.2015.12.002 (In press).
    • (2015) J. King Saud Univ.-Sci.
    • Nury, A.H.1    Hasan, K.2    Alam, M.J.B.3
  • 40
    • 84881499389 scopus 로고    scopus 로고
    • ANN hybrid model versus ARIMA and ARIMAX models of runoff coefficient
    • Pektas, A.O., Cigizoglu, H.K., ANN hybrid model versus ARIMA and ARIMAX models of runoff coefficient. J. Hydrol. 500 (2013), 21–36.
    • (2013) J. Hydrol. , vol.500 , pp. 21-36
    • Pektas, A.O.1    Cigizoglu, H.K.2
  • 41
    • 0003828511 scopus 로고    scopus 로고
    • A Course in Time Series Analysis
    • John Wiley & Sons New York, USA
    • Peña, D., Tiao, G.C., Tsay, R.S., A Course in Time Series Analysis. 2011, John Wiley & Sons, New York, USA.
    • (2011)
    • Peña, D.1    Tiao, G.C.2    Tsay, R.S.3
  • 42
    • 84907320101 scopus 로고    scopus 로고
    • Modeling and prediction of geothermal reservoir temperature behavior using evolutionary design of neural networks
    • Porkhial, S., Salehpour, M., Ashraf, H., Jamali, A., Modeling and prediction of geothermal reservoir temperature behavior using evolutionary design of neural networks. Geothermics 53 (2015), 320–327.
    • (2015) Geothermics , vol.53 , pp. 320-327
    • Porkhial, S.1    Salehpour, M.2    Ashraf, H.3    Jamali, A.4
  • 43
    • 0003406402 scopus 로고
    • Spectral Analysis and Time Series
    • Academic Press London, UK
    • Priestley, M.B., Spectral Analysis and Time Series. 1981, Academic Press, London, UK.
    • (1981)
    • Priestley, M.B.1
  • 44
    • 84860508539 scopus 로고    scopus 로고
    • Prediction of water temperature metrics using spatial modelling in the Eastern and Western Cape, South Africa
    • Rivers-Moore, N., Mantel, S., Dallas, H., Prediction of water temperature metrics using spatial modelling in the Eastern and Western Cape, South Africa. Water SA 38 (2012), 167–176.
    • (2012) Water SA , vol.38 , pp. 167-176
    • Rivers-Moore, N.1    Mantel, S.2    Dallas, H.3
  • 45
    • 84899860927 scopus 로고    scopus 로고
    • Hybrid approaches based on SARIMA and artificial neural networks for inspection time series forecasting
    • Ruiz-Aguilar, J., Turias, I., Jiménez-Come, M., Hybrid approaches based on SARIMA and artificial neural networks for inspection time series forecasting. Transp. Res. Part E: Logist. Transp. Rev. 67 (2014), 1–13.
    • (2014) Transp. Res. Part E: Logist. Transp. Rev. , vol.67 , pp. 1-13
    • Ruiz-Aguilar, J.1    Turias, I.2    Jiménez-Come, M.3
  • 46
    • 0003604539 scopus 로고
    • Applied Modeling of Hydrologic Time Series
    • Water resource Publications Colorado, USA
    • Salas, J.D., Delleur, J.W., Yevjevich, V., Lane, W.L., Applied Modeling of Hydrologic Time Series. 1980, Water resource Publications, Colorado, USA.
    • (1980)
    • Salas, J.D.1    Delleur, J.W.2    Yevjevich, V.3    Lane, W.L.4
  • 47
    • 23044500436 scopus 로고    scopus 로고
    • Correlations and crossing rates of periodic-stochastic hydrologic processes
    • Salas, J.D., Chung, C.H., Cancelliere, A., Correlations and crossing rates of periodic-stochastic hydrologic processes. J. Hydrol. Eng. 10 (2005), 278–287.
    • (2005) J. Hydrol. Eng. , vol.10 , pp. 278-287
    • Salas, J.D.1    Chung, C.H.2    Cancelliere, A.3
  • 48
    • 85015820252 scopus 로고    scopus 로고
    • Runoff and sediment yield modeling using ANN and support vector machines: a case study from Nepal watershed
    • Sharma, N., Zakaullah, M., Tiwari, H., Kumar, D., Runoff and sediment yield modeling using ANN and support vector machines: a case study from Nepal watershed. Model. Earth Syst. Environ. 1 (2015), 1–8.
    • (2015) Model. Earth Syst. Environ. , vol.1 , pp. 1-8
    • Sharma, N.1    Zakaullah, M.2    Tiwari, H.3    Kumar, D.4
  • 49
    • 84859639480 scopus 로고    scopus 로고
    • Daily river water temperature forecast model with a k-nearest neighbour approach
    • St-Hilaire, A., Ouarda, T.B., Bargaoui, Z., Daigle, A., Bilodeau, L., Daily river water temperature forecast model with a k-nearest neighbour approach. Hydrol. Process. 26 (2011), 1302–1310.
    • (2011) Hydrol. Process. , vol.26 , pp. 1302-1310
    • St-Hilaire, A.1    Ouarda, T.B.2    Bargaoui, Z.3    Daigle, A.4    Bilodeau, L.5
  • 50
    • 0017006549 scopus 로고
    • Seasonal and nonseasonal ARMA models in hydrology
    • Tao, P.C., Delleur, J.W., Seasonal and nonseasonal ARMA models in hydrology. J. Hydraulic Eng. Div. 102 (1976), 1541–1559.
    • (1976) J. Hydraulic Eng. Div. , vol.102 , pp. 1541-1559
    • Tao, P.C.1    Delleur, J.W.2
  • 51
    • 84936985967 scopus 로고    scopus 로고
    • Long-term runoff study using SARIMA and ARIMA models in the United States
    • Valipour, M., Long-term runoff study using SARIMA and ARIMA models in the United States. Meteorol. Appl. 22:3 (2015), 592–598.
    • (2015) Meteorol. Appl. , vol.22 , Issue.3 , pp. 592-598
    • Valipour, M.1
  • 52
    • 84871416150 scopus 로고    scopus 로고
    • Parameters estimate of autoregressive moving average and autoregressive integrated moving average models and compare their ability for inflow forecasting
    • Valipour, M., Banihabib, M.E., Behbahani, S.M.R., Parameters estimate of autoregressive moving average and autoregressive integrated moving average models and compare their ability for inflow forecasting. J. Math. Stat. 8 (2012), 330–338.
    • (2012) J. Math. Stat. , vol.8 , pp. 330-338
    • Valipour, M.1    Banihabib, M.E.2    Behbahani, S.M.R.3
  • 53
    • 84870999624 scopus 로고    scopus 로고
    • Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir
    • Valipour, M., Banihabib, M.E., Behbahani, S.M.R., Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 476 (2013), 433–441.
    • (2013) J. Hydrol. , vol.476 , pp. 433-441
    • Valipour, M.1    Banihabib, M.E.2    Behbahani, S.M.R.3
  • 55
    • 84863272108 scopus 로고    scopus 로고
    • Comparative case study of rainfall-runoff modeling between SWMM and fuzzy logic approach
    • Wang, K.H., Altunkaynak, A., Comparative case study of rainfall-runoff modeling between SWMM and fuzzy logic approach. J. Hydrol. Eng. 17 (2011), 283–291.
    • (2011) J. Hydrol. Eng. , vol.17 , pp. 283-291
    • Wang, K.H.1    Altunkaynak, A.2
  • 56
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang, W.C., Chau, K.W., Cheng, C.T., Qiu, L., A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 374 (2009), 294–306.
    • (2009) J. Hydrol. , vol.374 , pp. 294-306
    • Wang, W.C.1    Chau, K.W.2    Cheng, C.T.3    Qiu, L.4
  • 57
    • 84939955777 scopus 로고    scopus 로고
    • Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition
    • Wang, W.C., Chau, K.-W., Xu, D.-M., Chen, X.-Y., Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resour. Manage. 29 (2015), 2655–2675.
    • (2015) Water Resour. Manage. , vol.29 , pp. 2655-2675
    • Wang, W.C.1    Chau, K.-W.2    Xu, D.-M.3    Chen, X.-Y.4
  • 58
    • 84893710028 scopus 로고    scopus 로고
    • Spatiotemporal analysis of temperature trends under climate change in the source region of the Yellow River, China
    • Wang, Y., Wang, X., Li, C., Wu, F., Yang, Z., Spatiotemporal analysis of temperature trends under climate change in the source region of the Yellow River, China. Theor. Appl. Climatol. 119 (2015), 123–133.
    • (2015) Theor. Appl. Climatol. , vol.119 , pp. 123-133
    • Wang, Y.1    Wang, X.2    Li, C.3    Wu, F.4    Yang, Z.5
  • 60
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang, G.P., Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50 (2003), 159–175.
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 61
    • 80051672856 scopus 로고    scopus 로고
    • Singular spectrum analysis and ARIMA hybrid model for annual runoff forecasting
    • Zhang, Q., Wang, B.D., He, B., Peng, Y., Ren, M.-L., Singular spectrum analysis and ARIMA hybrid model for annual runoff forecasting. Water Resour. Manage. 25 (2011), 2683–2703.
    • (2011) Water Resour. Manage. , vol.25 , pp. 2683-2703
    • Zhang, Q.1    Wang, B.D.2    He, B.3    Peng, Y.4    Ren, M.-L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.