메뉴 건너뛰기




Volumn 29, Issue 1, 2017, Pages 47-61

Comparative study of wavelet-ARIMA and wavelet-ANN models for temperature time series data in northeastern Bangladesh

Author keywords

ANN; ARIMA; Mann Kendall test; Wavelet ANN; Wavelet ARIMA

Indexed keywords


EID: 84950129527     PISSN: 10183647     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jksus.2015.12.002     Document Type: Article
Times cited : (124)

References (67)
  • 1
    • 80052027629 scopus 로고    scopus 로고
    • A wavelet neural network conjunction model for groundwater level forecasting
    • Adamowski, J., Chan, H.F., A wavelet neural network conjunction model for groundwater level forecasting. J. Hydrol. 407 (2011), 28–40, 10.1016/j.jhydrol.2011.06.013.
    • (2011) J. Hydrol. , vol.407 , pp. 28-40
    • Adamowski, J.1    Chan, H.F.2
  • 2
    • 77956838672 scopus 로고    scopus 로고
    • Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ANN learning algorithms
    • Adamowski, J., Karapataki, C., Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ANN learning algorithms. J. Hydrol. Eng. 15:10 (2010), 729–743, 10.1061/(ASCE)HE.1943-5584.0000245.
    • (2010) J. Hydrol. Eng. , vol.15 , Issue.10 , pp. 729-743
    • Adamowski, J.1    Karapataki, C.2
  • 3
    • 84857437412 scopus 로고    scopus 로고
    • Trends and variability in daily precipitation in Scotland
    • Afzal, M., Mansell, M.G., Gagnon, A.S., Trends and variability in daily precipitation in Scotland. Procedia Environ. Sci. 6 (2011), 15–26, 10.1016/j.proenv.2011.05.003.
    • (2011) Procedia Environ. Sci. , vol.6 , pp. 15-26
    • Afzal, M.1    Mansell, M.G.2    Gagnon, A.S.3
  • 4
    • 70349419638 scopus 로고    scopus 로고
    • Artificial neural network models for forecasting monthly precipitation in Jordan
    • Aksoy, H., Dahamsheh, A., Artificial neural network models for forecasting monthly precipitation in Jordan. Stochastic Environ. Res. Risk Assess. 23:7 (2009), 917–931, 10.1007/s00477-008-0267-x.
    • (2009) Stochastic Environ. Res. Risk Assess. , vol.23 , Issue.7 , pp. 917-931
    • Aksoy, H.1    Dahamsheh, A.2
  • 5
    • 85006778080 scopus 로고    scopus 로고
    • Climate change impacts on rice production in Bangladesh: results from a model, Dhanmondi, Dhaka-1209, Bangladesh: Unnayan Onneshan-The Innovators
    • Available from: <>. (Last accessed 15.04.2015).
    • Basak, J.K., 2010. Climate change impacts on rice production in Bangladesh: results from a model, Dhanmondi, Dhaka-1209, Bangladesh: Unnayan Onneshan-The Innovators. Available from: < http://www.unnayan.org/documents/Climatechange/climchange_impacts_rice_production.pdf>. (Last accessed 15.04.2015).
    • (2010)
    • Basak, J.K.1
  • 6
    • 76849104627 scopus 로고    scopus 로고
    • Temporal characteristics and variability of point rainfall: a statistical and wavelet analysis
    • Beecham, S., Chowdhury, R.K., Temporal characteristics and variability of point rainfall: a statistical and wavelet analysis. Int. J. Climatol. 30:3 (2010), 458–473, 10.1002/joc.1901.
    • (2010) Int. J. Climatol. , vol.30 , Issue.3 , pp. 458-473
    • Beecham, S.1    Chowdhury, R.K.2
  • 7
    • 33750417685 scopus 로고    scopus 로고
    • Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting
    • Benaouda, D., Murtagh, F., Starck, J.L., Renaud, O., Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting. Neurocomputing 70:1–3 (2006), 139–154, 10.1016/j.neucom.2006.04.005.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 139-154
    • Benaouda, D.1    Murtagh, F.2    Starck, J.L.3    Renaud, O.4
  • 8
    • 0004311217 scopus 로고
    • Time Series Analysis: Forecasting and Control
    • Holden-Day Inc. San Francisco
    • Box, G.E.P., Jenkins, G.M., Time Series Analysis: Forecasting and Control. 1976, Holden-Day Inc., San Francisco 0816211043.
    • (1976)
    • Box, G.E.P.1    Jenkins, G.M.2
  • 9
    • 50449088516 scopus 로고    scopus 로고
    • Stream temperature modelling using artificial neural networks: application on Catamaran Brook, New Brunswick, Canada
    • Chenard, J.F., Caissie, D., Stream temperature modelling using artificial neural networks: application on Catamaran Brook, New Brunswick, Canada. Hydrol. Process. 22:17 (2008), 3361–3372, 10.1002/hyp.6928.
    • (2008) Hydrol. Process. , vol.22 , Issue.17 , pp. 3361-3372
    • Chenard, J.F.1    Caissie, D.2
  • 10
    • 20344369583 scopus 로고    scopus 로고
    • Groundwater level forecasting using artificial neural networks
    • Daliakopoulos, I.N., Coulibaly, P., Tsanis, I.K., Groundwater level forecasting using artificial neural networks. J. Hydrol. 309:1–4 (2005), 229–240, 10.1016/j.jhydrol.2004.12.001.
    • (2005) J. Hydrol. , vol.309 , Issue.1-4 , pp. 229-240
    • Daliakopoulos, I.N.1    Coulibaly, P.2    Tsanis, I.K.3
  • 11
    • 0034784363 scopus 로고    scopus 로고
    • Calculation of noise resistance by use of the discrete wavelets transform
    • Dong, Z., Guo, X., Zheng, J., Calculation of noise resistance by use of the discrete wavelets transform. Electrochem. Commun. 3:10 (2001), 561–565, 10.1016/S1388-2481(01)00220-X.
    • (2001) Electrochem. Commun. , vol.3 , Issue.10 , pp. 561-565
    • Dong, Z.1    Guo, X.2    Zheng, J.3
  • 12
    • 84910594076 scopus 로고    scopus 로고
    • Modeling of monthly rainfall and runoff of Urmia lake basin using “feed-forward neural network” and “time series analysis” model
    • Farajzadeh, J., Fard, A.F., Lotfi, S., Modeling of monthly rainfall and runoff of Urmia lake basin using “feed-forward neural network” and “time series analysis” model. Water Resour. Ind. 7–8 (2014), 38–48, 10.1016/j.wri.2014.10.003.
    • (2014) Water Resour. Ind. , vol.7-8 , pp. 38-48
    • Farajzadeh, J.1    Fard, A.F.2    Lotfi, S.3
  • 13
    • 84899863667 scopus 로고    scopus 로고
    • A hybrid method based on wavelet, ANN and ARIMA model for short-term load forecasting
    • Fard, A.K., Zadeh, M.R.A., A hybrid method based on wavelet, ANN and ARIMA model for short-term load forecasting. J. Exp. Theor. Artif. Intell. 26:2 (2014), 167–182, 10.1080/0952813X.2013.813976.
    • (2014) J. Exp. Theor. Artif. Intell. , vol.26 , Issue.2 , pp. 167-182
    • Fard, A.K.1    Zadeh, M.R.A.2
  • 14
    • 0027007868 scopus 로고
    • Rainfall forecasting in space and time using a neural network
    • French, M.N., Krajewski, W.F., Cuykendall, R.R., Rainfall forecasting in space and time using a neural network. J Hydrol. 137:1–4 (1992), 1–31, 10.1016/0022-1694(92)90046-X.
    • (1992) J Hydrol. , vol.137 , Issue.1-4 , pp. 1-31
    • French, M.N.1    Krajewski, W.F.2    Cuykendall, R.R.3
  • 15
    • 85006803322 scopus 로고    scopus 로고
    • Missing Data in Environmental Time Series – A Problem Analysis
    • Masaryk University Brno Informatics for Environmental Protection – Networking Environmental Information
    • Gnauck, A., Luther, B., Missing Data in Environmental Time Series – A Problem Analysis. 2005, Masaryk University Brno, Informatics for Environmental Protection – Networking Environmental Information 80-210-3780-6.
    • (2005)
    • Gnauck, A.1    Luther, B.2
  • 16
    • 0033117411 scopus 로고    scopus 로고
    • Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration
    • Gupta, H.V., Sorooshian, S., Yapo, P.O., Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 4:2 (1999), 135–143, 10.1061/(ASCE)1084-0699(1999) 4:2(135).
    • (1999) J. Hydrol. Eng. , vol.4 , Issue.2 , pp. 135-143
    • Gupta, H.V.1    Sorooshian, S.2    Yapo, P.O.3
  • 17
    • 38349074097 scopus 로고    scopus 로고
    • Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis
    • Hamed, K.H., Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis. J. Hydrol. 349:3–4 (2008), 350–363, 10.1016/j.jhydrol.2007.11.009.
    • (2008) J. Hydrol. , vol.349 , Issue.3-4 , pp. 350-363
    • Hamed, K.H.1
  • 18
    • 0032579286 scopus 로고    scopus 로고
    • A modified Mann–Kendall trend test for autocorrelated data
    • Hamed, K.H., Rao, A.R., A modified Mann–Kendall trend test for autocorrelated data. J. Hydrol. 204:1–4 (1998), 182–196, 10.1016/S0022-1694(97)00125-X.
    • (1998) J. Hydrol. , vol.204 , Issue.1-4 , pp. 182-196
    • Hamed, K.H.1    Rao, A.R.2
  • 19
    • 84869869112 scopus 로고    scopus 로고
    • Non-parametric regression for space–time forecasting under missing data
    • Haworth, J., Cheng, T., Non-parametric regression for space–time forecasting under missing data. Comput. Environ. Urban Syst. 36:6 (2012), 538–550, 10.1016/j.compenvurbsys.2012.08.005.
    • (2012) Comput. Environ. Urban Syst. , vol.36 , Issue.6 , pp. 538-550
    • Haworth, J.1    Cheng, T.2
  • 21
    • 85006717773 scopus 로고    scopus 로고
    • IWFM, 2013. Development of four decade long climate scenario & trend temperature, rainfall, sunshine & humidity. Comprehensive Disaster Management Program, Ministry Disaster Management and Relief, Dhaka. Available from: <> (Last accessed 15.04.2015).
    • IWFM, 2013. Development of four decade long climate scenario & trend temperature, rainfall, sunshine & humidity. Comprehensive Disaster Management Program, Ministry Disaster Management and Relief, Dhaka. Available from: < http://reliefweb.int/sites/reliefweb.int/files/resources/291.%20Development%20of%20Four%20Decatde.pdf> (Last accessed 15.04.2015).
  • 22
    • 84886739036 scopus 로고    scopus 로고
    • Denoising the temperature data using wavelet transform
    • Karim, S.S.A., Denoising the temperature data using wavelet transform. Appl. Math. Sci. 7:113 (2013), 5821–5830, 10.12988/ams.2013.38450.
    • (2013) Appl. Math. Sci. , vol.7 , Issue.113 , pp. 5821-5830
    • Karim, S.S.A.1
  • 23
    • 79951579061 scopus 로고    scopus 로고
    • A wavelet-support vector machine conjunction model for monthly stream flow forecasting
    • Kisi, O., Cimen, M., A wavelet-support vector machine conjunction model for monthly stream flow forecasting. J. Hydrol. 399:1–2 (2011), 132–140, 10.1016/j.jhydrol.2010.12.041.
    • (2011) J. Hydrol. , vol.399 , Issue.1-2 , pp. 132-140
    • Kisi, O.1    Cimen, M.2
  • 24
    • 84888248080 scopus 로고    scopus 로고
    • An improved wavelet–ARIMA approach for forecasting metal prices
    • Kriechbaumer, T., Angus, A., Parsons, D., Casado, M.R., An improved wavelet–ARIMA approach for forecasting metal prices. Resour. Policy 39:1 (2014), 32–41, 10.1016/j.resourpol.2013.10.005.
    • (2014) Resour. Policy , vol.39 , Issue.1 , pp. 32-41
    • Kriechbaumer, T.1    Angus, A.2    Parsons, D.3    Casado, M.R.4
  • 25
    • 84873660729 scopus 로고    scopus 로고
    • Time-series modeling and prediction of global monthly absolute temperature for environmental decision making
    • Liming, Y., Guixi, Y., Ranst, E.V., Huajan, T., Time-series modeling and prediction of global monthly absolute temperature for environmental decision making. Adv. Atmos. Sci. 30:2 (2013), 382–396, 10.1007/s00376-012-1252-3.
    • (2013) Adv. Atmos. Sci. , vol.30 , Issue.2 , pp. 382-396
    • Liming, Y.1    Guixi, Y.2    Ranst, E.V.3    Huajan, T.4
  • 26
    • 0003947410 scopus 로고    scopus 로고
    • Forecasting: Methods and Applications
    • third ed. Wiley
    • Makridakis, S.G., Wheelwright, S.C., Hyndman, R.J., Forecasting: Methods and Applications. third ed., 1998, Wiley 978-0-471-53233-0.
    • (1998)
    • Makridakis, S.G.1    Wheelwright, S.C.2    Hyndman, R.J.3
  • 27
    • 85009930511 scopus 로고    scopus 로고
    • Short-term rainfall prediction using ANN and MT techniques
    • Mandal, T., Jothiprakash, V., Short-term rainfall prediction using ANN and MT techniques. J. Hydraul. Eng. 18:1 (2012), 20–26, 10.1080/09715010.2012.661629.
    • (2012) J. Hydraul. Eng. , vol.18 , Issue.1 , pp. 20-26
    • Mandal, T.1    Jothiprakash, V.2
  • 28
    • 84921993220 scopus 로고    scopus 로고
    • Development of temperature-based weather forecasting models using networks and fuzzy logic
    • Matarneh, L.A., Sheta, A., Ahmad, S.B., Alshaer, J., Oqily, I.A., Development of temperature-based weather forecasting models using networks and fuzzy logic. Int. J. Multimedia Ubiquitous Eng. 9:12 (2014), 343–366, 10.14257/ijmue.2014.9.12.31.
    • (2014) Int. J. Multimedia Ubiquitous Eng. , vol.9 , Issue.12 , pp. 343-366
    • Matarneh, L.A.1    Sheta, A.2    Ahmad, S.B.3    Alshaer, J.4    Oqily, I.A.5
  • 29
    • 85006775970 scopus 로고    scopus 로고
    • The MathWorks Inc., Natick, MA.
    • MATLAB, 2013. The MathWorks Inc., Natick, MA.
    • (2013)
    • MATLAB1
  • 30
    • 84938816978 scopus 로고    scopus 로고
    • Long-term trend analysis of seasonal precipitation for Beijing, China
    • Miao, L., Jun, X., Dejuan, M., Long-term trend analysis of seasonal precipitation for Beijing, China. J. Resour. Ecol. 3:1 (2012), 64–72, 10.5814/j.issn.1674-764x.2012.01.010.
    • (2012) J. Resour. Ecol. , vol.3 , Issue.1 , pp. 64-72
    • Miao, L.1    Jun, X.2    Dejuan, M.3
  • 31
    • 33750442194 scopus 로고    scopus 로고
    • Parameter estimation of an ARMA model for river flow forecasting using goal programming
    • Mohammadi, K., Eslami, H.R., Kahawita, R., Parameter estimation of an ARMA model for river flow forecasting using goal programming. J. Hydrol. 331:1–2 (2006), 293–299, 10.1016/j.jhydrol.2006.05.017.
    • (2006) J. Hydrol. , vol.331 , Issue.1-2 , pp. 293-299
    • Mohammadi, K.1    Eslami, H.R.2    Kahawita, R.3
  • 32
    • 70350129727 scopus 로고    scopus 로고
    • Time series analysis model for rainfall data in Jordan: case study for using time series analysis
    • Momani, P.E.N.M., Time series analysis model for rainfall data in Jordan: case study for using time series analysis. Am. J. Environ. Sci. 5:5 (2009), 599–604, 10.3844/ajessp.2009.599.604.
    • (2009) Am. J. Environ. Sci. , vol.5 , Issue.5 , pp. 599-604
    • Momani, P.E.N.M.1
  • 33
    • 59649102856 scopus 로고    scopus 로고
    • Climate Time Series Analysis: Classical Statistical and Bootstrap Methods
    • Springer
    • Mudelsee, M., Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. 2014, Springer 978-3-319-04450-7.
    • (2014)
    • Mudelsee, M.1
  • 34
    • 38749142907 scopus 로고    scopus 로고
    • A combined neural-wavelet model for prediction of watershed precipitation, Ligvanchai, Iran
    • Nourani, V., Alami, M.T., Aminfar, M.H., A combined neural-wavelet model for prediction of watershed precipitation, Ligvanchai, Iran. J. Environ. Hydrol. 16:2 (2008), 1–12, 10.1016/j.engappai.2008.09.003.
    • (2008) J. Environ. Hydrol. , vol.16 , Issue.2 , pp. 1-12
    • Nourani, V.1    Alami, M.T.2    Aminfar, M.H.3
  • 35
    • 70350337875 scopus 로고    scopus 로고
    • A multivariate ANN-wavelet approach for rainfall-runoff modeling
    • Nourani, V., Komasi, M., Mano, A., A multivariate ANN-wavelet approach for rainfall-runoff modeling. Water Resour. Manage. 23:14 (2009), 2877–2894, 10.1007/s11269-009-9414-5.
    • (2009) Water Resour. Manage. , vol.23 , Issue.14 , pp. 2877-2894
    • Nourani, V.1    Komasi, M.2    Mano, A.3
  • 36
    • 79955025170 scopus 로고    scopus 로고
    • Two hybrid artificial intelligence approaches for modeling rainfall–runoff process
    • Nourani, V., Kisi, Ö., Komasi, M., Two hybrid artificial intelligence approaches for modeling rainfall–runoff process. J. Hydrol. 402:1–2 (2011), 41–59, 10.1016/j.jhydrol.2011.03.002.
    • (2011) J. Hydrol. , vol.402 , Issue.1-2 , pp. 41-59
    • Nourani, V.1    Kisi, Ö.2    Komasi, M.3
  • 37
    • 84871943582 scopus 로고    scopus 로고
    • Wavelet neural network model for reservoir inflow prediction
    • Okkan, U., Wavelet neural network model for reservoir inflow prediction. Sci. Iran. 19:6 (2012), 1445–1455, 10.1016/j.scient.2012.10.009.
    • (2012) Sci. Iran. , vol.19 , Issue.6 , pp. 1445-1455
    • Okkan, U.1
  • 38
    • 84916217205 scopus 로고    scopus 로고
    • Using wavelet transform to improve generalization capability of feed forward neural networks in monthly runoff prediction
    • Okkan, U., Using wavelet transform to improve generalization capability of feed forward neural networks in monthly runoff prediction. Sci. Res. Essays 7:17 (2012), 1690–1703, 10.5897/SRE12.110.
    • (2012) Sci. Res. Essays , vol.7 , Issue.17 , pp. 1690-1703
    • Okkan, U.1
  • 39
    • 84875701694 scopus 로고    scopus 로고
    • Modeling of watershed runoff using discrete wavelet transform and support vector machines
    • Okkan, U., Samui, P., Modeling of watershed runoff using discrete wavelet transform and support vector machines. Int. J. Fresen. Environ. Bull. 21:12b (2012), 3971–3986.
    • (2012) Int. J. Fresen. Environ. Bull. , vol.21 , Issue.12b , pp. 3971-3986
    • Okkan, U.1    Samui, P.2
  • 40
    • 84864018936 scopus 로고    scopus 로고
    • A wavelet-based spectral analysis of long-term time series of optical properties of aerosols obtained by lidar and radiometer measurements over an urban station in Western India
    • Pal, S., Devara, P.C.S., A wavelet-based spectral analysis of long-term time series of optical properties of aerosols obtained by lidar and radiometer measurements over an urban station in Western India. J. Atmos. Sol. Terr. Phys. 74:84–85 (2012), 75–87, 10.1016/j.jastp.2012.05.014.
    • (2012) J. Atmos. Sol. Terr. Phys. , vol.74 , Issue.84-85 , pp. 75-87
    • Pal, S.1    Devara, P.C.S.2
  • 41
    • 84923141731 scopus 로고    scopus 로고
    • Investigation of the atmospheric boundary layer depth variability and its impact on the 222Rn concentration at a rural site in France: Evaluation of a year-long measurement
    • Pal, S., Lopez, M., Schmidt, M., Ramonet, M., Gibert, F., Xueref-Remy, I., Ciais, P., Investigation of the atmospheric boundary layer depth variability and its impact on the 222Rn concentration at a rural site in France: Evaluation of a year-long measurement. J. Geophys. Res. Atmos. 120:2 (2014), 623–643, 10.1002/2014JD022322.
    • (2014) J. Geophys. Res. Atmos. , vol.120 , Issue.2 , pp. 623-643
    • Pal, S.1    Lopez, M.2    Schmidt, M.3    Ramonet, M.4    Gibert, F.5    Xueref-Remy, I.6    Ciais, P.7
  • 42
    • 84905387843 scopus 로고    scopus 로고
    • Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site
    • Pal, S., Lee, T.R., Phelps, S., Dewekker, S.F.J., Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site. Sci. Total Environ. 496 (2014), 424–434, 10.1016/j.scitotenv.2014.07.067.
    • (2014) Sci. Total Environ. , vol.496 , pp. 424-434
    • Pal, S.1    Lee, T.R.2    Phelps, S.3    Dewekker, S.F.J.4
  • 43
    • 69949188486 scopus 로고    scopus 로고
    • Prediction of daily precipitation using wavelet-neural networks
    • Partal, T., Cigizoglu, H.K., Prediction of daily precipitation using wavelet-neural networks. Hydrol. Sc. J. 54:2 (2009), 234–246, 10.1623/hysj.54.2.234.
    • (2009) Hydrol. Sc. J. , vol.54 , Issue.2 , pp. 234-246
    • Partal, T.1    Cigizoglu, H.K.2
  • 44
    • 0003610422 scopus 로고    scopus 로고
    • Wavelet Methods for Time Series Analysis
    • Cambridge University Press
    • Percival, D.B., Walden, A.T., Wavelet Methods for Time Series Analysis. 2000, Cambridge University Press 9780521685085.
    • (2000)
    • Percival, D.B.1    Walden, A.T.2
  • 46
    • 84880043630 scopus 로고    scopus 로고
    • Monthly rainfall prediction using wavelet neural network analysis
    • Ramana, R.V., Krishna, B., Kumar, S.R., Pandey, N.G., Monthly rainfall prediction using wavelet neural network analysis. Water Resour. Manage. 27:10 (2013), 3697–3711, 10.1007/s11269-013-0374-4.
    • (2013) Water Resour. Manage. , vol.27 , Issue.10 , pp. 3697-3711
    • Ramana, R.V.1    Krishna, B.2    Kumar, S.R.3    Pandey, N.G.4
  • 47
    • 84930744554 scopus 로고    scopus 로고
    • Statistical characteristics of rainfall in the onkaparinga catchment in South Australia
    • Rashid, M.M., Beecham, S., Chowdhury, R.K., Statistical characteristics of rainfall in the onkaparinga catchment in South Australia. J. Water Clim. Change 6:2 (2014), 352–373, 10.2166/wcc.2014.031.
    • (2014) J. Water Clim. Change , vol.6 , Issue.2 , pp. 352-373
    • Rashid, M.M.1    Beecham, S.2    Chowdhury, R.K.3
  • 48
    • 13844315896 scopus 로고    scopus 로고
    • Feature extraction via multi-resolution analysis for short-term load forecasting
    • Reis, A.J.R., Silva, A.P.A., Feature extraction via multi-resolution analysis for short-term load forecasting. IEEE Trans. Power Syst. 20:1 (2005), 189–198, 10.1109/TPWRS.2004.840380.
    • (2005) IEEE Trans. Power Syst. , vol.20 , Issue.1 , pp. 189-198
    • Reis, A.J.R.1    Silva, A.P.A.2
  • 49
    • 84864764050 scopus 로고    scopus 로고
    • Modelling of air temperature using remote sensing and artificial neural network in Turkey
    • Şahin, M., Modelling of air temperature using remote sensing and artificial neural network in Turkey. Adv. Space Res. 50:7 (2012), 973–985, 10.1016/j.asr.2012.06.021.
    • (2012) Adv. Space Res. , vol.50 , Issue.7 , pp. 973-985
    • Şahin, M.1
  • 50
    • 0019915536 scopus 로고
    • ARMA model identification of hydrologic time series
    • Salas, J.D., Obeysekera, J.T.B., ARMA model identification of hydrologic time series. Water Resour. Res. 18:4 (1982), 1011–1021, 10.1029/WR018i004p01011.
    • (1982) Water Resour. Res. , vol.18 , Issue.4 , pp. 1011-1021
    • Salas, J.D.1    Obeysekera, J.T.B.2
  • 51
    • 84995024564 scopus 로고
    • Applied Modeling of Hydrological Time Series
    • Water Resources Publications Colorado
    • Salas, J.D., Delleur, J.W., Yevjevich, V., Lane, W.L., Applied Modeling of Hydrological Time Series. 1980, Water Resources Publications, Colorado 0-918334-37-3.
    • (1980)
    • Salas, J.D.1    Delleur, J.W.2    Yevjevich, V.3    Lane, W.L.4
  • 52
    • 2942639036 scopus 로고    scopus 로고
    • Detecting trends of annual values of atmospheric pollutants by the Mann–Kendall test and Sen's slope estimates – the Excel template application MAKESENS
    • Finnish Meteorological Institute Helsinki
    • Salmi, T., Määttä, A., Anttila, P., Airola, T.R., Amnell, T., Detecting trends of annual values of atmospheric pollutants by the Mann–Kendall test and Sen's slope estimates – the Excel template application MAKESENS. 2002, Finnish Meteorological Institute, Helsinki 951-697-563-1.
    • (2002)
    • Salmi, T.1    Määttä, A.2    Anttila, P.3    Airola, T.R.4    Amnell, T.5
  • 53
    • 82955213046 scopus 로고    scopus 로고
    • Trend analysis in reference evapotranspiration using Mann–Kendall and Spearman's Rho tests in arid regions of Iran
    • Shadmani, M., Marofi, S., Roknian, M., Trend analysis in reference evapotranspiration using Mann–Kendall and Spearman's Rho tests in arid regions of Iran. Water Resour. Manage. 26:1 (2012), 211–224, 10.1007/s11269-011-9913-z.
    • (2012) Water Resour. Manage. , vol.26 , Issue.1 , pp. 211-224
    • Shadmani, M.1    Marofi, S.2    Roknian, M.3
  • 54
    • 46449092399 scopus 로고    scopus 로고
    • Spital and temporal characteristics of droughts in the Western part of Bangladesh
    • Shahid, S., Spital and temporal characteristics of droughts in the Western part of Bangladesh. Hydrol. Process. 22 (2008), 2235–2247, 10.1002/hyp.6820.
    • (2008) Hydrol. Process. , vol.22 , pp. 2235-2247
    • Shahid, S.1
  • 55
    • 84901843030 scopus 로고    scopus 로고
    • Forecasting model for stock data based on new wavelet and conjugated-ARIMA combination model
    • Shan, R., Shi, S., Liu, W., Forecasting model for stock data based on new wavelet and conjugated-ARIMA combination model. J. Comput. Inf. Syst. 10:7 (2014), 3023–3030, 10.12733/jcis9971.
    • (2014) J. Comput. Inf. Syst. , vol.10 , Issue.7 , pp. 3023-3030
    • Shan, R.1    Shi, S.2    Liu, W.3
  • 56
    • 1842545602 scopus 로고    scopus 로고
    • Clustering technique for evaluating and validating neural network performance
    • Shi, J.J., Clustering technique for evaluating and validating neural network performance. J. Comput. Civil Eng. 16:2 (2002), 152–155, 10.1061/(ASCE)0887-3801(2002) 16:2(152).
    • (2002) J. Comput. Civil Eng. , vol.16 , Issue.2 , pp. 152-155
    • Shi, J.J.1
  • 57
    • 18444409410 scopus 로고    scopus 로고
    • Hydrological modeling of the Iroquois River watershed using HSPF and SWAT
    • Singh, J., Knapp, H.V., Arnold, J.G., Demissie, M., Hydrological modeling of the Iroquois River watershed using HSPF and SWAT. J. Am. Water Resour. Assoc. 41:2 (2005), 361–375, 10.1111/j.1752-1688.2005.tb03740.x.
    • (2005) J. Am. Water Resour. Assoc. , vol.41 , Issue.2 , pp. 361-375
    • Singh, J.1    Knapp, H.V.2    Arnold, J.G.3    Demissie, M.4
  • 58
    • 84904681268 scopus 로고    scopus 로고
    • Forecasting daily precipitation using hybrid model of Wavelet-Artificial neural network and comparison with adaptive neurofuzzy inference system (Case Study: Verayneh Station, Nahavand)
    • Solgi, A., Nourani, V., Pourhaghi, A., Forecasting daily precipitation using hybrid model of Wavelet-Artificial neural network and comparison with adaptive neurofuzzy inference system (Case Study: Verayneh Station, Nahavand). Adv. Civil Eng. 2014:2014 (2014), 1–12, 10.1155/2014/279368.
    • (2014) Adv. Civil Eng. , vol.2014 , Issue.2014 , pp. 1-12
    • Solgi, A.1    Nourani, V.2    Pourhaghi, A.3
  • 59
    • 33846790582 scopus 로고    scopus 로고
    • Report of the Stern Review: The Economics of Climate Change
    • HM Treasury, London. ISBN: 9780521700801.
    • Stern, N., 2007. Report of the Stern Review: The Economics of Climate Change. HM Treasury, London. ISBN: 9780521700801.
    • (2007)
    • Stern, N.1
  • 60
    • 84894542240 scopus 로고    scopus 로고
    • Wavelet based deseasonalization for modelling and forecasting of daily discharge series considering long range dependence
    • Szolgayová, E., Arlt, J., Blöschl, G., Szolgay, J., Wavelet based deseasonalization for modelling and forecasting of daily discharge series considering long range dependence. J. Hydrol. Hydromech. 62:1 (2014), 24–32, 10.2478/johh-2014-0011.
    • (2014) J. Hydrol. Hydromech. , vol.62 , Issue.1 , pp. 24-32
    • Szolgayová, E.1    Arlt, J.2    Blöschl, G.3    Szolgay, J.4
  • 61
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the predication of hydrology
    • Wang, W., Ding, S., Wavelet network model and its application to the predication of hydrology. Nat. Sci. 1:1 (2003), 67–71.
    • (2003) Nat. Sci. , vol.1 , Issue.1 , pp. 67-71
    • Wang, W.1    Ding, S.2
  • 62
    • 79957795820 scopus 로고    scopus 로고
    • Network traffic prediction based on wavelet transform and seasonal ARIMA model
    • In: Lecture Notes in Computer Science. 6677, 152–159. 8th, International Symposium on Neural Networks; Advances in neural networks – ISNN 2011: 8th International Symposium. Part III; 2011; Guilin, China. ISBN: 978-3-642-21110-2.
    • Wei, Y., Wang, J., Wang, C., 2011. Network traffic prediction based on wavelet transform and seasonal ARIMA model. In: Lecture Notes in Computer Science. 6677, 152–159. 8th, International Symposium on Neural Networks; Advances in neural networks – ISNN 2011: 8th International Symposium. Part III; 2011; Guilin, China. ISBN: 978-3-642-21110-2.
    • (2011)
    • Wei, Y.1    Wang, J.2    Wang, C.3
  • 63
    • 0019707668 scopus 로고
    • On the validation of models
    • Willmott, C.J., On the validation of models. Phys. Geogr. 2:2 (1981), 184–194, 10.1080/02723646.1981.10642213.
    • (1981) Phys. Geogr. , vol.2 , Issue.2 , pp. 184-194
    • Willmott, C.J.1
  • 64
    • 60949086949 scopus 로고    scopus 로고
    • Application and comparison of two prediction models for groundwater levels: a case study in Western Jilin Province, China
    • Yang, Z.P., Lu, W.X., Long, Y.Q., Li, P., Application and comparison of two prediction models for groundwater levels: a case study in Western Jilin Province, China. J. Arid. Environ. 73:4–5 (2009), 487–492, 10.1016/j.jaridenv.2008.11.008.
    • (2009) J. Arid. Environ. , vol.73 , Issue.4-5 , pp. 487-492
    • Yang, Z.P.1    Lu, W.X.2    Long, Y.Q.3    Li, P.4
  • 65
    • 4644308286 scopus 로고    scopus 로고
    • The Mann–Kendall test modified by effective sample size to detect trend in serially correlated hydrological series
    • Yue, S., Wang, C., The Mann–Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour. Manage. 18:3 (2004), 201–218, 10.1023/B:WARM.0000043140.61082.60.
    • (2004) Water Resour. Manage. , vol.18 , Issue.3 , pp. 201-218
    • Yue, S.1    Wang, C.2
  • 66
    • 0036499746 scopus 로고    scopus 로고
    • Power of the Mann–Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series
    • Yue, S., Pilon, P., Cavadias, G., Power of the Mann–Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 259:1–4 (2002), 254–271, 10.1016/S0022-1694(01)00594-7.
    • (2002) J. Hydrol. , vol.259 , Issue.1-4 , pp. 254-271
    • Yue, S.1    Pilon, P.2    Cavadias, G.3
  • 67
    • 38149027113 scopus 로고    scopus 로고
    • The research of monthly discharge predictor-corrector model based on wavelet decomposition
    • Zhou, H.C., Peng, Y., Liang, G.H., The research of monthly discharge predictor-corrector model based on wavelet decomposition. Water Resour. Manage. 22:2 (2008), 217–227, 10.1007/s11269-006-9152-x.
    • (2008) Water Resour. Manage. , vol.22 , Issue.2 , pp. 217-227
    • Zhou, H.C.1    Peng, Y.2    Liang, G.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.