메뉴 건너뛰기




Volumn 8, Issue 7, 2017, Pages 10883-10890

The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology

Author keywords

Adversarial autoencoder; Artificial intelligence; Deep learning; Drug discovery; Generative adversarian networks

Indexed keywords

ADVERSARIAL AUTOENCODER; ARTICLE; ARTIFICIAL NEURAL NETWORK; CELL ASSAY; CONTROLLED STUDY; DEEP NEURAL NETWORK; GROWTH INHIBITION; HUMAN; HUMAN CELL; INFORMATION PROCESSING; MCF-7 CELL LINE; MEASUREMENT ACCURACY; MEASUREMENT PRECISION; MOLECULAR FINGERPRINT; MOLECULAR GENETICS; QUANTITATIVE STRUCTURE ACTIVITY RELATION; DRUG SCREENING; DRUG THERAPY; HIGH THROUGHPUT SCREENING; K-562 CELL LINE; MACHINE LEARNING; PROCEDURES; REPRODUCIBILITY; TUMOR CELL LINE;

EID: 85012890514     PISSN: None     EISSN: 19492553     Source Type: Journal    
DOI: 10.18632/oncotarget.14073     Document Type: Article
Times cited : (301)

References (42)
  • 1
    • 79959786193 scopus 로고    scopus 로고
    • How to revive breakthrough innovation in the pharmaceutical industry
    • Munos BH, Chin WW. How to revive breakthrough innovation in the pharmaceutical industry. Sci Transl Med. 2011; 3:89cm16.
    • (2011) Sci Transl Med , vol.3
    • Munos, B.H.1    Chin, W.W.2
  • 3
    • 4344645978 scopus 로고    scopus 로고
    • Opinion: Can the pharmaceutical industry reduce attrition rates?
    • Kola I, Ismail K, John L. Opinion: Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004; 3:711-6.
    • (2004) Nat Rev Drug Discov , vol.3 , pp. 711-716
    • Kola, I.1    Ismail, K.2    John, L.3
  • 5
    • 84877349631 scopus 로고    scopus 로고
    • Druggable chemical space and enumerative combinatorics
    • Springer
    • Yu MJ. Druggable chemical space and enumerative combinatorics. J Cheminform. Springer; 2013; 5:19.
    • (2013) J Cheminform , vol.5 , pp. 19
    • Yu, M.J.1
  • 9
    • 84979019529 scopus 로고    scopus 로고
    • Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data
    • Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A. Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data. Mol Pharm. 2016; 13:2524-30.
    • (2016) Mol Pharm , vol.13 , pp. 2524-2530
    • Aliper, A.1    Plis, S.2    Artemov, A.3    Ulloa, A.4    Mamoshina, P.5    Zhavoronkov, A.6
  • 16
    • 84965143571 scopus 로고    scopus 로고
    • Deep Generative Image Models using a?. Laplacian Pyramid of Adversarial Networks
    • Denton, Emily L., Soumith Chintala, Rob Fergus. Deep Generative Image Models using a? Laplacian Pyramid of Adversarial Networks. Adv Neural Inf Process Syst. 2015;: 1486-94.
    • (2015) Adv Neural Inf Process Syst , pp. 1486-1494
    • Denton Emily, L.1    Chintala, S.2    Fergus, R.3
  • 21
    • 85038130241 scopus 로고    scopus 로고
    • Computational models for predicting drug responses in cancer research
    • Azuaje F. Computational models for predicting drug responses in cancer research. Brief Bioinform. 2016; doi: 10.1093/bib/bbw065.
    • (2016) Brief Bioinform
    • Azuaje, F.1
  • 24
    • 33749011163 scopus 로고    scopus 로고
    • The NCI60 human tumour cell line anticancer drug screen
    • Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer. 2006; 6:813-23.
    • (2006) Nat Rev Cancer , vol.6 , pp. 813-823
    • Shoemaker, R.H.1
  • 29
  • 31
    • 84880542260 scopus 로고    scopus 로고
    • Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules
    • Lusci A, Pollastri G, Baldi P. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model. 2013; 53:1563-75.
    • (2013) J Chem Inf Model , vol.53 , pp. 1563-1575
    • Lusci, A.1    Pollastri, G.2    Baldi, P.3
  • 39
    • 84923367417 scopus 로고    scopus 로고
    • Deep neural nets as a method for quantitative structure-activity relationships
    • Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V. Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model. 2015; 55:263-74.
    • (2015) J Chem Inf Model , vol.55 , pp. 263-274
    • Ma, J.1    Sheridan, R.P.2    Liaw, A.3    Dahl, G.E.4    Svetnik, V.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.