-
1
-
-
79959786193
-
How to revive breakthrough innovation in the pharmaceutical industry
-
Munos BH, Chin WW. How to revive breakthrough innovation in the pharmaceutical industry. Sci Transl Med. 2011; 3:89cm16.
-
(2011)
Sci Transl Med
, vol.3
-
-
Munos, B.H.1
Chin, W.W.2
-
2
-
-
84950162061
-
Why and how have drug discovery strategies in pharma changed?
-
Mignani S, Huber S, Tomás H, Rodrigues J, Majoral J-P. Why and how have drug discovery strategies in pharma changed? What are the new mindsets? Drug Discov Today. 2016; 21:239-49.
-
(2016)
What are the new mindsets? Drug Discov Today
, vol.21
, pp. 239-249
-
-
Mignani, S.1
Huber, S.2
Tomás, H.3
Rodrigues, J.4
Majoral, J.-P.5
-
3
-
-
4344645978
-
Opinion: Can the pharmaceutical industry reduce attrition rates?
-
Kola I, Ismail K, John L. Opinion: Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004; 3:711-6.
-
(2004)
Nat Rev Drug Discov
, vol.3
, pp. 711-716
-
-
Kola, I.1
Ismail, K.2
John, L.3
-
4
-
-
84984672974
-
-
San Diego: Biomedtracker/Washington, DC: BIO/Bend: Amplion
-
Thomas DW, Burns J, Audette J, Carrol A, Dow-Hygelund C, Hay M. Clinical development success rates 2006-2015. San Diego: Biomedtracker/Washington, DC: BIO/Bend: Amplion; 2016.
-
(2016)
Clinical development success rates 2006-2015
-
-
Thomas, D.W.1
Burns, J.2
Audette, J.3
Carrol, A.4
Dow-Hygelund, C.5
Hay, M.6
-
5
-
-
84877349631
-
Druggable chemical space and enumerative combinatorics
-
Springer
-
Yu MJ. Druggable chemical space and enumerative combinatorics. J Cheminform. Springer; 2013; 5:19.
-
(2013)
J Cheminform
, vol.5
, pp. 19
-
-
Yu, M.J.1
-
6
-
-
85000896742
-
Design of efficient computational workflows for in silico drug repurposing
-
Vanhaelen Q, Mamoshina P, Aliper AM, Artemov A, Lezhnina K, Ozerov I, Labat I, Zhavoronkov A. Design of efficient computational workflows for in silico drug repurposing. Drug Discov Today. 2016;. doi: 10.1016/j. drudis.2016.09.019.
-
(2016)
Drug Discov Today
-
-
Vanhaelen, Q.1
Mamoshina, P.2
Aliper, A.M.3
Artemov, A.4
Lezhnina, K.5
Ozerov, I.6
Labat, I.7
Zhavoronkov, A.8
-
8
-
-
84976407069
-
Deep biomarkers of human aging: Application of deep neural networks to biomarker development
-
Putin E, Mamoshina P, Aliper A, Korzinkin M, Moskalev A, Kolosov A, Ostrovskiy A, Cantor C, Vijg J, Zhavoronkov A. Deep biomarkers of human aging: Application of deep neural networks to biomarker development. Aging (Albany, NY). 2016; 8 :1021-33. doi: 10.18632/aging.100968.
-
(2016)
Aging (Albany, NY)
, vol.8
, pp. 1021-1033
-
-
Putin, E.1
Mamoshina, P.2
Aliper, A.3
Korzinkin, M.4
Moskalev, A.5
Kolosov, A.6
Ostrovskiy, A.7
Cantor, C.8
Vijg, J.9
Zhavoronkov, A.10
-
9
-
-
84979019529
-
Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data
-
Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A. Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data. Mol Pharm. 2016; 13:2524-30.
-
(2016)
Mol Pharm
, vol.13
, pp. 2524-2530
-
-
Aliper, A.1
Plis, S.2
Artemov, A.3
Ulloa, A.4
Mamoshina, P.5
Zhavoronkov, A.6
-
10
-
-
84968861400
-
Applications of Deep Learning in Biomedicine
-
Mamoshina P, Polina M, Armando V, Evgeny P, Alex Z. Applications of Deep Learning in Biomedicine. Mol Pharm. 2016; 13:1445-54.
-
(2016)
Mol Pharm
, vol.13
, pp. 1445-1454
-
-
Mamoshina, P.1
Polina, M.2
Armando, V.3
Evgeny, P.4
Alex, Z.5
-
12
-
-
85032751458
-
Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups
-
Hinton G, Deng L, Yu D, Dahl G, Mohamed A-R, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath T, Kingsbury B. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Process Mag. 29:82-97.
-
IEEE Signal Process Mag
, vol.29
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.4
Mohamed, A.-R.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.10
Kingsbury, B.11
-
16
-
-
84965143571
-
Deep Generative Image Models using a?. Laplacian Pyramid of Adversarial Networks
-
Denton, Emily L., Soumith Chintala, Rob Fergus. Deep Generative Image Models using a? Laplacian Pyramid of Adversarial Networks. Adv Neural Inf Process Syst. 2015;: 1486-94.
-
(2015)
Adv Neural Inf Process Syst
, pp. 1486-1494
-
-
Denton Emily, L.1
Chintala, S.2
Fergus, R.3
-
18
-
-
84937849144
-
Generative adversarial nets
-
Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. Generative adversarial nets. Adv Neural Inf Process Syst. 2014;: 2672-80.
-
(2014)
Adv Neural Inf Process Syst
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
20
-
-
84906549588
-
A community effort to assess and improve drug sensitivity prediction algorithms
-
Costello JC, Heiser LM, Georgii E, Gönen M, Menden MP, Wang NJ, Bansal M, Ammad-ud-din M, Hintsanen P, Khan SA, Mpindi J-P, Kallioniemi O, Honkela A, et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol. 2014; 32: 1202-12.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 1202-1212
-
-
Costello, J.C.1
Heiser, L.M.2
Georgii, E.3
Gönen, M.4
Menden, M.P.5
Wang, N.J.6
Bansal, M.7
Ammad-Ud-Din, M.8
Hintsanen, P.9
Khan, S.A.10
Mpindi, J.-P.11
Kallioniemi, O.12
Honkela, A.13
-
21
-
-
85038130241
-
Computational models for predicting drug responses in cancer research
-
Azuaje F. Computational models for predicting drug responses in cancer research. Brief Bioinform. 2016; doi: 10.1093/bib/bbw065.
-
(2016)
Brief Bioinform
-
-
Azuaje, F.1
-
22
-
-
84859169877
-
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
-
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012; 483:603-7.
-
(2012)
Nature
, vol.483
, pp. 603-607
-
-
Barretina, J.1
Caponigro, G.2
Stransky, N.3
Venkatesan, K.4
Margolin, A.A.5
Kim, S.6
Wilson, C.J.7
Lehár, J.8
Kryukov, G.V.9
Sonkin, D.10
Reddy, A.11
Liu, M.12
Murray, L.13
-
23
-
-
84859187259
-
Systematic identification of genomic markers of drug sensitivity in cancer cells
-
Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW, Greninger P, Thompson IR, Luo X, Soares J, Liu Q, Iorio F, Surdez D, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012; 483:570-5.
-
(2012)
Nature
, vol.483
, pp. 570-575
-
-
Garnett, M.J.1
Edelman, E.J.2
Heidorn, S.J.3
Greenman, C.D.4
Dastur, A.5
Lau, K.W.6
Greninger, P.7
Thompson, I.R.8
Luo, X.9
Soares, J.10
Liu, Q.11
Iorio, F.12
Surdez, D.13
-
24
-
-
33749011163
-
The NCI60 human tumour cell line anticancer drug screen
-
Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer. 2006; 6:813-23.
-
(2006)
Nat Rev Cancer
, vol.6
, pp. 813-823
-
-
Shoemaker, R.H.1
-
25
-
-
84979586933
-
PubChem Substance and Compound databases
-
Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016; 44:D1202-13.
-
(2016)
Nucleic Acids Res
, vol.44
, pp. D1202-D1213
-
-
Kim, S.1
Thiessen, P.A.2
Bolton, E.E.3
Chen, J.4
Fu, G.5
Gindulyte, A.6
Han, L.7
He, J.8
He, S.9
Shoemaker, B.A.10
Wang, J.11
Yu, B.12
Zhang, J.13
-
26
-
-
84891805328
-
PubChem BioAssay: 2014 update
-
Wang Y, Suzek T, Zhang J, Wang J, He S, Cheng T, Shoemaker BA, Gindulyte A, Bryant SH. PubChem BioAssay: 2014 update. Nucleic Acids Res. 2013; 42:D1075-82.
-
(2013)
Nucleic Acids Res
, vol.42
, pp. D1075-D1082
-
-
Wang, Y.1
Suzek, T.2
Zhang, J.3
Wang, J.4
He, S.5
Cheng, T.6
Shoemaker, B.A.7
Gindulyte, A.8
Bryant, S.H.9
-
27
-
-
84910070046
-
Novel robust biomarkers for human bladder cancer based on activation of intracellular signaling pathways
-
Lezhnina K, Kovalchuk O, Zhavoronkov AA, Korzinkin MB, Zabolotneva AA, Shegay PV, Sokov DG, Gaifullin NM, Rusakov IG, Aliper AM, Roumiantsev SA, Alekseev BY, Borisov NM, et al. Novel robust biomarkers for human bladder cancer based on activation of intracellular signaling pathways. Oncotarget. 2014; 5:9022-32. doi: 10.18632/oncotarget.2493.
-
(2014)
Oncotarget
, vol.5
, pp. 9022-9032
-
-
Lezhnina, K.1
Kovalchuk, O.2
Zhavoronkov, A.A.3
Korzinkin, M.B.4
Zabolotneva, A.A.5
Shegay, P.V.6
Sokov, D.G.7
Gaifullin, N.M.8
Rusakov, I.G.9
Aliper, A.M.10
Roumiantsev, S.A.11
Alekseev, B.Y.12
Borisov, N.M.13
-
28
-
-
84995704992
-
In silico Pathway Activation Network Decomposition Analysis (iPANDA) as a method for biomarker development
-
Ozerov IV, Lezhnina KV, Izumchenko E, Artemov AV, Medintsev S, Vanhaelen Q, Aliper A, Vijg J, Osipov AN, Labat I, West MD, Buzdin A, Cantor CR, et al. In silico Pathway Activation Network Decomposition Analysis (iPANDA) as a method for biomarker development. Nat Commun. 2016; 7:13427.
-
(2016)
Nat Commun
, vol.7
, pp. 13427
-
-
Ozerov, I.V.1
Lezhnina, K.V.2
Izumchenko, E.3
Artemov, A.V.4
Medintsev, S.5
Vanhaelen, Q.6
Aliper, A.7
Vijg, J.8
Osipov, A.N.9
Labat, I.10
West, M.D.11
Buzdin, A.12
Cantor, C.R.13
-
29
-
-
84943400336
-
Pathway activation strength is a novel independent prognostic biomarker for cetuximab sensitivity in colorectal cancer patients
-
Zhu Q, Izumchenko E, Aliper AM, Makarev E, Paz K, Buzdin AA, Zhavoronkov AA, Sidransky D. Pathway activation strength is a novel independent prognostic biomarker for cetuximab sensitivity in colorectal cancer patients. Hum Genome Var. 2015; 2:15009.
-
(2015)
Hum Genome Var
, vol.2
, pp. 15009
-
-
Zhu, Q.1
Izumchenko, E.2
Aliper, A.M.3
Makarev, E.4
Paz, K.5
Buzdin, A.A.6
Zhavoronkov, A.A.7
Sidransky, D.8
-
31
-
-
84880542260
-
Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules
-
Lusci A, Pollastri G, Baldi P. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model. 2013; 53:1563-75.
-
(2013)
J Chem Inf Model
, vol.53
, pp. 1563-1575
-
-
Lusci, A.1
Pollastri, G.2
Baldi, P.3
-
32
-
-
85015387152
-
-
arXiv:1509.09292v2 [cs.LG]
-
David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre Rafael Gomez-Bombarelli, Timothy Hirzel, Alan Aspuru-Guzik, Ryan P. Adams. Convolutional Networks on Graphs for Learning Molecular Fingerprints. arXiv:1509.09292v2 [cs.LG]. 2015.
-
(2015)
Adams. Convolutional Networks on Graphs for Learning Molecular Fingerprints
-
-
Duvenaud, D.1
Maclaurin, D.2
Aguilera-Iparraguirre, J.3
Gomez-Bombarelli, R.4
Hirzel, T.5
Aspuru-Guzik, A.6
Ryan, P.7
-
34
-
-
84904793576
-
SwissTargetPrediction: a web server for target prediction of bioactive small molecules
-
Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014; 42:W32-8.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. W32-W38
-
-
Gfeller, D.1
Grosdidier, A.2
Wirth, M.3
Daina, A.4
Michielin, O.5
Zoete, V.6
-
35
-
-
84944903634
-
Target prediction utilising negative bioactivity data covering large chemical space
-
Mervin LH, Afzal AM, Drakakis G, Lewis R, Engkvist O, Bender A. Target prediction utilising negative bioactivity data covering large chemical space. J Cheminform. 2015; 7:51.
-
(2015)
J Cheminform
, vol.7
, pp. 51
-
-
Mervin, L.H.1
Afzal, A.M.2
Drakakis, G.3
Lewis, R.4
Engkvist, O.5
Bender, A.6
-
39
-
-
84923367417
-
Deep neural nets as a method for quantitative structure-activity relationships
-
Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V. Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model. 2015; 55:263-74.
-
(2015)
J Chem Inf Model
, vol.55
, pp. 263-274
-
-
Ma, J.1
Sheridan, R.P.2
Liaw, A.3
Dahl, G.E.4
Svetnik, V.5
-
40
-
-
80053512597
-
Open Babel: An open chemical toolbox
-
O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform. 2011; 3:33.
-
(2011)
J Cheminform
, vol.3
, pp. 33
-
-
O'Boyle, N.M.1
Banck, M.2
James, C.A.3
Morley, C.4
Vandermeersch, T.5
Hutchison, G.R.6
|