메뉴 건너뛰기




Volumn 49, Issue 4, 2017, Pages 537-549

Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism

(62)  Reynolds, John J a   Bicknell, Louise S b,ae   Carroll, Paula b   Higgs, Martin R a   Shaheen, Ranad c   Murray, Jennie E b   Papadopoulos, Dimitrios K d   Leitch, Andrea b   Murina, Olga b   Tarnauskaite, Zygimante b   Wessel, Sarah R e   Zlatanou, Anastasia a   Vernet, Audrey a   Von Kriegsheim, Alex b   Mottram, Rachel M A a   Logan, Clare V b   Bye, Hannah f   Li, Yun g   Brean, Alexander a   Maddirevula, Sateesh c   more..


Author keywords

[No Author keywords available]

Indexed keywords

ATM PROTEIN; ATR PROTEIN; DNA BINDING PROTEIN;

EID: 85012247268     PISSN: 10614036     EISSN: 15461718     Source Type: Journal    
DOI: 10.1038/ng.3790     Document Type: Article
Times cited : (81)

References (59)
  • 1
    • 80053642194 scopus 로고    scopus 로고
    • Mechanisms and pathways of growth failure in primordial dwarfism
    • Klingseisen, A. & Jackson, A.P. Mechanisms and pathways of growth failure in primordial dwarfism. Genes Dev. 25, 2011-2024 (2011).
    • (2011) Genes Dev. , vol.25 , pp. 2011-2024
    • Klingseisen, A.1    Jackson, A.P.2
  • 2
    • 0345073699 scopus 로고    scopus 로고
    • A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome
    • ODriscoll, M., Ruiz-Perez, V.L., Woods, C.G., Jeggo, P.A. & Goodship, J.A. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat. Genet. 33, 497-501 (2003).
    • (2003) Nat. Genet. , vol.33 , pp. 497-501
    • Odriscoll, M.1    Ruiz-Perez, V.L.2    Woods, C.G.3    Jeggo, P.A.4    Goodship, J.A.5
  • 3
    • 84870657902 scopus 로고    scopus 로고
    • Identification of the first ATRIP-deficient patient and novel mutations in ATR define a clinical spectrum for ATR-ATRIP Seckel syndrome
    • Ogi, T. et al. Identification of the first ATRIP-deficient patient and novel mutations in ATR define a clinical spectrum for ATR-ATRIP Seckel syndrome. PLoS Genet. 8, e1002945 (2012).
    • (2012) PLoS Genet. , vol.8 , pp. e1002945
    • Ogi, T.1
  • 4
    • 0014486220 scopus 로고
    • Blooms syndrome. I. Genetical and clinical observations in the first twenty-seven patients
    • German, J. Blooms syndrome. I. Genetical and clinical observations in the first twenty-seven patients. Am. J. Hum. Genet. 21, 196-227 (1969).
    • (1969) Am. J. Hum. Genet. , vol.21 , pp. 196-227
    • German, J.1
  • 5
    • 84947997687 scopus 로고    scopus 로고
    • TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism
    • Harley, M.E. et al. TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism. Nat. Genet. 48, 36-43 (2016).
    • (2016) Nat. Genet. , vol.48 , pp. 36-43
    • Harley, M.E.1
  • 6
    • 80055077904 scopus 로고    scopus 로고
    • CtIP mutations cause Seckel and Jawad syndromes
    • Qvist, P. et al. CtIP mutations cause Seckel and Jawad syndromes. PLoS Genet. 7, e1002310 (2011).
    • (2011) PLoS Genet. , vol.7 , pp. e1002310
    • Qvist, P.1
  • 7
    • 84936770284 scopus 로고    scopus 로고
    • Mutations in XRCC4 cause primary microcephaly, short stature and increased genomic instability
    • Rosin, N. et al. Mutations in XRCC4 cause primary microcephaly, short stature and increased genomic instability. Hum. Mol. Genet. 24, 3708-3717 (2015).
    • (2015) Hum. Mol. Genet. , vol.24 , pp. 3708-3717
    • Rosin, N.1
  • 8
    • 79953198187 scopus 로고    scopus 로고
    • Mutations in the pre-replication complex cause Meier-Gorlin syndrome
    • Bicknell, L.S. et al. Mutations in the pre-replication complex cause Meier-Gorlin syndrome. Nat. Genet. 43, 356-359 (2011).
    • (2011) Nat. Genet. , vol.43 , pp. 356-359
    • Bicknell, L.S.1
  • 9
    • 79953167422 scopus 로고    scopus 로고
    • Mutations in ORC1, encoding the largest subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome
    • Bicknell, L.S. et al. Mutations in ORC1, encoding the largest subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome. Nat. Genet. 43, 350-355 (2011).
    • (2011) Nat. Genet. , vol.43 , pp. 350-355
    • Bicknell, L.S.1
  • 10
    • 79953203480 scopus 로고    scopus 로고
    • Mutations in origin recognition complex gene ORC4 cause Meier-Gorlin syndrome
    • Guernsey, D.L. et al. Mutations in origin recognition complex gene ORC4 cause Meier-Gorlin syndrome. Nat. Genet. 43, 360-364 (2011).
    • (2011) Nat. Genet. , vol.43 , pp. 360-364
    • Guernsey, D.L.1
  • 11
    • 84978524915 scopus 로고    scopus 로고
    • Mutations in CDC45, encoding an essential component of the pre-initiation complex, cause Meier-Gorlin syndrome and craniosynostosis
    • Fenwick, A.L. et al. Mutations in CDC45, encoding an essential component of the pre-initiation complex, cause Meier-Gorlin syndrome and craniosynostosis. Am. J. Hum. Genet. 99, 125-138 (2016).
    • (2016) Am. J. Hum. Genet. , vol.99 , pp. 125-138
    • Fenwick, A.L.1
  • 12
    • 84890790193 scopus 로고    scopus 로고
    • Extreme growth failure is a common presentation of ligase IV deficiency
    • Murray, J.E. et al. Extreme growth failure is a common presentation of ligase IV deficiency. Hum. Mutat. 35, 76-85 (2014).
    • (2014) Hum. Mutat. , vol.35 , pp. 76-85
    • Murray, J.E.1
  • 13
    • 84924267433 scopus 로고    scopus 로고
    • Mutations in the NHEJ component XRCC4 cause primordial dwarfism
    • Murray, J.E. et al. Mutations in the NHEJ component XRCC4 cause primordial dwarfism. Am. J. Hum. Genet. 96, 412-424 (2015).
    • (2015) Am. J. Hum. Genet. , vol.96 , pp. 412-424
    • Murray, J.E.1
  • 14
    • 84893674890 scopus 로고    scopus 로고
    • Genomic analysis of primordial dwarfism reveals novel disease genes
    • Shaheen, R. et al. Genomic analysis of primordial dwarfism reveals novel disease genes. Genome Res. 24, 291-299 (2014).
    • (2014) Genome Res. , vol.24 , pp. 291-299
    • Shaheen, R.1
  • 15
    • 84891301320 scopus 로고    scopus 로고
    • Causes and consequences of replication stress
    • Zeman, M.K. & Cimprich, K.A. Causes and consequences of replication stress. Nat. Cell Biol. 16, 2-9 (2014).
    • (2014) Nat. Cell Biol. , vol.16 , pp. 2-9
    • Zeman, M.K.1    Cimprich, K.A.2
  • 16
    • 0037567268 scopus 로고    scopus 로고
    • Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes
    • Zou, L. & Elledge, S.J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542-1548 (2003).
    • (2003) Science , vol.300 , pp. 1542-1548
    • Zou, L.1    Elledge, S.J.2
  • 17
  • 18
    • 79957690359 scopus 로고    scopus 로고
    • ATR signaling: More than meeting at the fork
    • Nam, E.A. & Cortez, D. ATR signaling: more than meeting at the fork. Biochem. J. 436, 527-536 (2011).
    • (2011) Biochem. J. , vol.436 , pp. 527-536
    • Nam, E.A.1    Cortez, D.2
  • 19
    • 33845320139 scopus 로고    scopus 로고
    • Tipin and Timeless form a mutually protective complex required for genotoxic stress resistance and checkpoint function
    • Chou, D.M. & Elledge, S.J. Tipin and Timeless form a mutually protective complex required for genotoxic stress resistance and checkpoint function. Proc. Natl. Acad. Sci. USA 103, 18143-18147 (2006).
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 18143-18147
    • Chou, D.M.1    Elledge, S.J.2
  • 20
    • 77952764443 scopus 로고    scopus 로고
    • Tipin-replication protein A interaction mediates Chk1 phosphorylation by ATR in response to genotoxic stress
    • Kemp, M.G. et al. Tipin-replication protein A interaction mediates Chk1 phosphorylation by ATR in response to genotoxic stress. J. Biol. Chem. 285, 16562-16571 (2010).
    • (2010) J. Biol. Chem. , vol.285 , pp. 16562-16571
    • Kemp, M.G.1
  • 21
    • 84982253941 scopus 로고    scopus 로고
    • Analysis of protein-coding genetic variation in 60,706 humans
    • Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285-291 (2016).
    • (2016) Nature , vol.536 , pp. 285-291
    • Lek, M.1
  • 23
    • 84906224705 scopus 로고    scopus 로고
    • Simplified gyral pattern in severe developmental microcephalies? New insights from allometric modeling for spatial and spectral analysis of gyrification
    • Germanaud, D. et al. Simplified gyral pattern in severe developmental microcephalies? New insights from allometric modeling for spatial and spectral analysis of gyrification. Neuroimage 102, 317-331 (2014).
    • (2014) Neuroimage , vol.102 , pp. 317-331
    • Germanaud, D.1
  • 24
    • 84927581261 scopus 로고    scopus 로고
    • Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy
    • Martin, C.A. et al. Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy. Nat. Genet. 46, 1283-1292 (2014).
    • (2014) Nat. Genet. , vol.46 , pp. 1283-1292
    • Martin, C.A.1
  • 25
    • 3242657086 scopus 로고    scopus 로고
    • Mutations in microcephalin cause aberrant regulation of chromosome condensation
    • Trimborn, M. et al. Mutations in microcephalin cause aberrant regulation of chromosome condensation. Am. J. Hum. Genet. 75, 261-266 (2004).
    • (2004) Am. J. Hum. Genet. , vol.75 , pp. 261-266
    • Trimborn, M.1
  • 26
    • 38649092988 scopus 로고    scopus 로고
    • Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling
    • Griffith, E. et al. Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling. Nat. Genet. 40, 232-236 (2008).
    • (2008) Nat. Genet. , vol.40 , pp. 232-236
    • Griffith, E.1
  • 27
    • 2442441507 scopus 로고    scopus 로고
    • Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals
    • Yeo, G. & Burge, C.B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol. 11, 377-394 (2004).
    • (2004) J. Comput. Biol. , vol.11 , pp. 377-394
    • Yeo, G.1    Burge, C.B.2
  • 28
    • 18044380762 scopus 로고    scopus 로고
    • Humpty dumpty is required for developmental DNA amplification and cell proliferation in Drosophila
    • Bandura, J.L. et al. humpty dumpty is required for developmental DNA amplification and cell proliferation in Drosophila. Curr. Biol. 15, 755-759 (2005).
    • (2005) Curr. Biol. , vol.15 , pp. 755-759
    • Bandura, J.L.1
  • 29
    • 84938484731 scopus 로고    scopus 로고
    • Preventing replication fork collapse to maintain genome integrity
    • Cortez, D. Preventing replication fork collapse to maintain genome integrity. DNA Repair (Amst.) 32, 149-157 (2015).
    • (2015) DNA Repair (Amst.) , vol.32 , pp. 149-157
    • Cortez, D.1
  • 30
    • 84860181097 scopus 로고    scopus 로고
    • Mechanisms of replication fork protection: A safeguard for genome stability
    • Errico, A. & Costanzo, V. Mechanisms of replication fork protection: a safeguard for genome stability. Crit. Rev. Biochem. Mol. Biol. 47, 222-235 (2012).
    • (2012) Crit. Rev. Biochem. Mol. Biol. , vol.47 , pp. 222-235
    • Errico, A.1    Costanzo, V.2
  • 31
    • 77953276042 scopus 로고    scopus 로고
    • Clustering phenotype populations by genome-wide RNAi and multiparametric imaging
    • Fuchs, F. et al. Clustering phenotype populations by genome-wide RNAi and multiparametric imaging. Mol. Syst. Biol. 6, 370 (2010).
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 370
    • Fuchs, F.1
  • 32
    • 84949537781 scopus 로고    scopus 로고
    • Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel fluorescence correlation spectroscopy
    • Papadopoulos, D.K. et al. Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel fluorescence correlation spectroscopy. Mech. Dev. 138, 218-225 (2015).
    • (2015) Mech. Dev. , vol.138 , pp. 218-225
    • Papadopoulos, D.K.1
  • 33
    • 35748931313 scopus 로고    scopus 로고
    • Practical guidelines for dual-color fluorescence cross-correlation spectroscopy
    • Bacia, K. & Schwille, P. Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat. Protoc. 2, 2842-2856 (2007).
    • (2007) Nat. Protoc. , vol.2 , pp. 2842-2856
    • Bacia, K.1    Schwille, P.2
  • 34
    • 79959629469 scopus 로고    scopus 로고
    • Analysis of protein dynamics at active, stalled and collapsed replication forks
    • Sirbu, B.M. et al. Analysis of protein dynamics at active, stalled and collapsed replication forks. Genes Dev. 25, 1320-1327 (2011).
    • (2011) Genes Dev. , vol.25 , pp. 1320-1327
    • Sirbu, B.M.1
  • 35
    • 79960467426 scopus 로고    scopus 로고
    • ATR autophosphorylation as a molecular switch for checkpoint activation
    • Liu, S. et al. ATR autophosphorylation as a molecular switch for checkpoint activation. Mol. Cell 43, 192-202 (2011).
    • (2011) Mol. Cell , vol.43 , pp. 192-202
    • Liu, S.1
  • 36
    • 33746495515 scopus 로고    scopus 로고
    • Depletion of CHK1, but not CHK2, induces chromosomal instability and breaks at common fragile sites
    • Durkin, S.G., Arlt, M.F., Howlett, N.G. & Glover, T.W. Depletion of CHK1, but not CHK2, induces chromosomal instability and breaks at common fragile sites. Oncogene 25, 4381-4388 (2006).
    • (2006) Oncogene , vol.25 , pp. 4381-4388
    • Durkin, S.G.1    Arlt, M.F.2    Howlett, N.G.3    Glover, T.W.4
  • 37
    • 41649120947 scopus 로고    scopus 로고
    • Interplay between ATM and ATR in the regulation of common fragile site stability
    • Ozeri-Galai, E., Schwartz, M., Rahat, A. & Kerem, B. Interplay between ATM and ATR in the regulation of common fragile site stability. Oncogene 27, 2109-2117 (2008).
    • (2008) Oncogene , vol.27 , pp. 2109-2117
    • Ozeri-Galai, E.1    Schwartz, M.2    Rahat, A.3    Kerem, B.4
  • 38
    • 84889563685 scopus 로고    scopus 로고
    • ATR prohibits replication catastrophe by preventing global exhaustion of RPA
    • Toledo, L.I. et al. ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155, 1088-1103 (2013).
    • (2013) Cell , vol.155 , pp. 1088-1103
    • Toledo, L.I.1
  • 39
    • 0034102337 scopus 로고    scopus 로고
    • ATR disruption leads to chromosomal fragmentation and early embryonic lethality
    • Brown, E.J. & Baltimore, D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 14, 397-402 (2000).
    • (2000) Genes Dev. , vol.14 , pp. 397-402
    • Brown, E.J.1    Baltimore, D.2
  • 40
    • 0037335861 scopus 로고    scopus 로고
    • Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance
    • Brown, E.J. & Baltimore, D. Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes Dev. 17, 615-628 (2003).
    • (2003) Genes Dev. , vol.17 , pp. 615-628
    • Brown, E.J.1    Baltimore, D.2
  • 41
    • 80051758435 scopus 로고    scopus 로고
    • Structure-specific DNA endonuclease Mus81-Eme1 generates DNA damage caused by Chk1 inactivation
    • Forment, J.V., Blasius, M., Guerini, I. & Jackson, S.P. Structure-specific DNA endonuclease Mus81-Eme1 generates DNA damage caused by Chk1 inactivation. PLoS One 6, e23517 (2011).
    • (2011) PLoS One , vol.6 , pp. e23517
    • Forment, J.V.1    Blasius, M.2    Guerini, I.3    Jackson, S.P.4
  • 42
    • 84880440332 scopus 로고    scopus 로고
    • ATR phosphorylates SMARCAL1 to prevent replication fork collapse
    • Couch, F.B. et al. ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes Dev. 27, 1610-1623 (2013).
    • (2013) Genes Dev. , vol.27 , pp. 1610-1623
    • Couch, F.B.1
  • 43
    • 84885899930 scopus 로고    scopus 로고
    • RNF4 and PLK1 are required for replication fork collapse in ATR-deficient cells
    • Ragland, R.L. et al. RNF4 and PLK1 are required for replication fork collapse in ATR-deficient cells. Genes Dev. 27, 2259-2273 (2013).
    • (2013) Genes Dev. , vol.27 , pp. 2259-2273
    • Ragland, R.L.1
  • 44
    • 84899918056 scopus 로고    scopus 로고
    • Mouse SLX4 is a tumor suppressor that stimulates the activity of the nuclease XPF-ERCC1 in DNA cross-link repair
    • Hodskinson, M.R. et al. Mouse SLX4 is a tumor suppressor that stimulates the activity of the nuclease XPF-ERCC1 in DNA cross-link repair. Mol. Cell 54, 472-484 (2014).
    • (2014) Mol. Cell , vol.54 , pp. 472-484
    • Hodskinson, M.R.1
  • 45
    • 67649662604 scopus 로고    scopus 로고
    • Mammalian BTBD12 (SLX4) assembles a Holliday junction resolvase and is required for DNA repair
    • Svendsen, J.M. et al. Mammalian BTBD12 (SLX4) assembles a Holliday junction resolvase and is required for DNA repair. Cell 138, 63-77 (2009).
    • (2009) Cell , vol.138 , pp. 63-77
    • Svendsen, J.M.1
  • 46
    • 0029026103 scopus 로고
    • The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall
    • Takahashi, T., Nowakowski, R.S. & Caviness, V.S. Jr. The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J. Neurosci. 15, 6046-6057 (1995).
    • (1995) J. Neurosci. , vol.15 , pp. 6046-6057
    • Takahashi, T.1    Nowakowski, R.S.2    Caviness, V.S.3
  • 47
    • 0017739051 scopus 로고
    • Gastrulation in the mouse: Growth and regionalization of epiblast
    • Snow, M.H.L. Gastrulation in the mouse: growth and regionalization of epiblast. J. Embryol. Exp. Morphol. 42, 293-303 (1977).
    • (1977) J. Embryol. Exp. Morphol. , vol.42 , pp. 293-303
    • Snow, M.H.L.1
  • 48
    • 68149161607 scopus 로고    scopus 로고
    • A mouse model of ATR-Seckel shows embryonic replicative stress and accelerated aging
    • Murga, M. et al. A mouse model of ATR-Seckel shows embryonic replicative stress and accelerated aging. Nat. Genet. 41, 891-898 (2009).
    • (2009) Nat. Genet. , vol.41 , pp. 891-898
    • Murga, M.1
  • 49
    • 77952518030 scopus 로고    scopus 로고
    • ATR-Chk1 pathway is essential for resumption of DNA synthesis and cell survival in UV-irradiated XP variant cells
    • Despras, E., Daboussi, F., Hyrien, O., Marheineke, K. & Kannouche, P.L. ATR-Chk1 pathway is essential for resumption of DNA synthesis and cell survival in UV-irradiated XP variant cells. Hum. Mol. Genet. 19, 1690-1701 (2010).
    • (2010) Hum. Mol. Genet. , vol.19 , pp. 1690-1701
    • Despras, E.1    Daboussi, F.2    Hyrien, O.3    Marheineke, K.4    Kannouche, P.L.5
  • 50
    • 79951970806 scopus 로고    scopus 로고
    • Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression
    • Kawabata, T. et al. Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol. Cell 41, 543-553 (2011).
    • (2011) Mol. Cell , vol.41 , pp. 543-553
    • Kawabata, T.1
  • 51
    • 33644757806 scopus 로고    scopus 로고
    • TopBP1 activates the ATR-ATRIP complex
    • Kumagai, A., Lee, J., Yoo, H.Y. & Dunphy, W.G. TopBP1 activates the ATR-ATRIP complex. Cell 124, 943-955 (2006).
    • (2006) Cell , vol.124 , pp. 943-955
    • Kumagai, A.1    Lee, J.2    Yoo, H.Y.3    Dunphy, W.G.4
  • 52
    • 84990928822 scopus 로고    scopus 로고
    • ETAA1 acts at stalled replication forks to maintain genome integrity
    • Bass, T.E. et al. ETAA1 acts at stalled replication forks to maintain genome integrity. Nat. Cell Biol. 18, 1185-1195 (2016).
    • (2016) Nat. Cell Biol. , vol.18 , pp. 1185-1195
    • Bass, T.E.1
  • 53
    • 84990909330 scopus 로고    scopus 로고
    • Activation of the ATR kinase by the RPA-binding protein ETAA1
    • Haahr, P. et al. Activation of the ATR kinase by the RPA-binding protein ETAA1. Nat. Cell Biol. 18, 1196-1207 (2016).
    • (2016) Nat. Cell Biol. , vol.18 , pp. 1196-1207
    • Haahr, P.1
  • 54
    • 84876097735 scopus 로고    scopus 로고
    • A role for the MRN complex in ATR activation via TOPBP1 recruitment
    • Duursma, A.M., Driscoll, R., Elias, J.E. & Cimprich, K.A. A role for the MRN complex in ATR activation via TOPBP1 recruitment. Mol. Cell 50, 116-122 (2013).
    • (2013) Mol. Cell , vol.50 , pp. 116-122
    • Duursma, A.M.1    Driscoll, R.2    Elias, J.E.3    Cimprich, K.A.4
  • 55
    • 84938748389 scopus 로고    scopus 로고
    • BOD1L is required to suppress deleterious resection of stressed replication forks
    • Higgs, M.R. et al. BOD1L is required to suppress deleterious resection of stressed replication forks. Mol. Cell 59, 462-477 (2015).
    • (2015) Mol. Cell , vol.59 , pp. 462-477
    • Higgs, M.R.1
  • 56
    • 33748546907 scopus 로고    scopus 로고
    • Minigene reporter for identification and analysis of cis elements and trans factors affecting pre-mRNA splicing
    • Singh, G. & Cooper, T.A. Minigene reporter for identification and analysis of cis elements and trans factors affecting pre-mRNA splicing. Biotechniques 41, 177-181 (2006).
    • (2006) Biotechniques , vol.41 , pp. 177-181
    • Singh, G.1    Cooper, T.A.2
  • 57
    • 84861741887 scopus 로고    scopus 로고
    • Monitoring the spatiotemporal dynamics of proteins at replication forks and in assembled chromatin using isolation of proteins on nascent DNA
    • Sirbu, B.M., Couch, F.B. & Cortez, D. Monitoring the spatiotemporal dynamics of proteins at replication forks and in assembled chromatin using isolation of proteins on nascent DNA. Nat. Protoc. 7, 594-605 (2012).
    • (2012) Nat. Protoc. , vol.7 , pp. 594-605
    • Sirbu, B.M.1    Couch, F.B.2    Cortez, D.3
  • 58
    • 34547814092 scopus 로고    scopus 로고
    • Replication-fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells
    • Conti, C. et al. Replication-fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol. Biol. Cell 18, 3059-3067 (2007).
    • (2007) Mol. Biol. Cell , vol.18 , pp. 3059-3067
    • Conti, C.1
  • 59
    • 84901300174 scopus 로고    scopus 로고
    • On-beads digestion in conjunction with data-dependent mass spectrometry: A shortcut to quantitative and dynamic interaction proteomics
    • Turriziani, B. et al. On-beads digestion in conjunction with data-dependent mass spectrometry: a shortcut to quantitative and dynamic interaction proteomics. Biology (Basel) 3, 320-332 (2014).
    • (2014) Biology (Basel) , vol.3 , pp. 320-332
    • Turriziani, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.