-
1
-
-
70450187617
-
The regulation of TGF beta signal transduction
-
Moustakas A, Heldin CH. 2009. The regulation of TGF beta signal transduction. Development 136:3699-3714. https://doi.org/10.1242/dev.030338.
-
(2009)
Development
, vol.136
, pp. 3699-3714
-
-
Moustakas, A.1
Heldin, C.H.2
-
2
-
-
61749097816
-
Tgf-beta superfamily signaling in embryonic development and homeostasis
-
Wu MY, Hill CS. 2009. Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell 16:329-343. https://doi.org/10.1016/j.devcel.2009.02.012.
-
(2009)
Dev Cell
, vol.16
, pp. 329-343
-
-
Wu, M.Y.1
Hill, C.S.2
-
3
-
-
75649127963
-
Bone morphogenetic protein receptors and signal transduction
-
Miyazono K, Kamiya Y, Morikawa M. 2010. Bone morphogenetic protein receptors and signal transduction. J Biochem 147:35-51. https://doi.org/10.1093/jb/mvp148.
-
(2010)
J Biochem
, vol.147
, pp. 35-51
-
-
Miyazono, K.1
Kamiya, Y.2
Morikawa, M.3
-
4
-
-
84866742560
-
TGFbeta signalling in context
-
Massague J. 2012. TGFbeta signalling in context. Nat Rev Mol Cell Biol 13:616-630. https://doi.org/10.1038/nrm3434.
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, pp. 616-630
-
-
Massague, J.1
-
5
-
-
70450189840
-
TGFbeta family signaling: novel insights in development and disease
-
Wharton K, Derynck R. 2009. TGFbeta family signaling: novel insights in development and disease. Development 136:3691-3697. https://doi.org/10.1242/dev.040584.
-
(2009)
Development
, vol.136
, pp. 3691-3697
-
-
Wharton, K.1
Derynck, R.2
-
6
-
-
66349117431
-
BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation
-
Retting KN, Song B, Yoon BS, Lyons KM. 2009. BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development 136:1093-1104. https://doi.org/10.1242/dev.029926.
-
(2009)
Development
, vol.136
, pp. 1093-1104
-
-
Retting, K.N.1
Song, B.2
Yoon, B.S.3
Lyons, K.M.4
-
7
-
-
84883163204
-
c-Abl-dependent molecular circuitry involving Smad5 and phosphatidylinositol 3-kinase regulates bone morphogenetic protein-2-induced osteogenesis
-
Ghosh-Choudhury N, Mandal CC, Das F, Ganapathy S, Ahuja S, Ghosh Choudhury G. 2013. c-Abl-dependent molecular circuitry involving Smad5 and phosphatidylinositol 3-kinase regulates bone morphogenetic protein-2-induced osteogenesis. J Biol Chem 288:24503-24517. https://doi.org/10.1074/jbc.M113.455733.
-
(2013)
J Biol Chem
, vol.288
, pp. 24503-24517
-
-
Ghosh-Choudhury, N.1
Mandal, C.C.2
Das, F.3
Ganapathy, S.4
Ahuja, S.5
Ghosh Choudhury, G.6
-
8
-
-
0037031854
-
Requirement of BMP-2-induced phosphatidylinositol 3-kinase and Akt serine/threonine kinase in osteoblast differentiation and Smad-dependent BMP-2 gene transcription
-
Ghosh-Choudhury N, Abboud SL, Nishimura R, Celeste A, Mahimainathan L, Choudhury GG. 2002. Requirement of BMP-2-induced phosphatidylinositol 3-kinase and Akt serine/threonine kinase in osteoblast differentiation and Smad-dependent BMP-2 gene transcription. J Biol Chem 277:33361-33368. https://doi.org/10.1074/jbc.M205053200.
-
(2002)
J Biol Chem
, vol.277
, pp. 33361-33368
-
-
Ghosh-Choudhury, N.1
Abboud, S.L.2
Nishimura, R.3
Celeste, A.4
Mahimainathan, L.5
Choudhury, G.G.6
-
9
-
-
0001449699
-
Solubilized and insolubilized bone morphogenetic protein
-
Urist MR, Mikulski A, Lietze A. 1979. Solubilized and insolubilized bone morphogenetic protein. Proc Natl Acad Sci U S A 76:1828-1832. https://doi.org/10.1073/pnas.76.4.1828.
-
(1979)
Proc Natl Acad Sci U S A
, vol.76
, pp. 1828-1832
-
-
Urist, M.R.1
Mikulski, A.2
Lietze, A.3
-
10
-
-
0027946689
-
Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage
-
Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T. 1994. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127:1755-1766. https://doi.org/10.1083/jcb.127.6.1755.
-
(1994)
J Cell Biol
, vol.127
, pp. 1755-1766
-
-
Katagiri, T.1
Yamaguchi, A.2
Komaki, M.3
Abe, E.4
Takahashi, N.5
Ikeda, T.6
Rosen, V.7
Wozney, J.M.8
Fujisawa-Sehara, A.9
Suda, T.10
-
11
-
-
0029914457
-
Effects of BMP-2, BMP-4, and BMP-6 on osteoblastic differentiation of bone marrow-derived stromal cell lines, ST2 and MC3T3-G2/PA6
-
Yamaguchi A, Ishizuya T, Kintou N, Wada Y, Katagiri T, Wozney JM, Rosen V, Yoshiki S. 1996. Effects of BMP-2, BMP-4, and BMP-6 on osteoblastic differentiation of bone marrow-derived stromal cell lines, ST2 and MC3T3-G2/PA6. Biochem Biophys Res Commun 220:366-371. https://doi.org/10.1006/bbrc.1996.0411.
-
(1996)
Biochem Biophys Res Commun
, vol.220
, pp. 366-371
-
-
Yamaguchi, A.1
Ishizuya, T.2
Kintou, N.3
Wada, Y.4
Katagiri, T.5
Wozney, J.M.6
Rosen, V.7
Yoshiki, S.8
-
12
-
-
0037059614
-
The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation
-
Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B. 2002. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17-29. https://doi.org/10.1016/S0092-8674(01)00622-5.
-
(2002)
Cell
, vol.108
, pp. 17-29
-
-
Nakashima, K.1
Zhou, X.2
Kunkel, G.3
Zhang, Z.4
Deng, J.M.5
Behringer, R.R.6
de Crombrugghe, B.7
-
13
-
-
84875024063
-
Osterix induces Col1a1 gene expression through binding to Sp1 sites in the bone enhancer and proximal promoter regions
-
Ortuno MJ, Susperregui AR, Artigas N, Rosa JL, Ventura F. 2013. Osterix induces Col1a1 gene expression through binding to Sp1 sites in the bone enhancer and proximal promoter regions. Bone 52:548-556. https://doi.org/10.1016/j.bone.2012.11.007.
-
(2013)
Bone
, vol.52
, pp. 548-556
-
-
Ortuno, M.J.1
Susperregui, A.R.2
Artigas, N.3
Rosa, J.L.4
Ventura, F.5
-
14
-
-
77957801598
-
p38 regulates expression of osteoblastspecific genes by phosphorylation of osterix
-
Ortuno MJ, Ruiz-Gaspa S, Rodriguez-Carballo E, Susperregui AR, Bartrons R, Rosa JL, Ventura F. 2010. p38 regulates expression of osteoblastspecific genes by phosphorylation of osterix. J Biol Chem 285: 31985-31994. https://doi.org/10.1074/jbc.M110.123612.
-
(2010)
J Biol Chem
, vol.285
, pp. 31985-31994
-
-
Ortuno, M.J.1
Ruiz-Gaspa, S.2
Rodriguez-Carballo, E.3
Susperregui, A.R.4
Bartrons, R.5
Rosa, J.L.6
Ventura, F.7
-
15
-
-
23844515714
-
NFAT and Osterix cooperatively regulate bone formation
-
Koga T, Matsui Y, Asagiri M, Kodama T, de Crombrugghe B, Nakashima K, Takayanagi H. 2005. NFAT and Osterix cooperatively regulate bone formation. Nat Med 11:880-885. https://doi.org/10.1038/nm1270.
-
(2005)
Nat Med
, vol.11
, pp. 880-885
-
-
Koga, T.1
Matsui, Y.2
Asagiri, M.3
Kodama, T.4
de Crombrugghe, B.5
Nakashima, K.6
Takayanagi, H.7
-
16
-
-
80052301585
-
The transcriptional activity of osterix requires the recruitment of Sp1 to the osteocalcin proximal promoter
-
Niger C, Lima F, Yoo DJ, Gupta RR, Buo AM, Hebert C, Stains JP. 2011. The transcriptional activity of osterix requires the recruitment of Sp1 to the osteocalcin proximal promoter. Bone 49:683-692. https://doi.org/10.1016/j.bone.2011.07.027.
-
(2011)
Bone
, vol.49
, pp. 683-692
-
-
Niger, C.1
Lima, F.2
Yoo, D.J.3
Gupta, R.R.4
Buo, A.M.5
Hebert, C.6
Stains, J.P.7
-
17
-
-
84964687602
-
Sp7/Osterix is restricted to bone-forming vertebrates where it acts as a Dlx co-factor in osteoblast specification
-
Hojo H, Ohba S, He X, Lai LP, McMahon AP. 2016. Sp7/Osterix is restricted to bone-forming vertebrates where it acts as a Dlx co-factor in osteoblast specification. Dev Cell 37:238-253. https://doi.org/10.1016/j.devcel.2016.04.002.
-
(2016)
Dev Cell
, vol.37
, pp. 238-253
-
-
Hojo, H.1
Ohba, S.2
He, X.3
Lai, L.P.4
McMahon, A.P.5
-
18
-
-
84877927481
-
mTOR in aging, metabolism, and cancer
-
Cornu M, Albert V, Hall MN. 2013. mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev 23:53-62. https://doi.org/10.1016/j.gde.2012.12.005.
-
(2013)
Curr Opin Genet Dev
, vol.23
, pp. 53-62
-
-
Cornu, M.1
Albert, V.2
Hall, M.N.3
-
19
-
-
84860527756
-
A unifying model for mTORC1-mediated regulation of mRNA translation
-
Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM. 2012 A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485:109-113. https://doi.org/10.1038/nature11083.
-
(2012)
Nature
, vol.485
, pp. 109-113
-
-
Thoreen, C.C.1
Chantranupong, L.2
Keys, H.R.3
Wang, T.4
Gray, N.S.5
Sabatini, D.M.6
-
20
-
-
84878532557
-
Signal integration by mTORC1 coordinates nutrient input with biosynthetic output
-
Dibble CC, Manning BD. 2013. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol 15:555-564. https://doi.org/10.1038/ncb2763.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 555-564
-
-
Dibble, C.C.1
Manning, B.D.2
-
21
-
-
78649348967
-
Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress
-
Sengupta S, Peterson TR, Sabatini DM. 2010. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40:310-322. https://doi.org/10.1016/j.molcel.2010.09.026.
-
(2010)
Mol Cell
, vol.40
, pp. 310-322
-
-
Sengupta, S.1
Peterson, T.R.2
Sabatini, D.M.3
-
22
-
-
84896717086
-
WNT7B promotes bone formation in part through mTORC1
-
Chen J, Tu X, Esen E, Joeng KS, Lin C, Arbeit JM, Ruegg MA, Hall MN, Ma L, Long F. 2014. WNT7B promotes bone formation in part through mTORC1. PLoS Genet 10:e1004145. https://doi.org/10.1371/journal.pgen.1004145.
-
(2014)
PLoS Genet
, vol.10
-
-
Chen, J.1
Tu, X.2
Esen, E.3
Joeng, K.S.4
Lin, C.5
Arbeit, J.M.6
Ruegg, M.A.7
Hall, M.N.8
Ma, L.9
Long, F.10
-
23
-
-
84922147373
-
Increased glutamine catabolism mediates bone anabolism in response to WNT signaling
-
Karner CM, Esen E, Okunade AL, Patterson BW, Long F. 2015. Increased glutamine catabolism mediates bone anabolism in response to WNT signaling. J Clin Invest 125:551-562. https://doi.org/10.1172/JCI78470.
-
(2015)
J Clin Invest
, vol.125
, pp. 551-562
-
-
Karner, C.M.1
Esen, E.2
Okunade, A.L.3
Patterson, B.W.4
Long, F.5
-
24
-
-
33748153690
-
TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth
-
Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y, Stankunas K, Wang CY, He X, MacDougald OA, You M, Williams BO, Guan KL. 2006. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126:955-968. https://doi.org/10.1016/j.cell.2006.06.055.
-
(2006)
Cell
, vol.126
, pp. 955-968
-
-
Inoki, K.1
Ouyang, H.2
Zhu, T.3
Lindvall, C.4
Wang, Y.5
Zhang, X.6
Yang, Q.7
Bennett, C.8
Harada, Y.9
Stankunas, K.10
Wang, C.Y.11
He, X.12
MacDougald, O.A.13
You, M.14
Williams, B.O.15
Guan, K.L.16
-
25
-
-
84863726841
-
Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells
-
Xian L, Wu X, Pang L, Lou M, Rosen CJ, Qiu T, Crane J, Frassica F, Zhang L, Rodriguez JP, Xiaofeng J, Shoshana Y, Shouhong X, Argiris E, Mei W, Xu C. 2012. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med 18:1095-1101. https://doi.org/10.1038/nm.2793.
-
(2012)
Nat Med
, vol.18
, pp. 1095-1101
-
-
Xian, L.1
Wu, X.2
Pang, L.3
Lou, M.4
Rosen, C.J.5
Qiu, T.6
Crane, J.7
Frassica, F.8
Zhang, L.9
Rodriguez, J.P.10
Xiaofeng, J.11
Shoshana, Y.12
Shouhong, X.13
Argiris, E.14
Mei, W.15
Xu, C.16
-
26
-
-
84939236649
-
mTORC1 signaling promotes osteoblast differen-tiation from preosteoblasts
-
Chen J, Long F. 2015. mTORC1 signaling promotes osteoblast differen-tiation from preosteoblasts. PLoS One 10:e0130627. https://doi.org/10.1371/journal.pone.0130627.
-
(2015)
PLoS One
, vol.10
-
-
Chen, J.1
Long, F.2
-
27
-
-
84954561642
-
Dual function of Bmpr1a signaling in restricting preosteoblast proliferation and stimulating osteoblast activity in mouse
-
Lim J, Shi Y, Karner CM, Lee SY, Lee WC, He G, Long F. 2016. Dual function of Bmpr1a signaling in restricting preosteoblast proliferation and stimulating osteoblast activity in mouse. Development 143: 339-347. https://doi.org/10.1242/dev.126227.
-
(2016)
Development
, vol.143
, pp. 339-347
-
-
Lim, J.1
Shi, Y.2
Karner, C.M.3
Lee, S.Y.4
Lee, W.C.5
He, G.6
Long, F.7
-
28
-
-
82255173966
-
The unfolded protein response: from stress pathway to homeostatic regulation
-
Walter P, Ron D. 2011. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081-1086. https://doi.org/10.1126/science.1209038.
-
(2011)
Science
, vol.334
, pp. 1081-1086
-
-
Walter, P.1
Ron, D.2
-
29
-
-
84863740827
-
The impact of the unfolded protein response on human disease
-
Wang S, Kaufman RJ. 2012. The impact of the unfolded protein response on human disease. J Cell Biol 197:857-867. https://doi.org/10.1083/jcb.201110131.
-
(2012)
J Cell Biol
, vol.197
, pp. 857-867
-
-
Wang, S.1
Kaufman, R.J.2
-
30
-
-
84877578475
-
ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death
-
Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J, Yuan CL, Krokowski D, Wang S, Hatzoglou M, Kilberg MS, Sartor MA, Kaufman RJ. 2013. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 15:481-490. https://doi.org/10.1038/ncb2738.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 481-490
-
-
Han, J.1
Back, S.H.2
Hur, J.3
Lin, Y.H.4
Gildersleeve, R.5
Shan, J.6
Yuan, C.L.7
Krokowski, D.8
Wang, S.9
Hatzoglou, M.10
Kilberg, M.S.11
Sartor, M.A.12
Kaufman, R.J.13
-
31
-
-
11144357428
-
ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry syndrome
-
Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, Li L, Brancorsini S, Sassone-Corsi P, Townes TM, Hanauer A, Karsenty G. 2004. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry syndrome. Cell 117:387-398. https://doi.org/10.1016/S0092-8674(04)00344-7.
-
(2004)
Cell
, vol.117
, pp. 387-398
-
-
Yang, X.1
Matsuda, K.2
Bialek, P.3
Jacquot, S.4
Masuoka, H.C.5
Schinke, T.6
Li, L.7
Brancorsini, S.8
Sassone-Corsi, P.9
Townes, T.M.10
Hanauer, A.11
Karsenty, G.12
-
32
-
-
54049133335
-
PERK is essential for neonatal skeletal development to regulate osteoblast proliferation and differentiation
-
Wei J, Sheng X, Feng D, McGrath B, Cavener DR. 2008. PERK is essential for neonatal skeletal development to regulate osteoblast proliferation and differentiation. J Cell Physiol 217:693-707. https://doi.org/10.1002/jcp.21543.
-
(2008)
J Cell Physiol
, vol.217
, pp. 693-707
-
-
Wei, J.1
Sheng, X.2
Feng, D.3
McGrath, B.4
Cavener, D.R.5
-
33
-
-
79953000185
-
Endoplasmic reticulum stress response mediated by the PERK-eIF2(alpha)-ATF4 pathway is involved in osteoblast differentiation induced by BMP2
-
Saito A, Ochiai K, Kondo S, Tsumagari K, Murakami T, Cavener DR, Imaizumi K. 2011. Endoplasmic reticulum stress response mediated by the PERK-eIF2(alpha)-ATF4 pathway is involved in osteoblast differentiation induced by BMP2. J Biol Chem 286:4809-4818. https://doi.org/10.1074/jbc.M110.152900.
-
(2011)
J Biol Chem
, vol.286
, pp. 4809-4818
-
-
Saito, A.1
Ochiai, K.2
Kondo, S.3
Tsumagari, K.4
Murakami, T.5
Cavener, D.R.6
Imaizumi, K.7
-
34
-
-
33845802651
-
Noncanonical Wnt signaling through G protein-linked PKCdelta activation promotes bone formation
-
Tu X, Joeng KS, Nakayama KI, Nakayama K, Rajagopal J, Carroll TJ, McMahon AP, Long F. 2007. Noncanonical Wnt signaling through G protein-linked PKCdelta activation promotes bone formation. Dev Cell 12:113-127. https://doi.org/10.1016/j.devcel.2006.11.003.
-
(2007)
Dev Cell
, vol.12
, pp. 113-127
-
-
Tu, X.1
Joeng, K.S.2
Nakayama, K.I.3
Nakayama, K.4
Rajagopal, J.5
Carroll, T.J.6
McMahon, A.P.7
Long, F.8
-
35
-
-
60849139395
-
GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists
-
Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. 2009. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10:48. https://doi.org/10.1186/1471-2105-10-48.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 48
-
-
Eden, E.1
Navon, R.2
Steinfeld, I.3
Lipson, D.4
Yakhini, Z.5
-
36
-
-
0142241118
-
BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop
-
Rawadi G, Vayssiere B, Dunn F, Baron R, Roman-Roman S. 2003. BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res 18:1842-1853. https://doi.org/10.1359/jbmr.2003.18.10.1842.
-
(2003)
J Bone Miner Res
, vol.18
, pp. 1842-1853
-
-
Rawadi, G.1
Vayssiere, B.2
Dunn, F.3
Baron, R.4
Roman-Roman, S.5
-
37
-
-
84877579844
-
WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation
-
Esen E, Chen J, Karner CM, Okunade AL, Patterson BW, Long F. 2013. WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab 17:745-755. https://doi.org/10.1016/j.cmet.2013.03.017.
-
(2013)
Cell Metab
, vol.17
, pp. 745-755
-
-
Esen, E.1
Chen, J.2
Karner, C.M.3
Okunade, A.L.4
Patterson, B.W.5
Long, F.6
-
38
-
-
0034091809
-
Mice deficient in Abl are osteoporotic and have defects in osteoblast maturation
-
Li B, Boast S, de los Santos K, Schieren I, Quiroz M, Teitelbaum SL, Tondravi MM, Goff SP. 2000. Mice deficient in Abl are osteoporotic and have defects in osteoblast maturation. Nat Genet 24:304-308. https://doi.org/10.1038/73542.
-
(2000)
Nat Genet
, vol.24
, pp. 304-308
-
-
Li, B.1
Boast, S.2
de los Santos, K.3
Schieren, I.4
Quiroz, M.5
Teitelbaum, S.L.6
Tondravi, M.M.7
Goff, S.P.8
-
39
-
-
33646482407
-
Altered bone and mineral metabolism in patients receiving imatinib mesylate
-
Berman E, Nicolaides M, Maki RG, Fleisher M, Chanel S, Scheu K, Wilson BA, Heller G, Sauter NP. 2006. Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med 354:2006-2013. https://doi.org/10.1056/NEJMoa051140.
-
(2006)
N Engl J Med
, vol.354
, pp. 2006-2013
-
-
Berman, E.1
Nicolaides, M.2
Maki, R.G.3
Fleisher, M.4
Chanel, S.5
Scheu, K.6
Wilson, B.A.7
Heller, G.8
Sauter, N.P.9
-
40
-
-
84863222584
-
c-Abl promotes osteoblast expansion by differentially regulating canonical and non-canonical BMP pathways and p16INK4a expression
-
Kua HY, Liu H, Leong WF, Li L, Jia D, Ma G, Hu Y, Wang X, Chau JF, Chen YG, Mishina Y, Boast S, Yeh J, Xia L, Chen GQ, He L, Goff SP, Li B. 2012. c-Abl promotes osteoblast expansion by differentially regulating canonical and non-canonical BMP pathways and p16INK4a expression. Nat Cell Biol 14:727-737. https://doi.org/10.1038/ncb2528.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 727-737
-
-
Kua, H.Y.1
Liu, H.2
Leong, W.F.3
Li, L.4
Jia, D.5
Ma, G.6
Hu, Y.7
Wang, X.8
Chau, J.F.9
Chen, Y.G.10
Mishina, Y.11
Boast, S.12
Yeh, J.13
Xia, L.14
Chen, G.Q.15
He, L.16
Goff, S.P.17
Li, B.18
|