-
1
-
-
84255200563
-
Building strong bones: Molecular regulation of the osteoblast lineage
-
Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol. 2012;13(1):27-38.
-
(2012)
Nat Rev Mol Cell Biol.
, vol.13
, Issue.1
, pp. 27-38
-
-
Long, F.1
-
2
-
-
67649470380
-
Proximal events in Wnt signal transduction
-
Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. 2009;10(7):468-477.
-
(2009)
Nat Rev Mol Cell Biol.
, vol.10
, Issue.7
, pp. 468-477
-
-
Angers, S.1
Moon, R.T.2
-
3
-
-
84870727005
-
Frizzled and LRP5/6 receptors for Wnt/beta-catenin signaling
-
MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/beta-catenin signaling. Cold Spring Harb Perspect Biol. 2012;4(12):a007880.
-
(2012)
Cold Spring Harb Perspect Biol.
, vol.4
, Issue.12
, pp. a007880
-
-
MacDonald, B.T.1
He, X.2
-
4
-
-
79958171733
-
Lrp5 functions in bone to regulate bone mass
-
Cui Y, et al. Lrp5 functions in bone to regulate bone mass. Nat Med. 2011;17(6):684-691.
-
(2011)
Nat Med.
, vol.17
, Issue.6
, pp. 684-691
-
-
Cui, Y.1
-
5
-
-
0037092049
-
Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor
-
Kato M, et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol. 2002;157(2):303-314.
-
(2002)
J Cell Biol.
, vol.157
, Issue.2
, pp. 303-314
-
-
Kato, M.1
-
6
-
-
18044386744
-
LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development
-
Gong Y, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107(4):513-523.
-
(2001)
Cell
, vol.107
, Issue.4
, pp. 513-523
-
-
Gong, Y.1
-
7
-
-
13444302715
-
Sequential roles of Hedgehog and Wnt signaling in osteoblast development
-
Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, Long F. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development. 2005;132(1):49-60.
-
(2005)
Development
, vol.132
, Issue.1
, pp. 49-60
-
-
Hu, H.1
Hilton, M.J.2
Tu, X.3
Yu, K.4
Ornitz, D.M.5
Long, F.6
-
8
-
-
82455186482
-
Lrp5 and Lrp6 redundantly control skeletal development in the mouse embryo
-
Joeng KS, Schumacher CA, Zylstra-Diegel CR, Long F, Williams BO. Lrp5 and Lrp6 redundantly control skeletal development in the mouse embryo. Dev Biol. 2011;359(2):222-229.
-
(2011)
Dev Biol.
, vol.359
, Issue.2
, pp. 222-229
-
-
Joeng, K.S.1
Schumacher, C.A.2
Zylstra-Diegel, C.R.3
Long, F.4
Williams, B.O.5
-
9
-
-
33748768971
-
Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors
-
Rodda SJ, McMahon AP. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development. 2006;133(16):3231-3244.
-
(2006)
Development
, vol.133
, Issue.16
, pp. 3231-3244
-
-
Rodda, S.J.1
McMahon, A.P.2
-
10
-
-
84876705568
-
β-Catenin promotes bone formation and suppresses bone resorption in postnatal growing mice
-
Chen J, Long F. β-Catenin promotes bone formation and suppresses bone resorption in postnatal growing mice. J Bone Miner Res. 2013;28(5):1160-1169.
-
(2013)
J Bone Miner Res.
, vol.28
, Issue.5
, pp. 1160-1169
-
-
Chen, J.1
Long, F.2
-
11
-
-
17844372752
-
Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis
-
Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005;8(5):739-750.
-
(2005)
Dev Cell.
, vol.8
, Issue.5
, pp. 739-750
-
-
Day, T.F.1
Guo, X.2
Garrett-Beal, L.3
Yang, Y.4
-
12
-
-
17844363974
-
Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes
-
Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C. Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell. 2005;8(5):727-738.
-
(2005)
Dev Cell.
, vol.8
, Issue.5
, pp. 727-738
-
-
Hill, T.P.1
Spater, D.2
Taketo, M.M.3
Birchmeier, W.4
Hartmann, C.5
-
13
-
-
84867505259
-
Loss of wnt/β-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes
-
Song L, Liu M, Ono N, Bringhurst FR, Kronenberg HM, Guo J. Loss of wnt/β-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes. J Bone Miner Res. 2012;27(11):2344-2358.
-
(2012)
J Bone Miner Res.
, vol.27
, Issue.11
, pp. 2344-2358
-
-
Song, L.1
Liu, M.2
Ono, N.3
Bringhurst, F.R.4
Kronenberg, H.M.5
Guo, J.6
-
14
-
-
33748153690
-
TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth
-
Inoki K, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell. 2006;126(5):955-968.
-
(2006)
Cell
, vol.126
, Issue.5
, pp. 955-968
-
-
Inoki, K.1
-
15
-
-
84896717086
-
WNT7B promotes bone formation in part through mTORC1
-
Chen J, et al. WNT7B promotes bone formation in part through mTORC1. PLoS Genet. 2014;10(1):e1004145.
-
(2014)
PLoS Genet.
, vol.10
, Issue.1
, pp. e1004145
-
-
Chen, J.1
-
16
-
-
78650510609
-
MTOR: From growth signal integration to cancer, diabetes and ageing
-
Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21-35.
-
(2011)
Nat Rev Mol Cell Biol.
, vol.12
, Issue.1
, pp. 21-35
-
-
Zoncu, R.1
Efeyan, A.2
Sabatini, D.M.3
-
17
-
-
0036437307
-
Transcriptional and translational control in the Mammalian unfolded protein response
-
Harding HP, Calfon M, Urano F, Novoa I, Ron D. Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol. 2002;18:575-599.
-
(2002)
Annu Rev Cell Dev Biol.
, vol.18
, pp. 575-599
-
-
Harding, H.P.1
Calfon, M.2
Urano, F.3
Novoa, I.4
Ron, D.5
-
18
-
-
32544446451
-
Coping with stress: Eif2 kinases and translational control
-
Wek RC, Jiang HY, Anthony TG. Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans. 2006;34(pt 1):7-11.
-
(2006)
Biochem Soc Trans.
, vol.34
, pp. 7-11
-
-
Wek, R.C.1
Jiang, H.Y.2
Anthony, T.G.3
-
19
-
-
22244446505
-
The mammalian unfolded protein response
-
Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005;74:739-789.
-
(2005)
Annu Rev Biochem.
, vol.74
, pp. 739-789
-
-
Schroder, M.1
Kaufman, R.J.2
-
20
-
-
84877578475
-
ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death
-
Han J, et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol. 2013;15(5):481-490.
-
(2013)
Nat Cell Biol.
, vol.15
, Issue.5
, pp. 481-490
-
-
Han, J.1
-
21
-
-
11144357428
-
ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome
-
Yang X, et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell. 2004;117(3):387-398.
-
(2004)
Cell
, vol.117
, Issue.3
, pp. 387-398
-
-
Yang, X.1
-
22
-
-
79953000185
-
Endoplasmic reticulum stress response mediated by the PERK-eIF2 (alpha) - ATF4 pathway is involved in osteoblast differentiation induced by BMP2
-
Saito A, et al. Endoplasmic reticulum stress response mediated by the PERK-eIF2 (alpha) - ATF4 pathway is involved in osteoblast differentiation induced by BMP2. J Biol Chem. 2011;286(6):4809-4818.
-
(2011)
J Biol Chem.
, vol.286
, Issue.6
, pp. 4809-4818
-
-
Saito, A.1
-
23
-
-
79955536632
-
The IRE1α-XBP1 pathway is essential for osteoblast differentiation through promoting transcription of Osterix
-
Tohmonda T, et al. The IRE1α-XBP1 pathway is essential for osteoblast differentiation through promoting transcription of Osterix. EMBO Rep. 2011;12(5):451-457.
-
(2011)
EMBO Rep.
, vol.12
, Issue.5
, pp. 451-457
-
-
Tohmonda, T.1
-
24
-
-
70349652275
-
Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation
-
Murakami T, et al. Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation. Nat Cell Biol. 2009;11(10):1205-1211.
-
(2009)
Nat Cell Biol.
, vol.11
, Issue.10
, pp. 1205-1211
-
-
Murakami, T.1
-
25
-
-
54049133335
-
PERK is essential for neonatal skeletal development to regulate osteoblast proliferation and differentiation
-
Wei J, Sheng X, Feng D, McGrath B, Cavener DR. PERK is essential for neonatal skeletal development to regulate osteoblast proliferation and differentiation. J Cell Physiol. 2008;217(3):693-707.
-
(2008)
J Cell Physiol.
, vol.217
, Issue.3
, pp. 693-707
-
-
Wei, J.1
Sheng, X.2
Feng, D.3
McGrath, B.4
Cavener, D.R.5
-
26
-
-
0028802746
-
A hierarchy of ATP-consuming processes in mammalian cells
-
Buttgereit F, Brand MD. A hierarchy of ATP-consuming processes in mammalian cells. Biochem J. 1995;312(pt 1):163-167.
-
(1995)
Biochem J.
, vol.312
, pp. 163-167
-
-
Buttgereit, F.1
Brand, M.D.2
-
27
-
-
84877579844
-
WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation
-
Esen E, Chen J, Karner CM, Okunade AL, Patterson BW, Long F. WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab. 2013;17(5):745-755.
-
(2013)
Cell Metab.
, vol.17
, Issue.5
, pp. 745-755
-
-
Esen, E.1
Chen, J.2
Karner, C.M.3
Okunade, A.L.4
Patterson, B.W.5
Long, F.6
-
28
-
-
12444279265
-
On the origin of cancer cells
-
Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309-314.
-
(1956)
Science
, vol.123
, Issue.3191
, pp. 309-314
-
-
Warburg, O.1
-
29
-
-
66249108601
-
Understanding the Warburg effect: The metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029-1033.
-
(2009)
Science
, vol.324
, Issue.5930
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
30
-
-
37449034854
-
Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
-
De Berardinis RJ, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A. 2007;104(49):19345-19350.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, Issue.49
, pp. 19345-19350
-
-
De Berardinis, R.J.1
-
31
-
-
0020956798
-
Glutamine metabolism in bone
-
Biltz RM, Letteri JM, Pellegrino ED, Palekar A, Pinkus LM. Glutamine metabolism in bone. Miner Electrolyte Metab. 1983;9(3):125-131.
-
(1983)
Miner Electrolyte Metab
, vol.9
, Issue.3
, pp. 125-131
-
-
Biltz, R.M.1
Letteri, J.M.2
Pellegrino, E.D.3
Palekar, A.4
Pinkus, L.M.5
-
32
-
-
82455192243
-
Absence of glutamine supplementation prevents differentiation of murine calvarial osteoblasts to a mineralizing phenotype
-
Brown PM, Hutchison JD, Crockett JC. Absence of glutamine supplementation prevents differentiation of murine calvarial osteoblasts to a mineralizing phenotype. Calcif Tissue Int. 2011;89(6):472-482.
-
(2011)
Calcif Tissue Int.
, vol.89
, Issue.6
, pp. 472-482
-
-
Brown, P.M.1
Hutchison, J.D.2
Crockett, J.C.3
-
33
-
-
84896717086
-
WNT7B promotes bone formation in part through mTORC1
-
Chen J, et al. WNT7B promotes bone formation in part through mTORC1. PLoS Genet. 2014;10(1):e1004145.
-
(2014)
PLoS Genet.
, vol.10
, Issue.1
, pp. e1004145
-
-
Chen, J.1
-
34
-
-
33845802651
-
Noncanonical Wnt signaling through G protein-linked PKCΔ activation promotes bone formation
-
Tu X, et al. Noncanonical Wnt signaling through G protein-linked PKCΔ activation promotes bone formation. Dev Cell. 2007;12(1):113-127.
-
(2007)
Dev Cell.
, vol.12
, Issue.1
, pp. 113-127
-
-
Tu, X.1
-
35
-
-
0037353039
-
An integrated stress response regulates amino acid metabolism and resistance to oxidative stress
-
Harding HP, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11(3):619-633.
-
(2003)
Mol Cell.
, vol.11
, Issue.3
, pp. 619-633
-
-
Harding, H.P.1
-
36
-
-
13444295117
-
Decreased BMD and limb deformities in mice carrying mutations in both Lrp5 and Lrp6
-
Holmen SL, et al. Decreased BMD and limb deformities in mice carrying mutations in both Lrp5 and Lrp6. J Bone Miner Res. 2004;19(12):2033-2040.
-
(2004)
J Bone Miner Res.
, vol.19
, Issue.12
, pp. 2033-2040
-
-
Holmen, S.L.1
-
37
-
-
84877720366
-
The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
-
Csibi A, et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell. 2013;153(4):840-854.
-
(2013)
Cell
, vol.153
, Issue.4
, pp. 840-854
-
-
Csibi, A.1
-
38
-
-
64749116346
-
C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
-
Gao P, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458(7239):762-765.
-
(2009)
Nature
, vol.458
, Issue.7239
, pp. 762-765
-
-
Gao, P.1
-
39
-
-
57749088701
-
Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
-
Wise DR, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A. 2008;105(48):18782-18787.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, Issue.48
, pp. 18782-18787
-
-
Wise, D.R.1
-
40
-
-
19344377474
-
GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2, 3-dioxygenase
-
Munn DH, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2, 3-dioxygenase. Immunity. 2005;22(5):633-642.
-
(2005)
Immunity
, vol.22
, Issue.5
, pp. 633-642
-
-
Munn, D.H.1
-
41
-
-
0027946689
-
Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage
-
Katagiri T, et al. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol. 1994;127(6):1755-1766.
-
(1994)
J Cell Biol.
, vol.127
, Issue.6
, pp. 1755-1766
-
-
Katagiri, T.1
|