-
1
-
-
0000941242
-
Isolation of adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate from rat urine
-
Ashman DF, Lipton R, Melicow MM, Price TD. Isolation of adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate from rat urine. Biochem Biophys Res Commun (1963) 11:330-4. doi:10.1016/0006-291X(63)90566-7.
-
(1963)
Biochem Biophys Res Commun
, vol.11
, pp. 330-334
-
-
Ashman, D.F.1
Lipton, R.2
Melicow, M.M.3
Price, T.D.4
-
2
-
-
84974559698
-
Molecular physiology of membrane guanylyl cyclase receptors
-
Kuhn M. Molecular physiology of membrane guanylyl cyclase receptors. Physiol Rev (2016) 96:751-804. doi:10.1152/physrev.00022.2015.
-
(2016)
Physiol Rev
, vol.96
, pp. 751-804
-
-
Kuhn, M.1
-
3
-
-
80053283457
-
Guanylyl cyclase structure, function and regulation
-
Potter LR. Guanylyl cyclase structure, function and regulation. Cell Signal (2011) 23:1921-6. doi:10.1016/j.cellsig.2011.09.001.
-
(2011)
Cell Signal
, vol.23
, pp. 1921-1926
-
-
Potter, L.R.1
-
4
-
-
3142545905
-
Invertebrates yield a plethora of atypical guanylyl cyclases
-
Morton DB. Invertebrates yield a plethora of atypical guanylyl cyclases. Mol Neurobiol (2004) 29:97-116. doi:10.1385/MN:29:2:097.
-
(2004)
Mol Neurobiol
, vol.29
, pp. 97-116
-
-
Morton, D.B.1
-
5
-
-
0014670941
-
Guanyl cyclase, an enzyme catalyzing the formation of guanosine 3',5'-monophosphate from guanosine triphosphate
-
Hardman JG, Sutherland EW. Guanyl cyclase, an enzyme catalyzing the formation of guanosine 3',5'-monophosphate from guanosine triphosphate. J Biol Chem (1969) 244:6363-70.
-
(1969)
J Biol Chem
, vol.244
, pp. 6363-6370
-
-
Hardman, J.G.1
Sutherland, E.W.2
-
6
-
-
0014680514
-
Guanyl cyclase. Determination of enzyme activity
-
Schultz G, Bohme E, Munske K. Guanyl cyclase. Determination of enzyme activity. Life Sci (1969) 8:1323-32. doi:10.1016/0024-3205(69)90189-1.
-
(1969)
Life Sci
, vol.8
, pp. 1323-1332
-
-
Schultz, G.1
Bohme, E.2
Munske, K.3
-
7
-
-
0014641807
-
Detection of guanyl cyclase in mammalian tissues
-
White AA, Aurbach GD. Detection of guanyl cyclase in mammalian tissues. Biochim Biophys Acta (1969) 191:686-97. doi:10.1016/0005-2744(69)90362-3.
-
(1969)
Biochim Biophys Acta
, vol.191
, pp. 686-697
-
-
White, A.A.1
Aurbach, G.D.2
-
8
-
-
0016197863
-
Evidence for two different forms of guanylate cyclase in rat heart
-
Kimura H, Murad F. Evidence for two different forms of guanylate cyclase in rat heart. J Biol Chem (1974) 249:6910-6.
-
(1974)
J Biol Chem
, vol.249
, pp. 6910-6916
-
-
Kimura, H.1
Murad, F.2
-
9
-
-
0016181196
-
Guanylate cyclase from sperm of the sea urchin, Strongylocentrotus purpuratus
-
Garbers DL, Gray JP. Guanylate cyclase from sperm of the sea urchin, Strongylocentrotus purpuratus. Methods Enzymol (1974) 38:196-9. doi:10.1016/0076-6879(74)38031-7.
-
(1974)
Methods Enzymol
, vol.38
, pp. 196-199
-
-
Garbers, D.L.1
Gray, J.P.2
-
10
-
-
0016609341
-
Characterization of particulate and soluble guanylate cyclases from rat lung
-
Chrisman TD, Garbers DL, Parks MA, Hardman JG. Characterization of particulate and soluble guanylate cyclases from rat lung. J Biol Chem (1975) 250:374-81.
-
(1975)
J Biol Chem
, vol.250
, pp. 374-381
-
-
Chrisman, T.D.1
Garbers, D.L.2
Parks, M.A.3
Hardman, J.G.4
-
11
-
-
0017126773
-
Sea urchin sperm guanylate cyclase. Purification and loss of cooperativity
-
Garbers DL. Sea urchin sperm guanylate cyclase. Purification and loss of cooperativity. J Biol Chem (1976) 251:4071-7.
-
(1976)
J Biol Chem
, vol.251
, pp. 4071-4077
-
-
Garbers, D.L.1
-
12
-
-
0019879880
-
Soluble guanylate cyclase purified from bovine lung contains heme and copper
-
Gerzer R, Bohme E, Hofmann F, Schultz G. Soluble guanylate cyclase purified from bovine lung contains heme and copper. FEBS Lett (1981) 132:71-4. doi:10.1016/0014-5793(81)80429-2.
-
(1981)
FEBS Lett
, vol.132
, pp. 71-74
-
-
Gerzer, R.1
Bohme, E.2
Hofmann, F.3
Schultz, G.4
-
13
-
-
0023692773
-
Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases
-
Singh S, Lowe DG, Thorpe DS, Rodriguez H, Kuang WJ, Dangott LJ, et al. Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases. Nature (1988) 334:708-12. doi:10.1038/334708a0.
-
(1988)
Nature
, vol.334
, pp. 708-712
-
-
Singh, S.1
Lowe, D.G.2
Thorpe, D.S.3
Rodriguez, H.4
Kuang, W.J.5
Dangott, L.J.6
-
14
-
-
0024244778
-
Molecular cloning of a cDNA coding for 70 kilodalton subunit of soluble guanylate cyclase from rat lung
-
Nakane M, Saheki S, Kuno T, Ishii K, Murad F. Molecular cloning of a cDNA coding for 70 kilodalton subunit of soluble guanylate cyclase from rat lung. Biochem Biophys Res Commun (1988) 157:1139-47. doi:10.1016/S0006-291x(88)80992-6.
-
(1988)
Biochem Biophys Res Commun
, vol.157
, pp. 1139-1147
-
-
Nakane, M.1
Saheki, S.2
Kuno, T.3
Ishii, K.4
Murad, F.5
-
15
-
-
0025372562
-
The primary structure of the larger subunit of soluble guanylyl cyclase from bovine lung: homology between the 2 subunits of the enzyme
-
Koesling D, Harteneck C, Humbert P, Bosserhoff A, Frank R, Schultz G. The primary structure of the larger subunit of soluble guanylyl cyclase from bovine lung: homology between the 2 subunits of the enzyme. FEBS Lett (1990) 266:128-32. doi:10.1016/0014-5793(90)81523-Q.
-
(1990)
FEBS Lett
, vol.266
, pp. 128-132
-
-
Koesling, D.1
Harteneck, C.2
Humbert, P.3
Bosserhoff, A.4
Frank, R.5
Schultz, G.6
-
16
-
-
84906515139
-
High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor
-
Pichlo M, Bungert-Plumke S, Weyand I, Seifert R, Bonigk W, Strunker T, et al. High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor. J Cell Biol (2014) 207:675. doi:10.1083/jcb.20140202711112014c.
-
(2014)
J Cell Biol
, vol.207
, pp. 675
-
-
Pichlo, M.1
Bungert-Plumke, S.2
Weyand, I.3
Seifert, R.4
Bonigk, W.5
Strunker, T.6
-
17
-
-
84989889085
-
Integrative signaling networks of membrane guanylate cyclases: biochemistry and physiology
-
Sharma RK, Duda T, Makino CL. Integrative signaling networks of membrane guanylate cyclases: biochemistry and physiology. Front Mol Neurosci (2016) 9:83. doi:10.3389/fnmol.2016.00083.
-
(2016)
Front Mol Neurosci
, vol.9
, pp. 83
-
-
Sharma, R.K.1
Duda, T.2
Makino, C.L.3
-
18
-
-
0022887257
-
Soluble guanylate cyclase from rat lung exists as a heterodimer
-
Kamisaki Y, Saheki S, Nakane M, Palmieri JA, Kuno T, Chang BY, et al. Soluble guanylate cyclase from rat lung exists as a heterodimer. J Biol Chem (1986) 261:7236-41.
-
(1986)
J Biol Chem
, vol.261
, pp. 7236-7241
-
-
Kamisaki, Y.1
Saheki, S.2
Nakane, M.3
Palmieri, J.A.4
Kuno, T.5
Chang, B.Y.6
-
19
-
-
0025001895
-
Expression of soluble guanylyl cyclase: catalytic activity requires 2 enzyme subunits
-
Harteneck C, Koesling D, Soling A, Schultz G, Bohme E. Expression of soluble guanylyl cyclase: catalytic activity requires 2 enzyme subunits. FEBS Lett (1990) 272:221-3. doi:10.1016/0014-5793(90)80489-6.
-
(1990)
FEBS Lett
, vol.272
, pp. 221-223
-
-
Harteneck, C.1
Koesling, D.2
Soling, A.3
Schultz, G.4
Bohme, E.5
-
20
-
-
0033593327
-
Identification and characterization of a novel beta subunit of soluble guanylyl cyclase that is active in the absence of a second subunit and is relatively insensitive to nitric oxide
-
Nighorn A, Byrnes KA, Morton DB. Identification and characterization of a novel beta subunit of soluble guanylyl cyclase that is active in the absence of a second subunit and is relatively insensitive to nitric oxide. J Biol Chem (1999) 274:2525-31. doi:10.1074/jbc.274.4.2525.
-
(1999)
J Biol Chem
, vol.274
, pp. 2525-2531
-
-
Nighorn, A.1
Byrnes, K.A.2
Morton, D.B.3
-
21
-
-
0035903155
-
Nitric oxide activates the beta 2 subunit of soluble guanylyl cyclase in the absence of a second subunit
-
Koglin M, Vehse K, Budaeus L, Scholz H, Behrends S. Nitric oxide activates the beta 2 subunit of soluble guanylyl cyclase in the absence of a second subunit. J Biol Chem (2001) 276:30737-43. doi:10.1074/jbc.M102549200.
-
(2001)
J Biol Chem
, vol.276
, pp. 30737-30743
-
-
Koglin, M.1
Vehse, K.2
Budaeus, L.3
Scholz, H.4
Behrends, S.5
-
22
-
-
0033832073
-
Guanylyl cyclases and signaling by cyclic GMP
-
Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, et al. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev (2000) 52:375-414.
-
(2000)
Pharmacol Rev
, vol.52
, pp. 375-414
-
-
Lucas, K.A.1
Pitari, G.M.2
Kazerounian, S.3
Ruiz-Stewart, I.4
Park, J.5
Schulz, S.6
-
23
-
-
33744483160
-
Searching for neuronal left/right asymmetry: genomewide analysis of nematode receptor-type guanylyl cyclases
-
Ortiz CO, Etchberger JF, Posy SL, Frokjaer-Jensen C, Lockery S, Honig B, et al. Searching for neuronal left/right asymmetry: genomewide analysis of nematode receptor-type guanylyl cyclases. Genetics (2006) 173:131-49. doi:10.1534/genetics.106.055749.
-
(2006)
Genetics
, vol.173
, pp. 131-149
-
-
Ortiz, C.O.1
Etchberger, J.F.2
Posy, S.L.3
Frokjaer-Jensen, C.4
Lockery, S.5
Honig, B.6
-
24
-
-
0030914117
-
Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors
-
Yu S, Avery L, Baude E, Garbers DL. Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proc Natl Acad Sci U S A (1997) 94:3384-7. doi:10.1073/pnas.94.7.3384.
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 3384-3387
-
-
Yu, S.1
Avery, L.2
Baude, E.3
Garbers, D.L.4
-
25
-
-
0032509484
-
Neurobiology of the Caenorhabditis elegans genome
-
Bargmann CI. Neurobiology of the Caenorhabditis elegans genome. Science (1998) 282:2028-33. doi:10.1126/science.282.5396.2028.
-
(1998)
Science
, vol.282
, pp. 2028-2033
-
-
Bargmann, C.I.1
-
26
-
-
84878610212
-
Environmental alkalinity sensing mediated by the transmembrane guanylyl cyclase GCY-14 in C. elegans
-
Murayama T, Takayama J, Fujiwara M, Maruyama IN. Environmental alkalinity sensing mediated by the transmembrane guanylyl cyclase GCY-14 in C. elegans. Curr Biol (2013) 23:1007-12. doi:10.1016/j.cub.2013.04.052.
-
(2013)
Curr Biol
, vol.23
, pp. 1007-1012
-
-
Murayama, T.1
Takayama, J.2
Fujiwara, M.3
Maruyama, I.N.4
-
27
-
-
84891474643
-
A chemoreceptor that detects molecular carbon dioxide
-
Smith ES, Martinez-Velazquez L, Ringstad N. A chemoreceptor that detects molecular carbon dioxide. J Biol Chem (2013) 288:37071-81. doi:10.1074/jbc.M113.517367.
-
(2013)
J Biol Chem
, vol.288
, pp. 37071-37081
-
-
Smith, E.S.1
Martinez-Velazquez, L.2
Ringstad, N.3
-
28
-
-
84962090211
-
Receptor-type guanylyl cyclases confer thermosensory responses in C. elegans
-
Takeishi A, Yu YV, Hapiak VM, Bell HW, O'Leary T, Sengupta P. Receptor-type guanylyl cyclases confer thermosensory responses in C. elegans. Neuron (2016) 90:235-44. doi:10.1016/j.neuron.2016.03.002.
-
(2016)
Neuron
, vol.90
, pp. 235-244
-
-
Takeishi, A.1
Yu, Y.V.2
Hapiak, V.M.3
Bell, H.W.4
O'Leary, T.5
Sengupta, P.6
-
29
-
-
77955332431
-
cAMP and cGMP signaling: sensory systems with prokaryotic roots adopted by eukaryotic cilia
-
Johnson JL, Leroux MR. cAMP and cGMP signaling: sensory systems with prokaryotic roots adopted by eukaryotic cilia. Trends Cell Biol (2010) 20:435-44. doi:10.1016/j.tcb.2010.05.005.
-
(2010)
Trends Cell Biol
, vol.20
, pp. 435-444
-
-
Johnson, J.L.1
Leroux, M.R.2
-
30
-
-
77952885238
-
C. elegans phototransduction requires a G protein-dependent cGMP pathway and a taste receptor homolog
-
Liu J, Ward A, Gao J, Dong Y, Nishio N, Inada H, et al. C. elegans phototransduction requires a G protein-dependent cGMP pathway and a taste receptor homolog. Nat Neurosci (2010) 13:715-22. doi:10.1038/nn.2540.
-
(2010)
Nat Neurosci
, vol.13
, pp. 715-722
-
-
Liu, J.1
Ward, A.2
Gao, J.3
Dong, Y.4
Nishio, N.5
Inada, H.6
-
31
-
-
0033697452
-
Olfaction and odor discrimination are mediated by the C. elegans guanylyl cyclase ODR-1
-
L'Etoile ND, Bargmann CI. Olfaction and odor discrimination are mediated by the C. elegans guanylyl cyclase ODR-1. Neuron (2000) 25:575-86. doi:10.1016/S0896-6273(00)81061-2.
-
(2000)
Neuron
, vol.25
, pp. 575-586
-
-
L'Etoile, N.D.1
Bargmann, C.I.2
-
32
-
-
84877358044
-
Ascaroside signaling in C. elegans
-
Ludewig AH, Schroeder FC. Ascaroside signaling in C. elegans. WormBook (2013):1-22. doi:10.1895/wormbook.1.155.1.
-
(2013)
WormBook
, pp. 1-22
-
-
Ludewig, A.H.1
Schroeder, F.C.2
-
33
-
-
0034015979
-
A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in Caenorhabditis elegans
-
Birnby DA, Link EM, Vowels JJ, Tian H, Colacurcio PL, Thomas JH. A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in Caenorhabditis elegans. Genetics (2000) 155:85-104.
-
(2000)
Genetics
, vol.155
, pp. 85-104
-
-
Birnby, D.A.1
Link, E.M.2
Vowels, J.J.3
Tian, H.4
Colacurcio, P.L.5
Thomas, J.H.6
-
34
-
-
67349109397
-
Lateralized gustatory behavior of C. elegans is controlled by specific receptor-type guanylyl cyclases
-
Ortiz CO, Faumont S, Takayama J, Ahmed HK, Goldsmith AD, Pocock R, et al. Lateralized gustatory behavior of C. elegans is controlled by specific receptor-type guanylyl cyclases. Curr Biol (2009) 19:996-1004. doi:10.1016/j.cub.2009.05.043.
-
(2009)
Curr Biol
, vol.19
, pp. 996-1004
-
-
Ortiz, C.O.1
Faumont, S.2
Takayama, J.3
Ahmed, H.K.4
Goldsmith, A.D.5
Pocock, R.6
-
35
-
-
84881038319
-
Defining specificity determinants of cGMP mediated gustatory sensory transduction in Caenorhabditis elegans
-
Smith HK, Luo L, O'Halloran D, Guo D, Huang XY, Samuel AD, et al. Defining specificity determinants of cGMP mediated gustatory sensory transduction in Caenorhabditis elegans. Genetics (2013) 194:885-901. doi:10.1534/genetics.113.152660.
-
(2013)
Genetics
, vol.194
, pp. 885-901
-
-
Smith, H.K.1
Luo, L.2
O'Halloran, D.3
Guo, D.4
Huang, X.Y.5
Samuel, A.D.6
-
36
-
-
24144437052
-
microRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision
-
Johnston RJ Jr, Chang S, Etchberger JF, Ortiz CO, Hobert O. microRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. Proc Natl Acad Sci U S A (2005) 102:12449-54. doi:10.1073/pnas.0505530102.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 12449-12454
-
-
Johnston, R.J.1
Chang, S.2
Etchberger, J.F.3
Ortiz, C.O.4
Hobert, O.5
-
37
-
-
33646172732
-
Identification of guanylyl cyclases that function in thermosensory neurons of Caenorhabditis elegans
-
Inada H, Ito H, Satterlee J, Sengupta P, Matsumoto K, Mori I. Identification of guanylyl cyclases that function in thermosensory neurons of Caenorhabditis elegans. Genetics (2006) 172:2239-52. doi:10.1534/genetics.105.050013.
-
(2006)
Genetics
, vol.172
, pp. 2239-2252
-
-
Inada, H.1
Ito, H.2
Satterlee, J.3
Sengupta, P.4
Matsumoto, K.5
Mori, I.6
-
38
-
-
84957837881
-
The importance of cGMP signaling in sensory cilia for body size regulation in Caenorhabditis elegans
-
Fujiwara M, Hino T, Miyamoto R, Inada H, Mori I, Koga M, et al. The importance of cGMP signaling in sensory cilia for body size regulation in Caenorhabditis elegans. Genetics (2015) 201:1497-510. doi:10.1534/genetics.115.177543.
-
(2015)
Genetics
, vol.201
, pp. 1497-1510
-
-
Fujiwara, M.1
Hino, T.2
Miyamoto, R.3
Inada, H.4
Mori, I.5
Koga, M.6
-
39
-
-
0027160919
-
Odorant-selective genes and neurons mediate olfaction in C. elegans
-
Bargmann CI, Hartwieg E, Horvitz HR. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell (1993) 74:515-27. doi:10.1016/0092-8674(93)80053-H.
-
(1993)
Cell
, vol.74
, pp. 515-527
-
-
Bargmann, C.I.1
Hartwieg, E.2
Horvitz, H.R.3
-
40
-
-
79251564419
-
Reversal of salt preference is directed by the insulin/PI3K and Gq/PKC signaling in Caenorhabditis elegans
-
Adachi T, Kunitomo H, Tomioka M, Ohno H, Okochi Y, Mori I, et al. Reversal of salt preference is directed by the insulin/PI3K and Gq/PKC signaling in Caenorhabditis elegans. Genetics (2010) 186:1309-19. doi:10.1534/genetics.110.119768.
-
(2010)
Genetics
, vol.186
, pp. 1309-1319
-
-
Adachi, T.1
Kunitomo, H.2
Tomioka, M.3
Ohno, H.4
Okochi, Y.5
Mori, I.6
-
41
-
-
52049118312
-
A behavioral switch: cGMP and PKC signaling in olfactory neurons reverses odor preference in C. elegans
-
Tsunozaki M, Chalasani SH, Bargmann CI. A behavioral switch: cGMP and PKC signaling in olfactory neurons reverses odor preference in C. elegans. Neuron (2008) 59:959-71. doi:10.1016/j.neuron.2008.07.038.
-
(2008)
Neuron
, vol.59
, pp. 959-971
-
-
Tsunozaki, M.1
Chalasani, S.H.2
Bargmann, C.I.3
-
42
-
-
79951999593
-
Behavioral choice between conflicting alternatives is regulated by a receptor guanylyl cyclase, GCY-28, and a receptor tyrosine kinase, SCD-2, in AIA interneurons of Caenorhabditis elegans
-
Shinkai Y, Yamamoto Y, Fujiwara M, Tabata T, Murayama T, Hirotsu T, et al. Behavioral choice between conflicting alternatives is regulated by a receptor guanylyl cyclase, GCY-28, and a receptor tyrosine kinase, SCD-2, in AIA interneurons of Caenorhabditis elegans. J Neurosci (2011) 31:3007-15. doi:10.1523/JNEUROSCI.4691-10.2011.
-
(2011)
J Neurosci
, vol.31
, pp. 3007-3015
-
-
Shinkai, Y.1
Yamamoto, Y.2
Fujiwara, M.3
Tabata, T.4
Murayama, T.5
Hirotsu, T.6
-
43
-
-
0030273005
-
Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans
-
Komatsu H, Mori I, Rhee JS, Akaike N, Ohshima Y. Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans. Neuron (1996) 17:707-18. doi:10.1016/j.celrep.2015.11.064.
-
(1996)
Neuron
, vol.17
, pp. 707-718
-
-
Komatsu, H.1
Mori, I.2
Rhee, J.S.3
Akaike, N.4
Ohshima, Y.5
-
44
-
-
0030273625
-
A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans
-
Coburn CM, Bargmann CI. A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans. Neuron (1996) 17:695-706. doi:10.1016/S0896-6273(00)80201-9.
-
(1996)
Neuron
, vol.17
, pp. 695-706
-
-
Coburn, C.M.1
Bargmann, C.I.2
-
45
-
-
0037137678
-
Regulation of body size and behavioral state of C. elegans by sensory perception and the EGL-4 cGMP-dependent protein kinase
-
Fujiwara M, Sengupta P, McIntire SL. Regulation of body size and behavioral state of C. elegans by sensory perception and the EGL-4 cGMP-dependent protein kinase. Neuron (2002) 36:1091-102. doi:10.1016/S0896-6273(02)01093-0.
-
(2002)
Neuron
, vol.36
, pp. 1091-1102
-
-
Fujiwara, M.1
Sengupta, P.2
McIntire, S.L.3
-
46
-
-
0037352232
-
Cyclic GMP-dependent protein kinase EGL-4 controls body size and lifespan in C elegans
-
Hirose T, Nakano Y, Nagamatsu Y, Misumi T, Ohta H, Ohshima Y. Cyclic GMP-dependent protein kinase EGL-4 controls body size and lifespan in C elegans. Development (2003) 130:1089-99. doi:10.1242/dev.00330.
-
(2003)
Development
, vol.130
, pp. 1089-1099
-
-
Hirose, T.1
Nakano, Y.2
Nagamatsu, Y.3
Misumi, T.4
Ohta, H.5
Ohshima, Y.6
-
47
-
-
0037137698
-
The cyclic GMP-dependent protein kinase EGL-4 regulates olfactory adaptation in C. elegans
-
L'Etoile ND, Coburn CM, Eastham J, Kistler A, Gallegos G, Bargmann CI. The cyclic GMP-dependent protein kinase EGL-4 regulates olfactory adaptation in C. elegans. Neuron (2002) 36:1079-89. doi:10.1016/S0896-6273(02)01066-8.
-
(2002)
Neuron
, vol.36
, pp. 1079-1089
-
-
L'Etoile, N.D.1
Coburn, C.M.2
Eastham, J.3
Kistler, A.4
Gallegos, G.5
Bargmann, C.I.6
-
48
-
-
0037186030
-
Negative regulation and gain control of sensory neurons by the C. elegans calcineurin TAX-6
-
Kuhara A, Inada H, Katsura I, Mori I. Negative regulation and gain control of sensory neurons by the C. elegans calcineurin TAX-6. Neuron (2002) 33:751-63. doi:10.1016/S0896-6273(02)00607-4.
-
(2002)
Neuron
, vol.33
, pp. 751-763
-
-
Kuhara, A.1
Inada, H.2
Katsura, I.3
Mori, I.4
-
49
-
-
0034744301
-
Ca2+ signaling via the neuronal calcium sensor-1 regulates associative learning and memory in C. elegans
-
Gomez M, De Castro E, Guarin E, Sasakura H, Kuhara A, Mori I, et al. Ca2+ signaling via the neuronal calcium sensor-1 regulates associative learning and memory in C. elegans. Neuron (2001) 30:241-8. doi:10.1016/S0896-6273(01)00276-8.
-
(2001)
Neuron
, vol.30
, pp. 241-248
-
-
Gomez, M.1
De Castro, E.2
Guarin, E.3
Sasakura, H.4
Kuhara, A.5
Mori, I.6
-
50
-
-
79957467830
-
OrthoList: a compendium of C. elegans genes with human orthologs
-
Shaye DD, Greenwald I. OrthoList: a compendium of C. elegans genes with human orthologs. PLoS One (2011) 6:e20085. doi:10.1371/journal.pone.0020085.
-
(2011)
PLoS One
, vol.6
-
-
Shaye, D.D.1
Greenwald, I.2
-
52
-
-
0016698202
-
Normal and mutant thermotaxis in the nematode Caenorhabditis elegans
-
Hedgecock EM, Russell RL. Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A (1975) 72:4061-5. doi:10.1073/pnas.72.10.4061.
-
(1975)
Proc Natl Acad Sci U S A
, vol.72
, pp. 4061-4065
-
-
Hedgecock, E.M.1
Russell, R.L.2
-
53
-
-
0029050730
-
Neural regulation of thermotaxis in Caenorhabditis elegans
-
Mori I, Ohshima Y. Neural regulation of thermotaxis in Caenorhabditis elegans. Nature (1995) 376:344-8. doi:10.1038/376344a0.
-
(1995)
Nature
, vol.376
, pp. 344-348
-
-
Mori, I.1
Ohshima, Y.2
-
54
-
-
0036662792
-
Thermotaxis in Caenorhabditis elegans analyzed by measuring responses to defined thermal stimuli
-
Ryu WS, Samuel AD. Thermotaxis in Caenorhabditis elegans analyzed by measuring responses to defined thermal stimuli. J Neurosci (2002) 22:5727-33.
-
(2002)
J Neurosci
, vol.22
, pp. 5727-5733
-
-
Ryu, W.S.1
Samuel, A.D.2
-
55
-
-
33845266493
-
A diacylglycerol kinase modulates long-term thermotactic behavioral plasticity in C. elegans
-
Biron D, Shibuya M, Gabel C, Wasserman SM, Clark DA, Brown A, et al. A diacylglycerol kinase modulates long-term thermotactic behavioral plasticity in C. elegans. Nat Neurosci (2006) 9:1499-505. doi:10.1038/nn1796.
-
(2006)
Nat Neurosci
, vol.9
, pp. 1499-1505
-
-
Biron, D.1
Shibuya, M.2
Gabel, C.3
Wasserman, S.M.4
Clark, D.A.5
Brown, A.6
-
56
-
-
49449091354
-
An olfactory neuron responds stochastically to temperature and modulates Caenorhabditis elegans thermotactic behavior
-
Biron D, Wasserman S, Thomas JH, Samuel AD, Sengupta P. An olfactory neuron responds stochastically to temperature and modulates Caenorhabditis elegans thermotactic behavior. Proc Natl Acad Sci U S A (2008) 105:11002-7. doi:10.1073/pnas.0805004105.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 11002-11007
-
-
Biron, D.1
Wasserman, S.2
Thomas, J.H.3
Samuel, A.D.4
Sengupta, P.5
-
57
-
-
37249073826
-
Temperature and food mediate long-term thermotactic behavioral plasticity by association-independent mechanisms in C. elegans
-
Chi CA, Clark DA, Lee S, Biron D, Luo L, Gabel CV, et al. Temperature and food mediate long-term thermotactic behavioral plasticity by association-independent mechanisms in C. elegans. J Exp Biol (2007) 210:4043-52. doi:10.1242/jeb.006551.
-
(2007)
J Exp Biol
, vol.210
, pp. 4043-4052
-
-
Chi, C.A.1
Clark, D.A.2
Lee, S.3
Biron, D.4
Luo, L.5
Gabel, C.V.6
-
58
-
-
44049103544
-
Temperature sensing by an olfactory neuron in a circuit controlling behavior of C. elegans
-
Kuhara A, Okumura M, Kimata T, Tanizawa Y, Takano R, Kimura KD, et al. Temperature sensing by an olfactory neuron in a circuit controlling behavior of C. elegans. Science (2008) 320:803-7. doi:10.1126/science.1148922.
-
(2008)
Science
, vol.320
, pp. 803-807
-
-
Kuhara, A.1
Okumura, M.2
Kimata, T.3
Tanizawa, Y.4
Takano, R.5
Kimura, K.D.6
-
59
-
-
80051560513
-
Degeneracy and neuromodulation among thermosensory neurons contribute to robust thermosensory behaviors in Caenorhabditis elegans
-
Beverly M, Anbil S, Sengupta P. Degeneracy and neuromodulation among thermosensory neurons contribute to robust thermosensory behaviors in Caenorhabditis elegans. J Neurosci (2011) 31:11718-27. doi:10.1523/JNEUROSCI.1098-11.2011.
-
(2011)
J Neurosci
, vol.31
, pp. 11718-11727
-
-
Beverly, M.1
Anbil, S.2
Sengupta, P.3
-
60
-
-
0016654403
-
Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans
-
Ward S, Thomson N, White JG, Brenner S. Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J Comp Neurol (1975) 160:313-37. doi:10.1002/cne.901600305.
-
(1975)
J Comp Neurol
, vol.160
, pp. 313-337
-
-
Ward, S.1
Thomson, N.2
White, J.G.3
Brenner, S.4
-
61
-
-
48149103878
-
Bidirectional temperature-sensing by a single thermosensory neuron in C. elegans
-
Ramot D, MacInnis BL, Goodman MB. Bidirectional temperature-sensing by a single thermosensory neuron in C. elegans. Nat Neurosci (2008) 11:908-15. doi:10.1038/nn.2157.
-
(2008)
Nat Neurosci
, vol.11
, pp. 908-915
-
-
Ramot, D.1
MacInnis, B.L.2
Goodman, M.B.3
-
62
-
-
84952979600
-
Single-cell memory regulates a neural circuit for sensory behavior
-
Kobayashi K, Nakano S, Amano M, Tsuboi D, Nishioka T, Ikeda S, et al. Single-cell memory regulates a neural circuit for sensory behavior. Cell Rep (2016) 14:11-21. doi:10.1016/j.celrep.2015.11.064.
-
(2016)
Cell Rep
, vol.14
, pp. 11-21
-
-
Kobayashi, K.1
Nakano, S.2
Amano, M.3
Tsuboi, D.4
Nishioka, T.5
Ikeda, S.6
-
63
-
-
84958725340
-
A glial K(+)/Cl(-) cotransporter modifies temperature-evoked dynamics in Caenorhabditis elegans sensory neurons
-
Yoshida A, Nakano S, Suzuki T, Ihara K, Higashiyama T, Mori I. A glial K(+)/Cl(-) cotransporter modifies temperature-evoked dynamics in Caenorhabditis elegans sensory neurons. Genes Brain Behav (2016) 15:429-40. doi:10.1111/gbb.12260.
-
(2016)
Genes Brain Behav
, vol.15
, pp. 429-440
-
-
Yoshida, A.1
Nakano, S.2
Suzuki, T.3
Ihara, K.4
Higashiyama, T.5
Mori, I.6
-
64
-
-
84918506940
-
Ciliopathy proteins establish a bipartite signaling compartment in a C.elegans thermosensory neuron
-
Nguyen PA, Liou W, Hall DH, Leroux MR. Ciliopathy proteins establish a bipartite signaling compartment in a C. elegans thermosensory neuron. J Cell Sci (2014) 127:5317-30. doi:10.1242/jcs.157610.
-
(2014)
J Cell Sci
, vol.127
, pp. 5317-5330
-
-
Nguyen, P.A.1
Liou, W.2
Hall, D.H.3
Leroux, M.R.4
-
65
-
-
79952361965
-
Regulation of response properties and operating range of the AFD thermosensory neurons by cGMP signaling
-
Wasserman SM, Beverly M, Bell HW, Sengupta P. Regulation of response properties and operating range of the AFD thermosensory neurons by cGMP signaling. Curr Biol (2011) 21:353-62. doi:10.1016/j.cub.2011.01.053.
-
(2011)
Curr Biol
, vol.21
, pp. 353-362
-
-
Wasserman, S.M.1
Beverly, M.2
Bell, H.W.3
Sengupta, P.4
-
66
-
-
79955945994
-
Heat avoidance is regulated by transient receptor potential (TRP) channels and a neuropeptide signaling pathway in Caenorhabditis elegans
-
Glauser DA, Chen WC, Agin R, Macinnis BL, Hellman AB, Garrity PA, et al. Heat avoidance is regulated by transient receptor potential (TRP) channels and a neuropeptide signaling pathway in Caenorhabditis elegans. Genetics (2011) 188:91-103. doi:10.1534/genetics.111.127100.
-
(2011)
Genetics
, vol.188
, pp. 91-103
-
-
Glauser, D.A.1
Chen, W.C.2
Agin, R.3
Macinnis, B.L.4
Hellman, A.B.5
Garrity, P.A.6
-
67
-
-
84885435676
-
GCY-8, PDE-2, and NCS-1 are critical elements of the cGMP-dependent thermotransduction cascade in the AFD neurons responsible for C. elegans thermotaxis
-
Wang D, O'Halloran D, Goodman MB. GCY-8, PDE-2, and NCS-1 are critical elements of the cGMP-dependent thermotransduction cascade in the AFD neurons responsible for C. elegans thermotaxis. J Gen Physiol (2013) 142:437-49. doi:10.1085/jgp.201310959.
-
(2013)
J Gen Physiol
, vol.142
, pp. 437-449
-
-
Wang, D.1
O'Halloran, D.2
Goodman, M.B.3
-
68
-
-
84962767603
-
A Glial K/Cl transporter controls neuronal receptive ending shape by chloride inhibition of an rGC
-
Singhvi A, Liu B, Friedman CJ, Fong J, Lu Y, Huang XY, et al. A Glial K/Cl transporter controls neuronal receptive ending shape by chloride inhibition of an rGC. Cell (2016) 165:936-48. doi:10.1016/j.cell.2016.03.026.
-
(2016)
Cell
, vol.165
, pp. 936-948
-
-
Singhvi, A.1
Liu, B.2
Friedman, C.J.3
Fong, J.4
Lu, Y.5
Huang, X.Y.6
-
69
-
-
78751692092
-
Out of thin air: sensory detection of oxygen and carbon dioxide
-
Scott K. Out of thin air: sensory detection of oxygen and carbon dioxide. Neuron (2011) 69:194-202. doi:10.1016/j.neuron.2010.12.018.
-
(2011)
Neuron
, vol.69
, pp. 194-202
-
-
Scott, K.1
-
70
-
-
84861454439
-
The neurobiology of sensing respiratory gases for the control of animal behavior
-
Ma DK, Ringstad N. The neurobiology of sensing respiratory gases for the control of animal behavior. Front Biol (Beijing) (2012) 7:246-53. doi:10.1007/s11515-012-1219-x.
-
(2012)
Front Biol (Beijing)
, vol.7
, pp. 246-253
-
-
Ma, D.K.1
Ringstad, N.2
-
71
-
-
45849153072
-
Acute carbon dioxide avoidance in Caenorhabditis elegans
-
Hallem EA, Sternberg PW. Acute carbon dioxide avoidance in Caenorhabditis elegans. Proc Natl Acad Sci U S A (2008) 105:8038-43. doi:10.1073/pnas.0707469105.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 8038-8043
-
-
Hallem, E.A.1
Sternberg, P.W.2
-
72
-
-
78651063749
-
Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans
-
Hallem EA, Spencer WC, McWhirter RD, Zeller G, Henz SR, Ratsch G, et al. Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans. Proc Natl Acad Sci U S A (2011) 108:254-9. doi:10.1073/pnas.1017354108.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 254-259
-
-
Hallem, E.A.1
Spencer, W.C.2
McWhirter, R.D.3
Zeller, G.4
Henz, S.R.5
Ratsch, G.6
-
73
-
-
0032705690
-
Lateral signaling mediated by axon contact and calcium entry regulates asymmetric odorant receptor expression in C. elegans
-
Troemel ER, Sagasti A, Bargmann CI. Lateral signaling mediated by axon contact and calcium entry regulates asymmetric odorant receptor expression in C. elegans. Cell (1999) 99:387-98. doi:10.1016/S0092-8674(00)81525-1.
-
(1999)
Cell
, vol.99
, pp. 387-398
-
-
Troemel, E.R.1
Sagasti, A.2
Bargmann, C.I.3
-
74
-
-
0035810249
-
C. elegans odour discrimination requires asymmetric diversity in olfactory neurons
-
Wes PD, Bargmann CI. C. elegans odour discrimination requires asymmetric diversity in olfactory neurons. Nature (2001) 410:698-701. doi:10.1038/35070581.
-
(2001)
Nature
, vol.410
, pp. 698-701
-
-
Wes, P.D.1
Bargmann, C.I.2
-
75
-
-
0029887597
-
odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl
-
Sengupta P, Chou JH, Bargmann CI. odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell (1996) 84:899-909. doi:10.1016/S0092-8674(00)81068-5.
-
(1996)
Cell
, vol.84
, pp. 899-909
-
-
Sengupta, P.1
Chou, J.H.2
Bargmann, C.I.3
-
76
-
-
0028825369
-
Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans
-
Troemel ER, Chou JH, Dwyer ND, Colbert HA, Bargmann CI. Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell (1995) 83:207-18. doi:10.1016/0092-8674(95)90162-0.
-
(1995)
Cell
, vol.83
, pp. 207-218
-
-
Troemel, E.R.1
Chou, J.H.2
Dwyer, N.D.3
Colbert, H.A.4
Bargmann, C.I.5
-
77
-
-
4644301976
-
A network of stimulatory and inhibitory Galpha-subunits regulates olfaction in Caenorhabditis elegans
-
Lans H, Rademakers S, Jansen G. A network of stimulatory and inhibitory Galpha-subunits regulates olfaction in Caenorhabditis elegans. Genetics (2004) 167:1677-87. doi:10.1534/genetics.103.024786.
-
(2004)
Genetics
, vol.167
, pp. 1677-1687
-
-
Lans, H.1
Rademakers, S.2
Jansen, G.3
-
78
-
-
0031934849
-
The G alpha protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons
-
Roayaie K, Crump JG, Sagasti A, Bargmann CI. The G alpha protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons. Neuron (1998) 20:55-67. doi:10.1016/S0896-6273(00)80434-1.
-
(1998)
Neuron
, vol.20
, pp. 55-67
-
-
Roayaie, K.1
Crump, J.G.2
Sagasti, A.3
Bargmann, C.I.4
-
79
-
-
0032904017
-
The complete family of genes encoding G proteins of Caenorhabditis elegans
-
Jansen G, Thijssen KL, Werner P, van der Horst M, Hazendonk E, Plasterk RH. The complete family of genes encoding G proteins of Caenorhabditis elegans. Nat Genet (1999) 21:414-9. doi:10.1038/7753.
-
(1999)
Nat Genet
, vol.21
, pp. 414-419
-
-
Jansen, G.1
Thijssen, K.L.2
Werner, P.3
van der Horst, M.4
Hazendonk, E.5
Plasterk, R.H.6
-
80
-
-
35948982603
-
Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans
-
Chalasani SH, Chronis N, Tsunozaki M, Gray JM, Ramot D, Goodman MB, et al. Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature (2007) 450:63-70. doi:10.1038/nature06292.
-
(2007)
Nature
, vol.450
, pp. 63-70
-
-
Chalasani, S.H.1
Chronis, N.2
Tsunozaki, M.3
Gray, J.M.4
Ramot, D.5
Goodman, M.B.6
-
81
-
-
2942511367
-
Characterization of receptors for glutamate and GABA in retinal neurons
-
Yang XL. Characterization of receptors for glutamate and GABA in retinal neurons. Prog Neurobiol (2004) 73:127-50. doi:10.1016/j.pneurobio.2004.04.002.
-
(2004)
Prog Neurobiol
, vol.73
, pp. 127-150
-
-
Yang, X.L.1
-
82
-
-
84863077782
-
Changes in cGMP levels affect the localization of EGL-4 in AWC in Caenorhabditis elegans
-
O'Halloran DM, Hamilton OS, Lee JI, Gallegos M, L'Etoile ND. Changes in cGMP levels affect the localization of EGL-4 in AWC in Caenorhabditis elegans. PLoS One (2012) 7:e31614. doi:10.1371/journal.pone.0031614.
-
(2012)
PLoS One
, vol.7
-
-
O'Halloran, D.M.1
Hamilton, O.S.2
Lee, J.I.3
Gallegos, M.4
L'Etoile, N.D.5
-
83
-
-
74249112690
-
Regulators of AWC-mediated olfactory plasticity in Caenorhabditis elegans
-
O'Halloran DM, Altshuler-Keylin S, Lee JI, L'Etoile ND. Regulators of AWC-mediated olfactory plasticity in Caenorhabditis elegans. PLoS Genet (2009) 5:e1000761. doi:10.1371/journal.pgen.1000761.
-
(2009)
PLoS Genet
, vol.5
-
-
O'Halloran, D.M.1
Altshuler-Keylin, S.2
Lee, J.I.3
L'Etoile, N.D.4
-
84
-
-
77950530977
-
Nuclear entry of a cGMP-dependent kinase converts transient into long-lasting olfactory adaptation
-
Lee JI, O'Halloran DM, Eastham-Anderson J, Juang BT, Kaye JA, Scott Hamilton O, et al. Nuclear entry of a cGMP-dependent kinase converts transient into long-lasting olfactory adaptation. Proc Natl Acad Sci U S A (2010) 107:6016-21. doi:10.1073/pnas.1000866107.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 6016-6021
-
-
Lee, J.I.1
O'Halloran, D.M.2
Eastham-Anderson, J.3
Juang, B.T.4
Kaye, J.A.5
Scott Hamilton, O.6
-
85
-
-
84883426407
-
Endogenous nuclear RNAi mediates behavioral adaptation to odor
-
Juang BT, Gu C, Starnes L, Palladino F, Goga A, Kennedy S, et al. Endogenous nuclear RNAi mediates behavioral adaptation to odor. Cell (2013) 154:1010-22. doi:10.1016/j.cell.2013.08.006.
-
(2013)
Cell
, vol.154
, pp. 1010-1022
-
-
Juang, B.T.1
Gu, C.2
Starnes, L.3
Palladino, F.4
Goga, A.5
Kennedy, S.6
-
86
-
-
22844448655
-
Identification and characterization of a putative cyclic nucleotide-gated channel, CNG-1, in C. elegans
-
Cho SW, Cho JH, Song HO, Park CS. Identification and characterization of a putative cyclic nucleotide-gated channel, CNG-1, in C. elegans. Mol Cells (2005) 19:149-54.
-
(2005)
Mol Cells
, vol.19
, pp. 149-154
-
-
Cho, S.W.1
Cho, J.H.2
Song, H.O.3
Park, C.S.4
-
87
-
-
0016766716
-
The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans
-
Cassada RC, Russell RL. The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol (1975) 46:326-42. doi:10.1016/0012-1606(75)90109-8.
-
(1975)
Dev Biol
, vol.46
, pp. 326-342
-
-
Cassada, R.C.1
Russell, R.L.2
-
88
-
-
0030813398
-
daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans
-
Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science (1997) 277:942-6. doi:10.1126/science.277.5328.942.
-
(1997)
Science
, vol.277
, pp. 942-946
-
-
Kimura, K.D.1
Tissenbaum, H.A.2
Liu, Y.3
Ruvkun, G.4
-
89
-
-
10544256181
-
Control of C. elegans larval development by neuronal expression of a TGF-beta homolog
-
Ren P, Lim CS, Johnsen R, Albert PS, Pilgrim D, Riddle DL. Control of C. elegans larval development by neuronal expression of a TGF-beta homolog. Science (1996) 274:1389-91. doi:10.1126/science.274.5291.1389.
-
(1996)
Science
, vol.274
, pp. 1389-1391
-
-
Ren, P.1
Lim, C.S.2
Johnsen, R.3
Albert, P.S.4
Pilgrim, D.5
Riddle, D.L.6
-
90
-
-
0030272986
-
Chemosensory neurons function in parallel to mediate a pheromone response in C. elegans
-
Schackwitz WS, Inoue T, Thomas JH. Chemosensory neurons function in parallel to mediate a pheromone response in C. elegans. Neuron (1996) 17:719-28. doi:10.1016/S0896-6273(00)80203-2.
-
(1996)
Neuron
, vol.17
, pp. 719-728
-
-
Schackwitz, W.S.1
Inoue, T.2
Thomas, J.H.3
-
91
-
-
0035846604
-
daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans
-
Henderson ST, Johnson TE. daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol (2001) 11:1975-80. doi:10.1016/S0960-9822(01)00594-2.
-
(2001)
Curr Biol
, vol.11
, pp. 1975-1980
-
-
Henderson, S.T.1
Johnson, T.E.2
-
92
-
-
0035976524
-
Regulation of cell survival by secreted proneurotrophins
-
Lee R, Kermani P, Teng KK, Hempstead BL. Regulation of cell survival by secreted proneurotrophins. Science (2001) 294:1945-8. doi:10.1126/science.1065057.
-
(2001)
Science
, vol.294
, pp. 1945-1948
-
-
Lee, R.1
Kermani, P.2
Teng, K.K.3
Hempstead, B.L.4
-
93
-
-
0034967720
-
Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling
-
Lin K, Hsin H, Libina N, Kenyon C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet (2001) 28:139-45. doi:10.1038/88850.
-
(2001)
Nat Genet
, vol.28
, pp. 139-145
-
-
Lin, K.1
Hsin, H.2
Libina, N.3
Kenyon, C.4
-
94
-
-
0027771804
-
A C. elegans mutant that lives twice as long as wild type
-
Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature (1993) 366:461-4. doi:10.1038/366461a0.
-
(1993)
Nature
, vol.366
, pp. 461-464
-
-
Kenyon, C.1
Chang, J.2
Gensch, E.3
Rudner, A.4
Tabtiang, R.5
-
95
-
-
0028930267
-
Genes that regulate both development and longevity in Caenorhabditis elegans
-
Larsen PL, Albert PS, Riddle DL. Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics (1995) 139:1567-83.
-
(1995)
Genetics
, vol.139
, pp. 1567-1583
-
-
Larsen, P.L.1
Albert, P.S.2
Riddle, D.L.3
-
96
-
-
0025281396
-
daf-1, a C. elegans gene controlling dauer larva development, encodes a novel receptor protein kinase
-
Georgi LL, Albert PS, Riddle DL. daf-1, a C. elegans gene controlling dauer larva development, encodes a novel receptor protein kinase. Cell (1990) 61:635-45. doi:10.1016/0092-8674(90)90475-T.
-
(1990)
Cell
, vol.61
, pp. 635-645
-
-
Georgi, L.L.1
Albert, P.S.2
Riddle, D.L.3
-
97
-
-
0033841033
-
Caenorhabditis elegans type I TGF beta receptor can function in the absence of type II kinase to promote larval development
-
Gunther CV, Georgi LL, Riddle DLA. Caenorhabditis elegans type I TGF beta receptor can function in the absence of type II kinase to promote larval development. Development (2000) 127:3337-47.
-
(2000)
Development
, vol.127
, pp. 3337-3347
-
-
Gunther, C.V.1
Georgi, L.L.2
Riddle, D.L.A.3
-
98
-
-
0027373733
-
The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development
-
Estevez M, Attisano L, Wrana JL, Albert PS, Massague J, Riddle DL. The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development. Nature (1993) 365:644-9. doi:10.1038/365644a0.
-
(1993)
Nature
, vol.365
, pp. 644-649
-
-
Estevez, M.1
Attisano, L.2
Wrana, J.L.3
Albert, P.S.4
Massague, J.5
Riddle, D.L.6
-
99
-
-
0026419552
-
Control of larval development by chemosensory neurons in Caenorhabditis elegans
-
Bargmann CI, Horvitz HR. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science (1991) 251:1243-6. doi:10.1126/science.2006412.
-
(1991)
Science
, vol.251
, pp. 1243-1246
-
-
Bargmann, C.I.1
Horvitz, H.R.2
-
100
-
-
0033756305
-
Dauer formation induced by high temperatures in Caenorhabditis elegans
-
Ailion M, Thomas JH. Dauer formation induced by high temperatures in Caenorhabditis elegans. Genetics (2000) 156:1047-67.
-
(2000)
Genetics
, vol.156
, pp. 1047-1067
-
-
Ailion, M.1
Thomas, J.H.2
-
101
-
-
0027268170
-
Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans
-
Thomas JH, Birnby DA, Vowels JJ. Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans. Genetics (1993) 134:1105-17.
-
(1993)
Genetics
, vol.134
, pp. 1105-1117
-
-
Thomas, J.H.1
Birnby, D.A.2
Vowels, J.J.3
-
102
-
-
0028334880
-
daf-2, daf-16 and daf-23: genetically interacting genes controlling Dauer formation in Caenorhabditis elegans
-
Gottlieb S, Ruvkun G. daf-2, daf-16 and daf-23: genetically interacting genes controlling Dauer formation in Caenorhabditis elegans. Genetics (1994) 137:107-20.
-
(1994)
Genetics
, vol.137
, pp. 107-120
-
-
Gottlieb, S.1
Ruvkun, G.2
-
103
-
-
0034767550
-
DAF-7/TGF-beta expression required for the normal larval development in C. elegans is controlled by a presumed guanylyl cyclase DAF-11
-
Murakami M, Koga M, Ohshima Y. DAF-7/TGF-beta expression required for the normal larval development in C. elegans is controlled by a presumed guanylyl cyclase DAF-11. Mech Dev (2001) 109:27-35. doi:10.1016/S0925-4773(01)00507-X.
-
(2001)
Mech Dev
, vol.109
, pp. 27-35
-
-
Murakami, M.1
Koga, M.2
Ohshima, Y.3
-
104
-
-
80052849829
-
Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes
-
McGrath PT, Xu Y, Ailion M, Garrison JL, Butcher RA, Bargmann CI. Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes. Nature (2011) 477:321-5. doi:10.1038/nature10378.
-
(2011)
Nature
, vol.477
, pp. 321-325
-
-
McGrath, P.T.1
Xu, Y.2
Ailion, M.3
Garrison, J.L.4
Butcher, R.A.5
Bargmann, C.I.6
-
105
-
-
84862576525
-
Interaction of structure-specific and promiscuous G-protein-coupled receptors mediates small-molecule signaling in Caenorhabditis elegans
-
Park D, O'Doherty I, Somvanshi RK, Bethke A, Schroeder FC, Kumar U, et al. Interaction of structure-specific and promiscuous G-protein-coupled receptors mediates small-molecule signaling in Caenorhabditis elegans. Proc Natl Acad Sci U S A (2012) 109:9917-22. doi:10.1073/pnas.1202216109.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 9917-9922
-
-
Park, D.1
O'Doherty, I.2
Somvanshi, R.K.3
Bethke, A.4
Schroeder, F.C.5
Kumar, U.6
-
106
-
-
0033824648
-
egl-4 acts through a transforming growth factor-beta/SMAD pathway in Caenorhabditis elegans to regulate multiple neuronal circuits in response to sensory cues
-
Daniels SA, Ailion M, Thomas JH, Sengupta P. egl-4 acts through a transforming growth factor-beta/SMAD pathway in Caenorhabditis elegans to regulate multiple neuronal circuits in response to sensory cues. Genetics (2000) 156:123-41.
-
(2000)
Genetics
, vol.156
, pp. 123-141
-
-
Daniels, S.A.1
Ailion, M.2
Thomas, J.H.3
Sengupta, P.4
-
107
-
-
33744492114
-
A novel gain-of-function mutant of the cyclic GMP-dependent protein kinase egl-4 affects multiple physiological processes in Caenorhabditis elegans
-
Raizen DM, Cullison KM, Pack AI, Sundaram MV. A novel gain-of-function mutant of the cyclic GMP-dependent protein kinase egl-4 affects multiple physiological processes in Caenorhabditis elegans. Genetics (2006) 173:177-87. doi:10.1534/genetics.106.057380.
-
(2006)
Genetics
, vol.173
, pp. 177-187
-
-
Raizen, D.M.1
Cullison, K.M.2
Pack, A.I.3
Sundaram, M.V.4
-
108
-
-
50249188277
-
A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans
-
Edwards SL, Charlie NK, Milfort MC, Brown BS, Gravlin CN, Knecht JE, et al. A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans. PLoS Biol (2008) 6:e198. doi:10.1371/journal.pbio.0060198.
-
(2008)
PLoS Biol
, vol.6
-
-
Edwards, S.L.1
Charlie, N.K.2
Milfort, M.C.3
Brown, B.S.4
Gravlin, C.N.5
Knecht, J.E.6
-
109
-
-
48149099744
-
Light-sensitive neurons and channels mediate phototaxis in C. elegans
-
Ward A, Liu J, Feng Z, Xu XZ. Light-sensitive neurons and channels mediate phototaxis in C. elegans. Nat Neurosci (2008) 11:916-22. doi:10.1038/nn.2155.
-
(2008)
Nat Neurosci
, vol.11
, pp. 916-922
-
-
Ward, A.1
Liu, J.2
Feng, Z.3
Xu, X.Z.4
-
110
-
-
84995745500
-
The C. elegans taste receptor homolog LITE-1 is a photoreceptor
-
Gong J, Yuan Y, Ward A, Kang L, Zhang B, Wu Z, et al. The C. elegans taste receptor homolog LITE-1 is a photoreceptor. Cell (2016) 167:1252-63.e10. doi:10.1016/j.cell.2016.10.053.
-
(2016)
Cell
, vol.167
, pp. 1252.e10-1263.e10
-
-
Gong, J.1
Yuan, Y.2
Ward, A.3
Kang, L.4
Zhang, B.5
Wu, Z.6
-
111
-
-
0017354489
-
Specific neuroanatomical changes in chemosensory mutants of the nematode Caenorhabditis elegans
-
Lewis JA, Hodgkin JA. Specific neuroanatomical changes in chemosensory mutants of the nematode Caenorhabditis elegans. J Comp Neurol (1977) 172:489-510. doi:10.1002/cne.901720306.
-
(1977)
J Comp Neurol
, vol.172
, pp. 489-510
-
-
Lewis, J.A.1
Hodgkin, J.A.2
-
112
-
-
0032736068
-
A novel WD40 protein, CHE-2, acts cell-autonomously in the formation of C. elegans sensory cilia
-
Fujiwara M, Ishihara T, Katsura I. A novel WD40 protein, CHE-2, acts cell-autonomously in the formation of C. elegans sensory cilia. Development (1999) 126:4839-48.
-
(1999)
Development
, vol.126
, pp. 4839-4848
-
-
Fujiwara, M.1
Ishihara, T.2
Katsura, I.3
-
113
-
-
33644755456
-
Regulation of growth by ploidy in Caenorhabditis elegans
-
Lozano E, Saez AG, Flemming AJ, Cunha A, Leroi AM. Regulation of growth by ploidy in Caenorhabditis elegans. Curr Biol (2006) 16:493-8. doi:10.1016/j.cub.2006.01.048.
-
(2006)
Curr Biol
, vol.16
, pp. 493-498
-
-
Lozano, E.1
Saez, A.G.2
Flemming, A.J.3
Cunha, A.4
Leroi, A.M.5
-
114
-
-
43149123122
-
Dietary regulation of hypodermal polyploidization in C. elegans
-
Tain LS, Lozano E, Saez AG, Leroi AM. Dietary regulation of hypodermal polyploidization in C. elegans. BMC Dev Biol (2008) 8:28. doi:10.1186/1471-213X-8-28.
-
(2008)
BMC Dev Biol
, vol.8
, pp. 28
-
-
Tain, L.S.1
Lozano, E.2
Saez, A.G.3
Leroi, A.M.4
-
115
-
-
78649712618
-
A novel zf-MYND protein, CHB-3, mediates guanylyl cyclase localization to sensory cilia and controls body size of Caenorhabditis elegans
-
Fujiwara M, Teramoto T, Ishihara T, Ohshima Y, McIntire SL. A novel zf-MYND protein, CHB-3, mediates guanylyl cyclase localization to sensory cilia and controls body size of Caenorhabditis elegans. PLoS Genet (2010) 6:e1001211. doi:10.1371/journal.pgen.1001211.
-
(2010)
PLoS Genet
, vol.6
-
-
Fujiwara, M.1
Teramoto, T.2
Ishihara, T.3
Ohshima, Y.4
McIntire, S.L.5
-
116
-
-
84908268069
-
Mechanisms of activation of receptor tyrosine kinases: monomers or dimers
-
Maruyama IN. Mechanisms of activation of receptor tyrosine kinases: monomers or dimers. Cells (2014) 3:304-30. doi:10.3390/cells3020304.
-
(2014)
Cells
, vol.3
, pp. 304-330
-
-
Maruyama, I.N.1
-
117
-
-
84939653139
-
Activation of transmembrane cell-surface receptors via a common mechanism? The "rotation model"
-
Maruyama IN. Activation of transmembrane cell-surface receptors via a common mechanism? The "rotation model". Bioessays (2015) 37:959-67. doi:10.1002/bies.201500041.
-
(2015)
Bioessays
, vol.37
, pp. 959-967
-
-
Maruyama, I.N.1
-
118
-
-
0026725829
-
Ligand-independent oligomerization of natriuretic peptide receptors. Identification of heteromeric receptors and a dominant negative mutant
-
Chinkers M, Wilson EM. Ligand-independent oligomerization of natriuretic peptide receptors. Identification of heteromeric receptors and a dominant negative mutant. J Biol Chem (1992) 267:18589-97.
-
(1992)
J Biol Chem
, vol.267
, pp. 18589-18597
-
-
Chinkers, M.1
Wilson, E.M.2
-
119
-
-
0034612573
-
Structure of the dimerized hormone-binding domain of a guanylyl-cyclase-coupled receptor
-
van den Akker F, Zhang X, Miyagi M, Huo X, Misono KS, Yee VC. Structure of the dimerized hormone-binding domain of a guanylyl-cyclase-coupled receptor. Nature (2000) 406:101-4. doi:10.1038/35017602.
-
(2000)
Nature
, vol.406
, pp. 101-104
-
-
van den Akker, F.1
Zhang, X.2
Miyagi, M.3
Huo, X.4
Misono, K.S.5
Yee, V.C.6
-
120
-
-
3142582002
-
Crystal structure of hormone-bound atrial natriuretic peptide receptor extracellular domain: rotation mechanism for transmembrane signal transduction
-
Ogawa H, Qiu Y, Ogata CM, Misono KS. Crystal structure of hormone-bound atrial natriuretic peptide receptor extracellular domain: rotation mechanism for transmembrane signal transduction. J Biol Chem (2004) 279:28625-31. doi:10.1074/jbc.M313222200.
-
(2004)
J Biol Chem
, vol.279
, pp. 28625-28631
-
-
Ogawa, H.1
Qiu, Y.2
Ogata, C.M.3
Misono, K.S.4
-
121
-
-
0034625734
-
Atrial natriuretic factor binding to its receptor is dependent on chloride concentration: a possible feedback-control mechanism in renal salt regulation
-
Misono KS. Atrial natriuretic factor binding to its receptor is dependent on chloride concentration: a possible feedback-control mechanism in renal salt regulation. Circ Res (2000) 86:1135-9. doi:10.1161/01.RES.86.11.1135.
-
(2000)
Circ Res
, vol.86
, pp. 1135-1139
-
-
Misono, K.S.1
-
122
-
-
0023666431
-
Participation of adenosine 5'-triphosphate in the activation of membrane-bound guanylate cyclase by the atrial natriuretic factor
-
Kurose H, Inagami T, Ui M. Participation of adenosine 5'-triphosphate in the activation of membrane-bound guanylate cyclase by the atrial natriuretic factor. FEBS Lett (1987) 219:375-9. doi:10.1016/0014-5793(87)80256-9.
-
(1987)
FEBS Lett
, vol.219
, pp. 375-379
-
-
Kurose, H.1
Inagami, T.2
Ui, M.3
-
123
-
-
0025874971
-
Adenine nucleotides are required for activation of rat atrial natriuretic peptide receptor/guanylyl cyclase expressed in a baculovirus system
-
Chinkers M, Singh S, Garbers DL. Adenine nucleotides are required for activation of rat atrial natriuretic peptide receptor/guanylyl cyclase expressed in a baculovirus system. J Biol Chem (1991) 266:4088-93.
-
(1991)
J Biol Chem
, vol.266
, pp. 4088-4093
-
-
Chinkers, M.1
Singh, S.2
Garbers, D.L.3
-
124
-
-
27644591220
-
Atrial natriuretic peptide-dependent photolabeling of a regulatory ATP-binding site on the natriuretic peptide receptor-A
-
Joubert S, Jossart C, McNicoll N, De Lean A. Atrial natriuretic peptide-dependent photolabeling of a regulatory ATP-binding site on the natriuretic peptide receptor-A. FEBS J (2005) 272:5572-83. doi:10.1111/j.1742-4658.2005.04952.x.
-
(2005)
FEBS J
, vol.272
, pp. 5572-5583
-
-
Joubert, S.1
Jossart, C.2
McNicoll, N.3
De Lean, A.4
-
125
-
-
0031896916
-
Phosphorylation of the kinase homology domain is essential for activation of the A-type natriuretic peptide receptor
-
Potter LR, Hunter T. Phosphorylation of the kinase homology domain is essential for activation of the A-type natriuretic peptide receptor. Mol Cell Biol (1998) 18:2164-72. doi:10.1128/MCB.18.4.2164.
-
(1998)
Mol Cell Biol
, vol.18
, pp. 2164-2172
-
-
Potter, L.R.1
Hunter, T.2
-
126
-
-
77952705206
-
Homologous desensitization of guanylyl cyclase A, the receptor for atrial natriuretic peptide, is associated with a complex phosphorylation pattern
-
Schroter J, Zahedi RP, Hartmann M, Gassner B, Gazinski A, Waschke J, et al. Homologous desensitization of guanylyl cyclase A, the receptor for atrial natriuretic peptide, is associated with a complex phosphorylation pattern. FEBS J (2010) 277:2440-53. doi:10.1111/j.1742-4658.2010.07658.x.
-
(2010)
FEBS J
, vol.277
, pp. 2440-2453
-
-
Schroter, J.1
Zahedi, R.P.2
Hartmann, M.3
Gassner, B.4
Gazinski, A.5
Waschke, J.6
-
127
-
-
0026777809
-
Dephosphorylation of the guanylyl cyclase-A receptor causes desensitization
-
Potter LR, Garbers DL. Dephosphorylation of the guanylyl cyclase-A receptor causes desensitization. J Biol Chem (1992) 267:14531-4.
-
(1992)
J Biol Chem
, vol.267
, pp. 14531-14534
-
-
Potter, L.R.1
Garbers, D.L.2
-
128
-
-
0035909101
-
Reduced activity of the NPR-A kinase triggers dephosphorylation and homologous desensitization of the receptor
-
Joubert S, Labrecque J, De Lean A. Reduced activity of the NPR-A kinase triggers dephosphorylation and homologous desensitization of the receptor. Biochemistry (2001) 40:11096-105. doi:10.1021/bi010580s.
-
(2001)
Biochemistry
, vol.40
, pp. 11096-11105
-
-
Joubert, S.1
Labrecque, J.2
De Lean, A.3
-
129
-
-
0025994797
-
Allosteric modulation by ATP of the bovine adrenal natriuretic factor R1 receptor functions
-
Larose L, McNicoll N, Ong H, De Lean A. Allosteric modulation by ATP of the bovine adrenal natriuretic factor R1 receptor functions. Biochemistry (1991) 30:8990-5. doi:10.1021/bi00101a012.
-
(1991)
Biochemistry
, vol.30
, pp. 8990-8995
-
-
Larose, L.1
McNicoll, N.2
Ong, H.3
De Lean, A.4
-
130
-
-
0027518444
-
Hormonal induction of low affinity receptor guanylyl cyclase
-
Jewett JR, Koller KJ, Goeddel DV, Lowe DG. Hormonal induction of low affinity receptor guanylyl cyclase. EMBO J (1993) 12:769-77.
-
(1993)
EMBO J
, vol.12
, pp. 769-777
-
-
Jewett, J.R.1
Koller, K.J.2
Goeddel, D.V.3
Lowe, D.G.4
-
131
-
-
19544376001
-
ATP-regulated module (ARM) of the atrial natriuretic factor receptor guanylate cyclase
-
Duda T, Venkataraman V, Ravichandran S, Sharma RK. ATP-regulated module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Peptides (2005) 26:969-84. doi:10.1016/j.peptides.2004.08.032.
-
(2005)
Peptides
, vol.26
, pp. 969-984
-
-
Duda, T.1
Venkataraman, V.2
Ravichandran, S.3
Sharma, R.K.4
-
132
-
-
0024461962
-
The protein kinase domain of the ANP receptor is required for signaling
-
Chinkers M, Garbers DL. The protein kinase domain of the ANP receptor is required for signaling. Science (1989) 245:1392-4. doi:10.1126/science.2571188.
-
(1989)
Science
, vol.245
, pp. 1392-1394
-
-
Chinkers, M.1
Garbers, D.L.2
-
133
-
-
70350482887
-
The linker region in receptor guanylyl cyclases is a key regulatory module: mutational analysis of guanylyl cyclase C
-
Saha S, Biswas KH, Kondapalli C, Isloor N, Visweswariah SS. The linker region in receptor guanylyl cyclases is a key regulatory module: mutational analysis of guanylyl cyclase C. J Biol Chem (2009) 284:27135-45. doi:10.1074/jbc.M109.020032.
-
(2009)
J Biol Chem
, vol.284
, pp. 27135-27145
-
-
Saha, S.1
Biswas, K.H.2
Kondapalli, C.3
Isloor, N.4
Visweswariah, S.S.5
-
134
-
-
55149109657
-
The crystal structure of the catalytic domain of a eukaryotic guanylate cyclase
-
Winger JA, Derbyshire ER, Lamers MH, Marletta MA, Kuriyan J. The crystal structure of the catalytic domain of a eukaryotic guanylate cyclase. BMC Struct Biol (2008) 8:42. doi:10.1186/1472-6807-8-42.
-
(2008)
BMC Struct Biol
, vol.8
, pp. 42
-
-
Winger, J.A.1
Derbyshire, E.R.2
Lamers, M.H.3
Marletta, M.A.4
Kuriyan, J.5
-
136
-
-
84874740630
-
Crystal structures of the catalytic domain of human soluble guanylate cyclase
-
Allerston CK, von Delft F, Gileadi O. Crystal structures of the catalytic domain of human soluble guanylate cyclase. PLoS One (2013) 8:e57644. doi:10.1371/journal.pone.0057644.
-
(2013)
PLoS One
, vol.8
-
-
Allerston, C.K.1
von Delft, F.2
Gileadi, O.3
-
137
-
-
0142122328
-
The class III adenylyl cyclases: multi-purpose signalling modules
-
Linder JU, Schultz JE. The class III adenylyl cyclases: multi-purpose signalling modules. Cell Signal (2003) 15:1081-9. doi:10.1016/S0898-6568(03)00130-X.
-
(2003)
Cell Signal
, vol.15
, pp. 1081-1089
-
-
Linder, J.U.1
Schultz, J.E.2
-
138
-
-
0030717502
-
The Caenorhabditis elegans seven-transmembrane protein ODR-10 functions as an odorant receptor in mammalian cells
-
Zhang Y, Chou JH, Bradley J, Bargmann CI, Zinn K. The Caenorhabditis elegans seven-transmembrane protein ODR-10 functions as an odorant receptor in mammalian cells. Proc Natl Acad Sci U S A (1997) 94:12162-7. doi:10.1073/pnas.94.22.12162.
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 12162-12167
-
-
Zhang, Y.1
Chou, J.H.2
Bradley, J.3
Bargmann, C.I.4
Zinn, K.5
-
139
-
-
2642689663
-
Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS
-
Tesmer JJ, Sunahara RK, Gilman AG, Sprang SR. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science (1997) 278:1907-16. doi:10.1126/science.278.5345.1907.
-
(1997)
Science
, vol.278
, pp. 1907-1916
-
-
Tesmer, J.J.1
Sunahara, R.K.2
Gilman, A.G.3
Sprang, S.R.4
-
140
-
-
79956211294
-
Structure, signaling mechanism and regulation of the natriuretic peptide receptor guanylate cyclase
-
Misono KS, Philo JS, Arakawa T, Ogata CM, Qiu Y, Ogawa H, et al. Structure, signaling mechanism and regulation of the natriuretic peptide receptor guanylate cyclase. FEBS J (2011) 278:1818-29. doi:10.1111/j.1742-4658.2011.08083.x.
-
(2011)
FEBS J
, vol.278
, pp. 1818-1829
-
-
Misono, K.S.1
Philo, J.S.2
Arakawa, T.3
Ogata, C.M.4
Qiu, Y.5
Ogawa, H.6
-
141
-
-
77953090807
-
Role of juxtamembrane and transmembrane domains in the mechanism of natriuretic peptide receptor A activation
-
Parat M, Blanchet J, De Lean A. Role of juxtamembrane and transmembrane domains in the mechanism of natriuretic peptide receptor A activation. Biochemistry (2010) 49:4601-10. doi:10.1021/bi901711w.
-
(2010)
Biochemistry
, vol.49
, pp. 4601-4610
-
-
Parat, M.1
Blanchet, J.2
De Lean, A.3
-
142
-
-
67549145398
-
Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment
-
Jura N, Endres NF, Engel K, Deindl S, Das R, Lamers MH, et al. Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell (2009) 137:1293-307. doi:10.1016/j.cell.2009.04.025.
-
(2009)
Cell
, vol.137
, pp. 1293-1307
-
-
Jura, N.1
Endres, N.F.2
Engel, K.3
Deindl, S.4
Das, R.5
Lamers, M.H.6
-
143
-
-
0141599428
-
Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor
-
Stamos J, Sliwkowski MX, Eigenbrot C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem (2002) 277:46265-72. doi:10.1074/jbc.M207135200.
-
(2002)
J Biol Chem
, vol.277
, pp. 46265-46272
-
-
Stamos, J.1
Sliwkowski, M.X.2
Eigenbrot, C.3
|